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BOUND OF THE DEFICIENCIES OF ALGEBROID
FUNCTIONS WITH NEGATIVE ZEROS

By TSUNEO SATO

1. Nevanlinna [3] showed that

7 N(r, a)+N(r, b)
lim——n—r">
Te0 T(T’, f)

for any meromorphic function f of finite nonintegral order 2 and any two values

a, b.

Here % is a function of 2 alone, and a problem of some forty year’s stand-
ing is that of finding the exact value of k(1). Nevanlinna himself conjectured
that the best possible choice of k() is

=k(2)>0

_|sin z2|

<
. o+ [sin 7] (¢=2=q¢+1/2),
"] Isin 7]
BA kAN 1/2<21<qg+1),
P (q+1/2<A=q+1)

where ¢ is a nonnegative integer.

For the best known bounds on k(1) when 2>1, see the results of Edrei and
Fuchs in [1].

Recently, Hellerstein and Williamson [2] have obtained a complete answer
when they restricted themselves to the class of entire functions with negative
Zeros.

Their results is the following:

THEOREM A Let f(z) be an entire function of genus g, order 2 and lower
order p, having only negative zeros. Then for any p satisfying

L=p=2
we have
[sinzp]| - =
e =p=q+1/2),
NG, 0) | gt lsinzp] 4EPECTL)
TG, ) 7 Jsinzp]
’ —_— 1/2<0=q+1).
4+ (g+1/2<p=q+1)

These bounds are best possible.
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BOUND OF THE DEFICIENCIES OF ALGEBROID FUNCTIONS 135

THEOREM B Let f(z) be an entire function of genus g, order A and lower
order u, having only negatie zeros. Then for any p satisfying

p=p=A
we have

Isinzp]| - -

e (g=p=q+1/2),
. N(r, 0) g+|sinzpl (g=p=q+1/2)
lim 7 —-< .
= T(r, f) |sinwp|
g+1

In particular, if either 1 or p 1s a positive integer,

. N(r, 0) .
e

(g+1/2< p=<q+1).

0.

These bounds are best possible.

The purpose of this paper is to extend thses theorems to n-valued entire
algebroid functions with negative zeros.

Let f(z) be an n-valued transcendental entire algebroid function defined by an
irreducible equation

[T+ ARP e + Ani(2)f+ A(2)=0, (1.1)

where A,, ---, A, are entire functions without common zeros.
To formulate our theorems, we define the genus ¢ of an entire algebroid
function f(z), as follows:
Let
Aj(z)=z"ePsP]I (2), (1.2)

where I1,(z) is the canonical product formed by the zeros of Ajz), [, is a non-

negative integer. Let ¢, be the genus of A,(z) and d, the degree of P,(z). Put

g=max ¢,, d=max d,. Let s, be the genus of II(z). Put s=maxs, By the
J J J

definition of genus

g,=max (d,, s,).
Thus

g=max(d, s).

Then g is called the genus of the entire algebroid function f(2).
We shall prove the following extension of Hellerstein and Williamson’s
theorems :

THEOREM 1. Let f(z) be an n-valued transcendental algebroid entirve function
of genus g, order 2 and lower ovder u. Assume that f(z)=a,, j=1, -+, n, have
their roots only on the negative real axis.

Then there is at least one a, among different finite numbers a, satisfying
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_Isinzp]|

———— ((=p=¢+1/2),
— nN(r; a,, f) g+lsinzp| (g=p=¢+1/2)
76 ) 2 sin
, o1 <
g1 (g+1/2<p=q+1)

for any p with p=p=2.

THEOREM 2. Let f(z) be an n-valued transcendental algebroid entire function
of genus q, order A and lower p. Assume that f(z)=a,, j=1, .-+, n, have their
roots only on the negative real axis.

Then there is at least one a, among different finite numbers a,, satisfying

Isinzp|

: <p<q+1/2),
i N s a, ) | atIsinzpl (g=p=¢+1/2)
== T(r,f) T |sinzp]
ismzpl <
g1 (g+1/2<p=q+1)

for any p with p=p=A. These bounds are best possible.

2. Preliminaries. We put
A(z)=max (1, [Ail, -, [Aa]),
g(z)=max (1, |gl, =, 1gal),
g(z2)=F(z, a,), y=I1, - n,
where F(z, f)=0 is the defining equation of f. We put

1 (o= .
u(r, A)= '2550 log A(rei®)d@ .
Then Valiron [6] showed that
T(r, fl=pr, A)+0(1). 2.1)
Further Ozawa [4] showed that
ulr, g)=pr, A)+0(1). (2.2)

Hence from (2,1) and (2,2) we have

T(r, f)=uplr, g)—!—O(l):%m(r, g)—l—O(l):%T(r, 2)+0). (2.3)
Evidently we have

T(r, go)=m(r, g,)

_L 2 + 10 < L (o= +n i0
=5\ 10g* gre | d0= | " log* Tl gure)]do
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= 717;3:” log g(re*?)d6+log n=T(r, g)+logn

and hence
max T(r, g, )=T(r, g)-+logn.

On the other hand we get
n oz L 2 N 0 >,,,];-, 2 . 0
BT, )= 3 | loggu(re)|d0z | " maxlog*|g.(re)|d0

I N 20 N 28
——— SO log* (max| gu(re)) )df = SO log g(re*®)d 0

=T(r, g).
Hence n
max T(r, g )=T(r, g)+01)= §1T(r, gv) .

From (2.3) we have

max T(», g )=nT(r, f)=nmax T(r, g,). 2.4)
Next since
g»(z):;éoav"‘]A](Z), (Al2)=1),  v=1, -, n (2.5)

are entire functions, let
g(2)=2™ew G, (2),

where G,(z) is the canonical product formed by the zeros of F(z, a,), m, is a
nonnegative integer. Let p, be the genus of g.z) and ¢, the degres of Q.(2).
Put p=max p,, c=maxc, Let ¢, be the genus of G,(z), then p,=max(c,, t,).

Then in view of (2.5) we have

g=max q¢; = p, .
J

Hence
q=p . (2.6)

On the other hand by solving the given equations (2.5) we have
AJ(Z):EIb»,jgy(Z): ]:1: e, N,

which implies similarly
p=max p,=gq,, 2.7

and hence

Combining (2.6) and (2.7) we deduce
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p=q. (2.8)

3. Proof of Theorem 1. Let
g (2)=2™e®® G (2). 3.1)
Now the same arguments as in [2] does work. We assume then that
n<p<p+1.
By the main lemma of Hellerstein and Williamson we know that
T, G,):ig log|Gy(rei?)|d8, (3.2)
T JCum
where C,(r) is defined as follows:
Cr)={0<[0, n]:log|G.(re*?)| =0} .
Then the well known lemma due to Edrei and Fuchs [1] we can write
. . ¥ \Pytl
log| G.(re')| <log| P, atre')| +or?)+14(-) " TQR, G),  (33)

where if {a,}%-: denotes the zeros of G.(2),

_ z oz, (—1)pv g7
Pur= TL (147 Jexn ( Tt S T ) G
and where
R
0<r=lzl§7. 3.5)

From (3.2) and (3.3) we have

1 0 Y L pytl
T, G| 10g| Py atre®)|d0+00)+14(5)" T@R, G,).

Cu(r,

Hence we get

T(, Gtmir, =~ 10g| P aret?)|d9+0G7)+00)

Cy(m)

+000g N+14(-1)"" TR, G

in view of (3.1). Since G,(z) has only negative zeros, then
rv=0(T(r, G(2))) (r —> ).

Thus, since we are assuming ¢,<p,,

TG, )= %S )logle,Rw“’)ld0+0<r'°v>+14(%)"”“7<213, 2.). (3.6)

Cycr
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If we let N, g(t, 0)=N(t, 1/P, g), then by the definition of H,, as given in [2],

ig log| P, x(re*®)|d @
T JCy

=3
0

=1, &(7, 0)+(—1)”“S N, &(t, OHp(t, 7, ay, o, ap,40)dt, (3.7)

where
1 for ap =m,
Xu(r)={
0 for ap <w.
Now
Nt 0)=N(t, 1/g.) if =R,
N, &(t, 0)= (3.8)
N/(R, 0)+n,R, O)logt/R if t>R.

If follows easily from (3.6)—(3.8) that

R
T(r, g)=X(r)NSr, 0)—1—(—1)1”’50 N, OHp @, 7, ay, -+, ap,e)dt

+00)+A()" TCR, 2,

where A is a positive absolute constant.
Taking the maximum over v in the both side, we obtain

T(r, H=max X(r)nN(r; a, f)
R
max (= ‘N @, DHy (6 7, e, s apn)dt

+009+A()" T@R, 1)

in view of (2.4) and (2.8).
For the simplicity, we put

[sinp|

_ RO i< o<
g+|sinmp]| (g=p=q+1/2),
klo)= |sin o]
THL (g+1/2<p=<g+1).
Assume that for all v
e N ; vy -
lTl_E f—g,# <k(o).
Then
nN(r; ay, f)

T, ) <k(p)—e=U, e>0
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for r=r,. Put maxX,(r)=%(r). Thus
T(r, H<XNHUT(r, f)+maX(—1)"”USR TG, HHp(t, 7, oy, -, ap 41)dt
v 70

+00)+A( )" T@R, f). (3.9)

Now we make use of the notion of Pélya peaks of the first kind, order p,
for T(, f).
It is possible to find three positive sequences {an}, {4} and {r,} such that

lim amzlim-A—m —=lim '™ =co (3.10)
T-00 o0 Vo m-co Ay

and we can choose m, so large that for m>m,

Tm>Am=r, and A,=4r,.

Fix m=m, and set

r=%m, R=R,=—=An.
With this choice of » and R, rmééRm, we deduce that
Ry
max (=120 T D Py s, -, et
v )
Am
<max (=12 " T, DHoylt, 7y s, -, gt
-++max (—l)p”gamT(t, NHp, @, ¥y a1y -+, ap41)dt
v )
Amys T \P
<max (— )P+, N () Hlts 7y sy o, apen)dt

max (=17 T, OHy 0 7y, e, g en)d (3.11)
v 70
Thus
. Amys t \O
Krm)max (=12 () Hodt, 7 as, s gt

oo

<max {L0rm)H— D] S Hy, (5, 1 @, e, a0t

(__ 1)13v [(py+1>/2]

:m?X sin 7p J;)’ (sin @41 0—Sin az;p)
—maxd_ P Sinapue
=max { szl TV Teinzpl b (3.12)
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From (3.9), (3.11) and (3.12) we have

T(rm, HZUAH0(A)NT (7, f)myax{ Isnfn' =L Sl”s“lzp;:lp}
+7](am; rm, Am) » (3.13)
where
B, 7 Am)=0Gwtr+A(S ) T4, 1)

max (=17 T OHp 7y as, s @t
v To
By (3.11) and the definition of Pdlya peaks of the first kind, order p, we can see

7](amy Tmr An)=0(T (" m, f)) (m —> o)

by means of the same process as in [2].
Hence in view of (3.13) we get

1<U(1¢o(1))max{~[§l—T0T+(— )PV%‘I’—";I—”}H(D (m —> o). (3.14)

If p,<p=p.+1/2, then
(=D sina, 10=(—1DPsinrp=|sinzp| .

Thus for p,<opo=p,+1/2, consequently for ¢<p=g¢+1/2 (3.14) implies

q

<

l,U{ Isin pl 1}.
By definition of U we have

+[sinzp|

q
1= (k(o)—e) F T

=1—c-k(p)<1

which is a contradiction. If p,+1/2<p=p,+1, then (—=1)?» sinap+,0=1. Con-
sequently for ¢+1/2<p=¢+1 (3.14) implies

léU{ ]Slqn—l_rclp| }

which is a contradiction. Hence Theorem 1 follows.

4. Proof of Theorem 2. When p=4, we are able to prove with slightly
modification of proof in the case p<1, with remark for making of sequence of
Pélya peaks of the second kind.

Then it is enough to prove when p<A. We assume, therefore, that

Do S p =A< bl 4.1)
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for the canonical products G,(z) of genus p,.
In view of the definition of T(», G,) we know that if «f, a3, -+, aj 4, are
any p,+1 numbers satisfying

-1
2p+1)

2p,+1
2(p,+1)

27—1
2p,

r<a,< T, j=L -, by

7r<a§,y+1§7r

then,
(py+1d/2 ]

™ loglGuret®)lde it p, is odd,

w1 T Jag,og

/2 1 (%41 ) . .
> —S log|G(ret?)|do if p, is even.

1=0 T Jay,

I(r, G,z (4.2)

From Shea’s Lemma [5] we see that (4.2) implies,
T(r, G.)ZX(aps )N, 0)+(—1>"”S::Ny(t, 0H, (7, af, -, ap +1)dE,

where
if apa=m,

1
Xv(aéo,,+1):{ .
0 if apu<w.

Hence
T(r, Go+m(r, e ) =X (apr)N,(r, 0)+0F*)+O(log 7)
—l—(—l)pVS:Ny(t, OH, (L, 7, oy -+, ay er)dt .
This implies
T(r, g)=Xap,+)N(7, 0)+O(rc”)+(—1)p”SjN»(t, O Hp(t, 7, ai, =+, ap,41)dt .
Taking maximum over v in the both sides

nT(r, flzmax XL ap,+)nNr; a,, /)+0(r°)

+max (—l)p”S:nN(t; a,, HHL @, 7, af, -, ap )dt

in view of (2.4).
Assume that for all v

m!&}rf& 'D”>k(P)’

then
N(r:a,, f) _
TG >k(p)+e=V, (e>0)

for »=7r,. Thus
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T(r, lzmax X(ap,+)VT(r, f)+0(°)

tmax (=P VTG PHo( 7, a, - )it

Letting {rn} be a sequence of Pélya peaks of the second kind, order p, for
T(t, f) with {an}, {An} the associated sequences, we have

T(rm, flzmax X ap +)VT (¥ m, f)+0@ )
masx (— V(o) T my N /) Hylt, Ts e, -, )t

(4.3)
Setting t=sr,, recalling that

limAp/ra=limr,/a,=,
m-—oo m—oo

and upon dividing in the both side of (4.3) by T(rn, f) and letting m— oo, it follows

CCpy+1)/2] ,
., .
>, (sin Q3541 0—SIN a'sz) , (a;),+2:O) .

1ZzV(140(1)) max ———
v |sinzp| =

Selecting a,@:mn/p if k=1,2, -, pu;ap =7 if p,<p=p,+1/2 and
Wp 1= Zp”Z_H n/p if p,+1/2<p<p,+1, we obtain the following inequalities in

view of (2.8)

g - _
1;v{lsinﬁp| +1} if g<p<q+1/2,
qg+1 .
@V{“___tsimm} if g+1/2<p<g+1,

which are contradictions together. Hence we have the desired result.
5. Now we consider equality parts in the above Theorem 2. Let f(z; p) be
the Lindelof function
C V=TT Z 10—
fz; ) £[1<1+by>, by=y?, y=1,2,3, -,
The asymptotic behaviour of f(z; p) is well known [3]. Now we consider

frfz; p)=1=0.

Evidently we have
lim N(@r;a., f) —lim (1/n)N(r; 0, f(z; p))

e T(r, f) e (/n)T(r, f(z; 0)
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o N0, f(z; p)
=l T(r; f(z; p))

[sin zp| - =
S ——— =0= ].2 =
o+ Isin o]’ g=p=q+1/2, ¢=[p]
|sin zp|
e 1/2< 1, g=
pus] g+1/2<p<q-+1, g=[p]
for a,=exp2rwvi/n, v=1, 2, --- n.
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