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ON THE ASYMPTOTIC BEHAVIOUR OF ALGEBROID
FUNCTIONS OF EXTREMAL GROWTH

By TSUNEO SATO

1. Valiron [5] and Wahlund [7] established that an entire function g(z) of
order A satisfies
— N, 0) sin A
1 =
mn log M(r, g) — =2
This classical result was extended by Ozawa [3] to n-valued entire algebroid
functions. In a recent paper of Williamson [8] it has been sharpened to the
following :
Let g be an entire function of lower order p<l1.
Then

0=2<D)

-— N(r, 0) sinmp o
11’1—{& log M(r, g) = Ty O=p<D. (LD

And Williamson has also obtained a complete answer to the question, what
can be said about the asymptotic behaviour of an entire function for which
equality holds in (1.1).

The purpose of this paper is to extend Williamson’s theorem to n-valued
entire algebroid functions of lower order p<1. Let f(z) be an n-valued entire
algebroid function, f,(z) the v-th determination of f(z), N(»;a, f) the counting-
function of f(z) and M(r, f) the maximum modulus of f on |z|=r such that

log M(r, f)=max §nax log|fu(2)].
1z2j=r SvEmn

We shall prove the following extension of Williamson’s theorem :

THEOREM 1. Let f(z) be an n-valued transcendental entire algebroid function
of lower order u<l. Then there 1s at least one a, among n different fimite
numbers a,, j=1, -+, n, satisfying

=— nNr;a,, f) _ sinzy
> il
lrlglo log M(r, f) = =mp (1.2)

Next we shall get the following theorsm that gives a precise meaning to
the asymptotic behaviour of an n-valued entire algebroid function for which
equality holds in (1.2).
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THEOREM 2. Let f(z) be an n-valued transcendental entive algebroid function
of lower ovder p<1 and assume that the equality

— nN(r;a,, f) _ sinwp
UM Sog Mer, /)~ zp (1.3)

holds for all n different finite numbers a,, v=1, -+, n. Let {rn} be a sequence
of Pélya peaks of order pof log M(r, f). Then there exist three positive sequences
{Rn}, {Rm}, {&n} such that

4 4
. . . e
lim R=1lim —% =oc0; lim =lim &,=0, (1.4)
M-s00 m-—roo T'm m-—oco rm m-rco

and such that the inequalities
imply the inequalities

1o log M, ) _
() aremrs B () aren, (L5)
sinzTp nN(t; ay,f) sinzwp |
e —En= log MGt, /) = =p +én (1.6)
and
sinmp - nn(t; a,, f) sin Ty L @

T T log Mt ) ap
for some a,, v=1, -+, n.
2. Preliminaries. Let f(z) be an n-valued transcendental algebroid function
defined by an irreducible equation

fn+A1<Z)fn-l+ +An—1(z)f+An(Z)=O »

where A,, -+, A, are entire functions without common zeros. Let f,(z) be the
v-th determination of f(z).
We put
A(Z):max (1) |A1|’ Tty ]An§;

g(z)=max (1, [gil, =+, | gal)
gv(Z)ZF(Z} av); ”:1; N

where F(z, f/)=0 is the defining equation of f.
Then we have

log M(r, f)=max max log|f.(2)]
12|=7 1Svsn

=max max log*|f,(z)]|
lzl=7r 1svs
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<max 3 log*|£,(2)]
and by Valiron’s argument [6]
3log*|1.(2)| Zlog A)+0()=log g(2)+0(1).

Further we have

max log g(z)=log max g(z)-—log max max lg.(2)]

izi=r VEN |2]=

———glax log M(r, g.).

Hence we get
log M(r, f)=max log M(r, g,)+0(1).

And we remark
log M(r, g,)<log M(r, /)+0(1).

147

2.1

3. Proof of Theorem 1. We shall give a proof of Theorem 1 according
to Edrei’s idea [1], using his well-known representation. Let g, be F(z, a,).

Denote its zero by {b;}. Then we can write

10y <
loglg.(re’®)| = <bZ‘,sR

provided that |z|=r=<R/2. Then we have

log M(r, g»grg N30, )~y + A log MR, g)+0(1).

(H— )?

Hence we obtain from (2.1) that

log Mr, f>§qgasxg N5 0, )55 s +A— log MR, f)

(H- Fr)

=7 max nS N(t; ay, )

1svsn

(t+ )

Assume that for all v
o nN(r;a, f) _sinmp ‘
= log Mr, )~ ap

Then
nN(r a,, f) sin mp U e>0

log M(r, f) 97

for r=7r,. Thus

log M(r, f)<rUS log M(t, /)" + 5

+A— ‘logM(ZR .

+A L log M@R, /H+01).

3.1

(3.2)
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Now we make use of the notion of Pdlya peaks of order u of log M(t, f).
It is possible to find three positive sequences {rn.}, {rn}, {en} such that

1" ’

lim 75 =lim — =00, lim ™ =1lim en=0 (3.3)

m-oo m=—co Vo m-oo Vo m-oco

and such that the inequalities

rnSt=rn (m>m,)

imply that
t \#
log M(t, =(1+em)(——)" log M(rm, f). 3.4)
We deduce from (3.2) on setting
r=tm, R= rzm
that
dt
log M(r m, f)<rmU‘ log M(t, f)—— oy
Tl K log Mt, Ny (H e+ A log Mirh, f)+0(0).

By (3.3) the second integral and third term are dominated respectively by

Tmltm  dx

rorrm (x+1)2 7

Ulog M(rn, )" U™ log M(rh, fy=ollog Mirs, £)) (n—c0),

Lo tog Mk, NZ(Uen) 2 (72 og M(rm, f)=ollog Mrm, ) (m—co)
since y<1. Thus in veiw of (3.4) we have

™m t dt

log M(rm, f)<7uU(+en) log M(rm, f)Srl (_r_)”m

+o(log M(rm, 1)) . (3.5)
Dividing this by log M(rn, f), setting x=t/r, in the integral, and letting
m— oo, we obtain

dx 97
(x —i—l)2 Usin Ty

1= US
and by definition of U we have
1<U - Y (Sm T e) T

sin Ty Ty sin Ty
=1—¢ .ﬂ‘u ,
sin wp

which is a contradiction. Hence Theorem 1 follows.
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4. Example. Now we can consider equality parts in the inequality (2.1).
Let f(z;A) be the Lindeléf function

fEH=TI(1++), b=, »=1,23 .

Let ho(2)=f(a'*(z+c); pr). The asymptotic behaviour of f(z;g) is completely
known (cf. [4, p. 18]). In particular, it is easy to verify that f(z; #) has order
4, lower order p=24, and further that

T
sinwp

where ¢(z)—0, uniformly as z—oco in the angle

z'(1+e(2)),

log h.(2)=

largz|=xr—p  (0<y<7n),
and hence
T

- e (r—o0). 4.1
sin wp

log M(r, ho)~

Let n(r, 0) denote the counting-function associated with £,(z); clearly

n(r, O)~ar*  (r — ),
and hence
art

N(r, 0)~

(r—>OO),

Now we consider
Fz, A=f"—ho(2)f" "+ ha(z)—e*?=0 (@ is irrational.) 4.2)

which is irreducible.
The irreducibility of this equation (4.2) can be showed the following :
Suppose that
F(z, f)=A(z, f)B(z, ),
then
F(z, a,)=A(z, a,)B(z, a,)=const.

Hence we can have two cases.

Case 1) A(z, a,), B(z, a,) are constants together.
Or

Case 2) Az, a,)=cie, B(z a,)=c.e ¥,

where H is an entire function. For if A(z, a,)=0 has zeros, then B(z, a,)=0
must have poles, which contradicts to that B(z, a,) is an entire algebroid function.
Suppose that p=gq, then A(z, f), B(z, f) have exceptional values with re-
spective numbers 2p—1, 2¢g—1 with exceptional values of first kind and second
kind combined.
Hence, assume that 2p—1<n—1, then a contradiction follows, we have
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2p—1z=zn—1
thus
2p=n.

On the other hand p=<q and p+¢=mn. This leads us to the following fact:

—g=

This implies
2p—1=n—1.

Thus exceptional values of first kind number 2p—1, A(z, f)=0 has the number
p—1 of exceptional values of first kind. Consequently f has a positive integral
order in view of the estimation of K(f) by Toda.

Similarly we can deduce that the order of f is a positive integer from
B(z, /)=0.

By the positive integrity of order of f we have a contradiction. This con-
tradiction gives that the equation (4.2) is irreducible.

Let f.(2) be an entire algebroid function defined by (4.2). Then we have
the lower order of f,(z) is p=A. Denoting by f,(z) the v-th determination of
f«(2) and noting that —h,(z)=2 f,(z), we have |h.(2)|<n max |f.(z)|] and con-
sequently e

log™M(r, ho)=log*M(r, fa)-+logn. 4.3)
Now by choosing a, suitably, for example
a,=exp Crvi/n+60:/n), v=1, -, n.

we can say that the defining equation g,=F(z, a,) gives

ar*

1 1
[V(V y Ay, fa)_ TN(r ’ 0: gu)—TN(V ’ O; ha)N n# (7’ - OO) (4-4)
for all y. Therefore it follows from (4.1), (4.3) and (4.4) that
sinzp o N30, he) _ g nNC; a, fo) (4.5)

Ty r- log M(r, hy) =1 log M(r, fa)
On the other hand we can get
— nN({;a,, fa) - sin 7y

m Clog M(r, fo) = mu

in view of (4.4) combining with Theorem 1. Thus from (4.5) we obtain

o nN(r;a,, fo)  sinmp
rwo log M(r, fo) ~  mp

v=I1, -, n.

Therefore there exist n different finite numbers a,, v=1, ---, n, which always
satisfy the result that equality holds in (1.2) respectively.
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5. The proof of Theorem 2. Edrei-Williamson’s argument does work on
our case. We shall sketch very briefly the steps of the proof. First, we show
that if equality holds in (1.2) for all a, (v=1, ---, n), then, for every fixed ¢>0,

— log M(o7rn, f)
lim —=————2—-=
mawe 10g M(rm, f)

Note that (3.4) implies that

(5.1)

log M(o7p, f)
}gi log M(rm, f) =0t 5.2)
Thus, if (5.1) were false, there would exist some ¢ >0, some ¢ (0<0< 1), and some
unbounded sequence /A of positive integers such that

log Marm, f) _ useu
log M(rm, f) <oro e e

Now by (3.1), in place of (3.2),

log M(r, f)ér(XJrEm)S log M(z, f)(t—Jr——);—FA log M2R, f)+0(1)

in view of
_sinzp  —— nN@r;a, ) .
X— 72_# —-lTl_I:E log M(r f) (V_]-) 2’ ’ n) ’
where {£,} is a suitable sequence tending to zero as m—oco.
Similar to the case of (3 5), we obtain

log M(rm, f)<rm(X+Em)S log M, f) +o(log M(rm, f)) (m— o) (5.4)

(H— e
on using of the hypothesis of Theorem 2.

Let I,(rn), Is(rm), I(rn) respectively denote the portion of the integral in
(5.4) over the intervals [}, ¢6rn], [007m, 07n], [67m, rm]. Then, by the same
manner of the discussion [8],

Il(rm)+13<7m>§(1+e’“)logM“m’f>{§:5+gj}x#(x—i"l—)g,

And (5.3) implies that, for me 4,

s dx
2
I(r ) <log Mrs, 3ot s
Thus, for me A, by combining the above two inequalities, (5.4) yields
o=ttt En gt K},
where dx
K=q#34(1—8" )S Grm

Letting m — oo ime A) here, we find that
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1=t TE——k},
sin wp
which is a contradiction. Thus, assumption (5.3) is false and (5.1) true.

It now follows from (5.1) and Edrei’s lemma [2] that there exist positive
sequences {R7,}, {Rn}, {€n} satisfying (1.4) such tnat for R, <t<RY (m>my),
(1.5) is true.

Next, we show that

lim nN@m; a,, f) _ sinzp

s log Mirm, £) . an (5:5)

for some v (v=1, 2, -+, n). By the definition of X,

— nN(m;a,, f)
AN my e ] <
1}3}» log M(rm, f) =5
Thus, if (5.5) is false there exists ¢ ()0<e<X) and an unbounded sequence /A of
positive integers such that for all a,, v=1, 2, -+, n,

nN(rm; a,, )
Hence applying the reasoning of [8, pp. 230~231] to (3.1) on setting r=rn,
R=r/2, we can get

<X—e (med). (5.6)

e (! dx
<]—— et — .
1=1 Swa G (m—o0; med),
where o= {(X—e¢)/(X—e/2)}*'#, which is contradiction. Thus, assertion (5.5) is

true.
Now we make use of the same process as in [2]. Thus we have, by using

(5.1) and (5.5),

NN m ; @y, f)
log M(rm, f)

provided that ¢ satisfies

nN(t; ay, f) _ nN@m; ay, f)

Tlog M(t, ) = log M(rm, f) T

(I+en) 2=

RL=t=R7} (m>my) .

Consequently, (5.5) leads to (1.6).
The deduction of (1.7) from (1.6) is a straightforward Tauberian argument.
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