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ON THE ASYMPTOTIC BEHAVIOUR OF ALGEBROID

FUNCTIONS OF EXTREMAL GROWTH

BY TSUNEO SATO

1. Valiron [5] and Wahlund [7] established that an entire function g{z) of
order λ satisfies

^ N(r, 0) ^ sin πλ
lim- τ-r. - > — (U<x<l)
r-~ log M{r, g) - πλ -

This classical result was extended by Ozawa [3] to n-valued entire algebroid
functions. In a recent paper of Williamson [8] it has been sharpened to the
following:

Let g be an entire function of lower order μ<l.
Then

(1.1)
r-oo log Mir, g) πμ

And Williamson has also obtained a complete answer to the question, what
can be said about the asymptotic behaviour of an entire function for which
equality holds in (1.1).

The purpose of this paper is to extend Williamson's theorem to n-valued
entire algebroid functions of lower order μ<l. Let f(z) be an n-valued entire
algebroid function, fv(z) the v-th determination of f(z), N(r;a,f) the counting-
function of f(z) and M(χ, f) the maximum modulus of / on \z\=r such that

log M(r, /)=max max log\fv(z)\ .
\z\=r l^v^n

We shall prove the following extension of Williamson's theorem:

THEOREM 1. Let f(z) be an n-valued transcendental entire algebroid function
of lower order μ<l. Then there ts at least one av among n different finite
numbers aJf / = 1 , ••• , n, satisfying

μ ^ . (i.2)
r, f) — πμ

Next we shall get the following theorem that gives a precise meaning to
the asymptotic behaviour of an n-valued entire algebroid function for which
equality holds in (1.2).
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THEOREM 2. Let f(z) be an n-valued transcendental entire algebroid function
of lower order μ<l and assume that the equality

ψ
r->oo log M(r, f) πμ

holds for all n different finite numbers av, v = l , •••, n. Let {rm} be a sequence
of Pόlya peaks of order μ of log M(r, / ) . Then there exist three positive sequences
{R'm}, {R'L}, {em} such that

lim i ^ l i m ^ - o o ; lim ^ =lim εTO=0, (1.4)
m-*oo m-*oo γ m m-»oo τ ^ m m-»oo

and such that the inequalities

(m>m0),

imply the inequalities

sin πμ . ^ nN(t;av, f) sin

πμ m = logM(f,/) = πμ ' m

βnd

sin πμ _ nn(Y βv, /) sin 7rμ „ /i 7\
πμ Sm==z l o g M ( ί , / ) = πμ £m

for some av, v=l, ••• , n.

2. Preliminaries. Let /(z) be an n-valued transcendental algebroid function
defined by an irreducible equation

where ^4i, •••, An are entire functions without common zeros. Let fv(z) be the
v-th determination of f(z).

We put

i4(^)=max(1, \Λ1\f •••, \Λn\)

g(2r)=max(1, l

gv(z)=F(z, flv), v=l , •••, ?ί

where F(z, / )=0 is the defining equation of /.
Then we have

log M(r, /)=max max \og\fv(z)\
\z\=r lύv^n

max log+ |/v(^)|
\z\=r lύvύn
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and by Valiron's argument [6]

±\og+\Mz)\

Further we have

max log g(z)=\og max g(z)=\og max max ] gv{z) \
\z\=r \z\=r l^uSn \z\=r

= max log M(r, gv).

Hence we get

logM(r, m max log M(r, ^ ) + O ( l ) . (2.1)

lύv£n

And we remark

log M(r, gj^log M(r, /)+O(l).

3. Proof of Theorem 1. We shall give a proof of Theorem 1 according
to Edrei's idea [1], using his well-known representation. Let gv be F(z, av).
Denote its zero by {bk}. Then we can write

re%θ r
log|^(re^)|^o<[Σ^log 1 y- + A—\ogM(2R,gv),

provided that \z\—r^R/2. Then we have

log M{r, gv)^r[RN{t 0, gv)-j^-^ + ^ 4 ~ ^g M(2R, gv)+OQ) .

Hence we obtain from (2.1) that

log M(r, f)^r max \*N(t 0, gv) - ~ +A~- log M(2R, f)
lSv^n Jo [ΐ-ή-T) K[ΐ-ή-T)

=r max nΓiV(ί an /) 771^7 +AJU log M{2R, f). (3.1)
i^^n Jo \t-\-r) K

Assume that for all v

γ.— nN(r flυ, f) sin πμ
r-00 logM(r,/) TΓ/^

Then
nN(r α,, /) sin πμ
log M(r, /) πμ

for r^r 0 . Thus

logM(r, f)<rϋ\R logM(ί, f)^γ2- +A~ logM(2R, /)+O(l). (3.2)
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Now we make use of the notion of Pόlya peaks of order μ of log M(f, /) .
It is possible to find three positive sequences {rf

m}, {r'ή}, {εm} such that

lim r'm= lim - ^ - =00 , lim - ^ - = lim ε m = 0 (3.3)
m—00 m-*oo r m m-00 Tm m-*oo

and such that the inequalities

(m>m0)
imply that

log M(ί, / ) ^ ( l + e m ) ( — Y log M(rm, f). (3.4)

We deduce from (3.2) on setting

that

log M(rm> f)<rmU\y log M(ί, /) + ^ )8-

+rmί/Γm logM(ί,j
Jϊ o

By (3.3) the second integral and third term are dominated respectively by

U\ogM{rf

m, / ) Γ m / m 7 ^ ^ ^ / 7 - r m - l o g M ( r ^ , f)=o(log M(rm, /)) (m-00),
J ^ / r X - τ ) T

-—log M(rS,, /)^(l+e)ft)-^-(---^-)'ΊogA/(r», /)=o(log M(rm, /)) (m-oo)

since //<1. Thus in veiw of (3.4) we have

log M{rm, f)<rmUa + εm) log M(rm, f)['m (—Y ?* -

(rm,/)). (3.5)

Dividing this by log M(rm, /), setting χ=t/rm in the integral, and letting
m—»oo, we obtain

( ) sin

and by definition of U we have

sin πμ \ πμ / sm

l e ^ < l ,
sm 7r^

which is a contradiction. Hence Theorem 1 follows.
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4. Example. Now we can consider equality parts in the inequality (2.1).
Let f(z λ) be the Lindelδf function

, bv=^λ

f v=l, 2, 3, •••.

Let ha(z)=f(a1/λ(zJrc); μ). The asymptotic behaviour of f(z μ) is completely
known (cf. [4, p. 18]). In particular, it is easy to verify that f(z μ) has order
λ, lower order μ=λ, and further that

where ε(z)—>0, uniformly as z—>co in the angle

Iarg z\^π—η (0<η<π),
and hence

log M{r, ha)~ π a -rv (r -> oo). (4.1)
sin πμ

Let n(r, 0) denote the counting-function associated with ha(z)', clearly

n(r, 0)~arμ (r —> oo),
and hence

M r , 0 ) ~ • (r —» oo).
μ

Now we consider

F(z, f)=fn~ha(z)fn-1+ha(z)-eιθ=O (0 is irrational.) (4.2)

which is irreducible.
The irreducibility of this equation (4.2) can be showed the following:
Suppose that

F(z,f)=A(z,f)B{z}f),
then

F(z, av)—A{z, aυ)B(z, αv)=const.

Hence we can have two cases.

Case 1) A(z, av), B(z, av) are constants together.
Or

Case 2) A(z, av)=cxe
H

 f B(z, av)=c2e~H ,

where H is an entire function. For if A(z, av)—0 has zeros, then B{z, α v)=0
must have poles, which contradicts to that B(z, av) is an entire algebroid function.

Suppose that p^g, then A(z, /), B(z, f) have exceptional values with re-
spective numbers 2p—l, 2q—l with exceptional values of first kind and second
kind combined.

Hence, assume that 2p—l<n — l, then a contradiction follows, we have
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2p
thus

On the other hand p^q and p+g=n. This leads us to the following fact:

n
P=9=-2

This implies
2 / > - l = n - l .

Thus exceptional values of first kind number 2p — 1, Λ(z, /)=0 has the number
p—loί exceptional values of first kind. Consequently / has a positive integral
order in view of the estimation of K{f) by Toda.

Similarly we can deduce that the order of / is a positive integer from

B{z, f)=0.
By the positive integrity of order of / we have a contradiction. This con-

tradiction gives that the equation (4.2) is irreducible.
Let fa(z) be an entire algebroid function defined by (4.2). Then we have

the lower order of fa(z) is μ—1. Denoting by fv{z) the v-th determination of
fa(z) and noting that —ha(z)=Σfv(z), we have \ha(z)\^n max \fXz)\ and con-
sequently

Iog+M(r, h «)^log+M(r, /β)+log n . (4.3)

Now by choosing av suitably, for example

α υ = e x p (2πvi/nJ

rθΐ/n), v=l, ••• , n .

we can say that the defining equation gv=F(z, av) gives

1 1 arμ

N(r;av, fa)=—N(r;0, gv)=—N(r',0f ha) — (r - oo) (4.4)

for all v. Therefore it follows from (4.1), (4.3) and (4.4) that

πμ r->oo log M{ry ha) ~ r— log M(r, f a )

On the other hand we can get

jgj nN(r; av, fa) > sin πμ

r-co Ϊ 0 g M ( r , / α ) = 7Γ^

in view of (4.4) combining with Theorem 1. Thus from (4.5) we obtain

rr— nN(r;av,fa) sin πμ

lim— ——J—-— — — Γ , v=l, ••• , n .
r-oo log M(r, f a ) πμ

Therefore there exist n different finite numbers av, v = l , •••, n, which always
satisfy the result that equality holds in (1.2) respectively.
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5. The proof of Theorem 2. Edrei-Williamson's argument does work on
our case. We shall sketch very briefly the steps of the proof. First, we show
that if equality holds in (1.2) for all av (v—l, ••• , n)f then, for every fixed <7>0,

m-*oo l o g M ( r m ,

Note that (3.4) implies that

f) -m-*~ log M(rm, f)

Thus, if (5.1) were false, there would exist some σ>0, some δ (0<δ<l), and some
unbounded sequence Λ of positive integers such that

logM(σrm,f) A

-jr-<(7^o2'ί (m(=Λ). (5.3)log M(rm, f)

Now by (3.1), in place of (3.2),

f* dt r
log Mir, f)ίkr(X+ξm)\ log M(ί, / ) — r-+A—\og M(2R,

in view of

sin πμ _ p — nN{r av, /) __. „ .
~ πμ ~r-S logM(r,/) »— > > >n >

where {<?m} is a suitable sequence tending to zero as m-»oo.
Similar to the case of (3.5), we obtain

ΐrm dt
log M(rm, f)^rn(X+ξn)\ log M(f, /)τ— ^2+°( loS M^m, /)) (wx — oo) (5.4)

on using of the hypothesis of Theorem 2.
Let /i(rm), 72(rm), J3(rm) respectively denote the portion of the integral in

(5.4) over the intervals \r'm> σδrm~], lσδrm, σrm~], [σrm, r ^ ] . Then, by the same
manner of the discussion [8],

f C o δ Ccoλ d X,

J log M(rm,." (x + 1)2 *

And (5.3) implies that, for

7 2(rm)<logM(rm, / ) ^

Thus, for m^Λ, by combining the above two inequalities, (5.4) yields

where

Letting m-^ oo (m<=Λ) here, we find that
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κ\,
Jsin πμ

which is a contradiction. Thus, assumption (5.3) is false and (5.1) true.
It now follows from (5.1) and Edrei's lemma [2] that there exist positive

sequences {R'm}, {R^}, {έm} satisfying (1.4) such tnat for R^t^R^ (m>m0),
(1.5) is true.

Next, we show that

nN(rm;av, f) _ slnπμ
US- \0gM{rm,f) ~ πμ ( 5 * 5 )

for some v (v=l, 2, •••, n). By the definition of X,

^ nN(rm avy f) ^ vlim — τ-r. -zr~ < Z .
m->oo log M(rm, f) -

Thus, if (5.5) is false there exists ε(0<ε<%) and an unbounded sequence A of
positive integers such that for all av, v=l , 2, •••, n,

nN(rm av, f)

logM(rw,/)
<X-ε (m^Λ). (5.6)

Hence applying the reasoning of [8, pp. 230~231] to (3.1) on setting r—rm,
^zγ'ίn/2, we can get

where ω={(X— ε)/(X— ε/2)}1/μ, which is contradiction. Thus, assertion (5.5) is
true.

Now we make use of the same process as in [2]. Thus we have, by using
(5.1) and (5.5),

nN(rm av, f) , ^ nN(f;aVff) < nN(rm) av, f)

logM(rm,/) U i " S m J = ϊogM(ί,/) = logA/(rm,/)

provided that ί satisfies

R'm^t^R'L (m>m0).

Consequently, (5.5) leads to (1.6).
The deduction of (1.7) from (1.6) is a straightforward Tauberian argument.
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