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ON A MINIMAX FORMULA OF LEJA'S

BY LUBY LIAO

1. Introduction. Let D be a domain in the compact complex plane con-
taining oo. Leja [5] presented two discrete formulas for the Green's function
of D (if it exists) with the logarithmic singularity at oo in terms of the points
of 3D. Pommerenke [9] later proved a hyperbolic version of one of these
formulas—the one which involves the Fekete-Leja extremal points. We will
prove here a hyperbolic* version of the other formula, which is a minimax
formula. We will also point out an extremal property of the points involved in
this type of minimax formula. The author would like to thank Professor James
A. Jenkins for introducing Leja's work to him and for many suggestions.

2. Notation and Known Results. The unit disc { |z |<l} will be denoted
by Δ. Given two complex numbers a and b such that 1—baΦO, we let

(1) Cα,fc]=(α-6)/(l-6α).

Then d(a, &)=|[α, b~]\ defines a metric in Δ. Let E in the following denote a
given compact set in Δ. Then the capacity of E is defined as follows ([10]
see also [8, 4]). Let

V ( x 0 , x l f •••, x n ) = T L o ί ί ι < j < ; n \ ί x ι , X j l \ , f o r x = { x 0 , •••, x n } c E ;

•• , xn)(x={x0, ••• , *„}<=£) and

Then lim^co vn(E) exists and is called the capacity of E, denoted by p or p(E).
Given x={xQ, •••, xn}dE and zeA, we let

( 2 ) S(nj)(z; x ) = U i Φ j \ ί z , x τ 2 \ , f o r ; = 0, 1, •• , n , a n d

( 3 ) δn=τmxxmmo<ijinδίί)(xj \ x)

Then we have

THEOREM 1. δ\ίn-*p as n-±oo ([8]; see also [4]).
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Following Leja, if η— {η0, η1} ••• , rjn}dE and Vn{E)—V{η) we call η an
n-extremal system of E. In the following, for each n > 0 , η~{r]o} ••• , ηn} always
stands for an n-extremal system of E. Furthermore we assume that η0, ••• , ηn

have been so arranged that

(4) WKη*\η)^δH\η,\y) ^r

Then we have

THEOREM 2. [δ(

n°\η0; η)Ύln-^p as n->oo ([9]; see also [5, 2]).

Let D denote the component of Δ—E with 9Δ as one of its boundary
components.

Now for each n>0 and an n-extremal system η, let

Ln(z; 37)=ILstsn[>, ̂ ] Πi*ιsn{(l—j?ι)/(l--37t)}, and

Here ln(z) is first defined in a neighborhood of 1 with ln(ϊ)=l and then extended
continuously to G = Z)VJ9ΔW/)*, where £>* is the domain of reflection of D with
respect to 3Δ.

In what follows, a continuum is always meant to be a non-degenerate one.
Then we have

THEOREM 3. ([9]; see also [5,7]) Assume p>0. Then l{z)—\\mn^Jn{z)
exists locally uniformly in G. l{z) is locally analytic and is of single-valued
modulus in G. If b is a boundary point of D that lies on a continuum contained
in E, then \l(z)\—>ρ as z—>b, z^D. Furthermore, \l{z)\— 1 for \z\—l. If E is
the union of a finite number of continua then log | l/l(z) | /log 11/p | 2S the harmonic
measure of E with respect to D. If E is a continuum then w — l(z) maps D
conformally onto {w : ρ< \w | <1} with /(1)=1.

3. Main Results.

Assume now E has infinitely many points. For a set x={x0, ••• , xn} of
n + 1 distinct points of E, we consider the polynomials of Lagrange belonging
to these points:

(6) L\i\z\ x)=πtφj£z, xtl/ίxJt xtl), 7=0,

and let

(7) L n ( z ) = m m x m a x 0 < : ^ n \ L(

n

J)(z x ) \ ,

We have the following hyperbolic version of Leja's minimax formula [5].

THEOREM 4. // p>0, then \imn_>ooL
ί

n

/n(z)=\l(z)\/p for z in D.
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For a proof of this theorem we need the following lemmas. We assume

p(E)>0.
I . limn_ooL^/rι(z) = L{z) exists for all z^G.

This is essentially proven in [5, §§ 3-4].
Π. L(z)=l/p for \z\=L
If \z\=l and bzΞE, then \[z, 6 ] | = 1 . Therefore by (7) and (3),

Ln(^)=minα;maxos : jSnΠt#/l/1 ίxj> x%l I)

mOύjύnIliΦj I \_x3, Xι~l I =l/δn .

Π then follows from THEOREM 1.
ΠI. l^L(z)^\l(z)\/p for Z<EΞG.

For a proof of the first inequality, use Lagrange interpolation formula as in
[9, p. 943]; for the second, see [5, p. 67].

Assume now a point a in D is given and fixed. We will assume, as we
may, that for each n>0,

(8) L»(α)=Lff>(fl;ζ)=Wα

where ζ={ζ 0, ζlt •••, ζn}θ.E and ; = 0 , 1, •••, n. Let An=lδ(

n

n(ζ0; ζ)Ύln- Then
we have

IV. 0<lim infn-.ec^n^lim suvn^An^ρ.

By (8), for j=0, 1, - , n,

|[fl,CJ-[tf,ζ»]|/Wζo;ζ)

WC; O
Thus

(9) δ^ίζ^

Whence

V2(ζo, - , C»)=δiB)(C»; O δ ^ - ^ ζ n - i ; 0 - δ<°»(ζ0; ζ)

S[3S»(C.; C)]"+1 l[α, Co]|"/I[fl, CJ - Cα, ζ n ] | .

Let ;7ί=minδ e E | [α, ό] | and M=max 6 e E |Cα, 6 ] | . Then m>0 and

Thus lim supπ^An^p.
On the other hand, let η={η0, •••, i}n} be an w-extremal system of E and

suppose
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where O^p^n. Then by (8), (7) and (4),

δ™(rio; η).

Thus δ(

n

0)(ζ0; ζ)^δ(

n

0)(η0; Ύ))(m/M)n. The left hand inequality of IV then follows
from this and THEOREM 2.

Let ζ be as in (8). By IV, we can choose a subsequence of {Λn} —
{[^no)(ζo; ζ)]1/π} which tends to a limit p' with 0<p'<ρ. By abuse of langu-
age, we will use the original indexing for this subsequence and the subsequent
related subsequences. By I, the corresponding subsequence {[<H0)(α ζ)]1/n}
converges to L(a)-p'. Corresponding to this (sub)sequence, we now consider
the sequence of functions {hn(z)}, where

(10) A»(*)=([>, ζ j - [*, C n l ' j ^ - ^

is defined in a similar manner as ln(z) in (5). hn(z) is locally analytic and
\hn(z)\ is single-valued. Since {hn(z)} is evidently uniformly bounded on any
compact set in G, there exists by MonteΓs lemma a subsequence {hn{z)} such
that hn(z) converges uniformly in any compact set in G. Let h(z) be the limit
function. Then by (10),

(11) \h(a)\=L(a)p' and | ft(z) |=l for | z | = l .

Assume now for a fixed n>0 and Z<ΞG, max^ l L(

n

j)(z; ζ) | = \L(

n

Jz)(z; ζ ) | .
Then by this, (7), (6), (9) and (10)

Ln(z)rg !££"'(*; ζ ) | = 3 ^ ( z ; ζ)/δ%*>(&,; 0

(ζ0; ζ)] ICα, C,,]/[a, Co] I

Co; ζ)] I k W / t , GJI |[α, W/Cα, Co]I

(Co 01 IO, ζ o ]/ t , C J I I [α, C.J/Cα, Co] I.

as n->oo, we have from thisoince \_on

(12)

Therefore

(13)

(ζo:

by

QΎln^p'

in,

\h(z)\^p' for

Consider now the harmonic function

(14) W(z)

If E is the union of a finite number of continua in Δ, then by (13), (11) and
THEOREM 3, u(z) has non-negative boundary values on 3D. Consequently by
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Minimum Principle u(z)^0 on D. Thus \h(z)-ρ/ρ'\ ^ |/(z)|, or

\h(z)/p'\^\l(z)/p\,
In particular,

\h{a)/pfmi{a)/p\.
Thus by (11)

Noting that a is an arbitrary point in D, it follows from this and ΠI that we
have

V. If E is the union of a finite number of continue, in Δ then
\l(z)\/p, ZΪΞD.

If E is not the union of a finite number of continua in Δ, we let
DBa aDm->D be an exhaustion of D, where for each m, Dm is bounded by a
finite number of Jordan curves with dAcdDm. Let Em=dDm—9Δ and p<m> =
ρ(Em). We can show easily (see for instance [3, THEOREM 16.2.2]) that

(15) limm^ooio
(m:) = io.

Next, denote the / and L functions corresponding to £ m or Dm by /cm) and
L c m ) respectively. By considering the sequence of harmonic measures

we see easily that

limm^o|/<m>(z)|^|/(z)|,

On the other hand, by [9, THEOREM 1], we have

l i m m _ | / ^ ( z ) | ^ | / ( z ) | ,

Thus

(16) limm^co|/cm)(z)| = |/(z)|,

It follows from (15), (16) and V that

By definition and with an obvious justification, we have Lcm\z)^L(z) for
Therefore

(17) limm^L™(z)=\Kz)\/p^L(z),

THEOREM 4 then follows from (17) and EL Q. E. D.

Return now to the harmonic function u{z) in (14). Assume first that E is
the union of a finite number of continua in Δ. We notice that w(α)=0 and
u(z)^0 for z in D. Therefore u(z)=0 in D. Thus \h(z) p/p'\ = \ί(z)\ in G.
Since |/ι(l)| = | / ( l ) |= l , p — ρf, and consequently, by the definition of h and /,
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h(z)=l(z) in G. For a general compact set E in Δ with p = p(E)>0, by (12),

(11) and THEOREM 4, we again have p = p' and h(z)=l(z) in G. We thus have

shown

THEOREM 5. Let E be a compact set in Δ with p(E)>0. Given a fixed point

a in D and n>0, let ζ w = { ζ 0

( 7 l ) , - , ζ £ n ) } c £ fo swcΛ ίAflί Ln(a)=L(

n°\a ζ<n>).

where gn(z) is defined in G in a similar manner as ln(z) in (5). Then

(ii) gn(z)-+l(z) locally uniformly in G as n-^co.

The same argument proves the parabolic version of this theorem.
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