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BOUND OF THE DEFICIENCIES OF ALGEBROID

FUNCTIONS WITH NEGATIVE ZEROS

BY TSUNEO SATO

1. Nevanlinna [3] showed that

r"" T(r, f)

for any meromorphic function / of finite nonintegral order λ and any two values
a, b.

Here k is a function of λ alone, and a problem of some forty year's stand-
ing is that of finding the exact value of k(λ). Nevanlinna himself conjectured
that the best possible choice of k(λ) is

I sin πλ\

#+|s in πλ\

I sin πλ I

where q is a nonnegative integer.
For the best known bounds on k(λ) when λ>l, see the results of Edrei and

Fuchs in [1].
Recently, Hellerstein and Williamson [2] have obtained a complete answer

when they restricted themselves to the class of entire functions with negative
zeros.

Their results is the following:

THEOREM A Let f(z) be an entire function of genus q, order λ and lower
order μ, having only negative zeros. Then for any p satisfying

we have

I sin πp\

These bounds
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THEOREM B Let f(z) be an entire function of genus q, order λ and lower
order μ, having only negative zeros. Then for any p satisfying

we have

I sin πp\
q-\-\s'mπp\

I sin πp\f)

In particular, if either λ or μ is a positive integer,

N(r, 0)
T^ T(r, f)

These bounds are best possible.

The purpose of this paper is to extend thses theorems to n-valued entire
algebroid functions with negative zeros.

Let f{z) be an n-valued transcendental entire algebroid function defined by an
irreducible equation

fn+A1(z)fn~1+ ••• +An-1(z)f+An(z)=0, (1.1)

where Alf •••, An are entire functions without common zeros.
To formulate our theorems, we define the genus q of an entire algebroid

function f(z), as follows:
Let

(1.2)

where 77/z) is the canonical product formed by the zeros of Aj(z), l3 is a non-
negative integer. Let q3 be the genus of A3{z) and d3 the degree of P3{z). Put
q—mzxqj, d=maxd3. Let s, be the genus of Π3{z). Put s=maxs, . By the

3 3 3

definition of genus

^ = m a x ( d j , s3).
Thus

s).

Then q is called the genus of the entire algebroid function f(z).
We shall prove the following extension of Hellerstein and Williamson's

theorems:

THEOREM 1. Let f(z) be an n-valued transcendental algebroid entire function
of genus q, order λ and lower order μ. Assume that f(z)=a3, j=l, ••• , n, have
their roots only on the negative real axis.

Then there is at least one av among different finite numbers aJ} satisfying
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I sin πp\

q-\-1 sin π

I sin πp\T(r,

/or any p with μ^p^λ.

THEOREM 2. Let f{z) be an n-valued transcendental algebroid entire function
of genus q, order λ and lower μ. Assume that f{z)—a3, / = 1 , ••• , n, have their
roots only on the negative real axis.

Then there is at least one av among different finite numbers a3, satisfying

|sin

for any p with μ^p^λ. These bounds are best possible.

2. Preliminaries. We put

l , \Aι\r"9 \ A n \ ) 9

| , •••, \gn\),

gu(z)=F(z, av), v~ly ••• n ,

where F(z, / ) = 0 is the defining equation of /. We put

1 c**.
μ{r,A)=^

Then Valiron [6] showed that

\ogA(reiθ)dθ .

Πr,f)=μ(r,A)+θa).
Further Ozawa [4] showed that

μ(r,g)=μ(r,A)+θa).

Hence from (2,1) and (2,2) we have

T(r, f)=μ(r,

Evidently we have

T(r, gv)=m(r, gv)

(2.1)

(2.2)

. (2.3)
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logg(retθ)dθ+logn = T(r,= 2π
and hence

max T(r, gv)^T{r, g)+log n .

V

On the other hand we get

n 7i

Σ T(r σ ) — V —

(
JO

= T(r, g).
Hence n

max T(r, gv)^T{r, g)+O(m Σ Γ(r, ̂ , ) .
l

From (2.3) we have

max T(r, gv)^nT{r, f)=n max Γ(r, gv). (2.4)

Next since

gu(z)= Σ α / - ; ^ ω , (i40(z)Ξl), v=l, ..., n (2.5)
; = 0

are entire functions, let

where Gv(z) is the canonical product formed by the zeros of F{z, av), mv is a
nonnegative integer. Let pυ be the genus of gv(z) and cv the degree of Qv(z).
Put />=max ρv, c=max c,. Let ίυ be the genus of Gv(z), then ^ ^ m a x ^ , tv).

Then in view of (2.5) we have

<7=max q^pv
3

Hence
(2.6)

On the other hand by solving the given equations (2.5) we have

n

Aj(z)= Σ bv, jgv(z), j = 1, , n ,

which implies similarly
y ^ ^ , (2.7)

V

and hence

Combining (2.6) and (2.7) we deduce
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p=q. (2.8)

3. Proof of Theorem 1. Let

gv(z)=z^eQ^Gv(z). (3.1)

Now the same arguments as in [2] does work. We assume then that

By the main lemma of Hellerstein and Williamson we know that

T(r,Gv)= — \ log I GXreiθ) | dθ , (3.2)

where Cv(r) is defined as follows:

CJir)= {θG[0, π] : log| Gv(reιθ)\ ^0} .

Then the well known lemma due to Edrei and Fuchs [1] we can write

where if {aμ}™=1 denotes the zeros of Gv(z),

( y \ / y ( Λ\Vv yVv \

I + J V W P - T T + +V—ΠΓT) ( 3 4>and where

0<r=\z\^-γ. (3.5)

From (3.2) and (3.3) we have

T(r, Gv)^—\ \og\Pv R(reiθ)\dθJrO(rVv)JrlA\—£r-) T(2R, Gv).

Hence we get

T(r, Gv)+m{r, e*»)^ — \

, Gv)

in view of (3.1). Since Gv(z) has only negative zeros, then

rv»=o(T(r, GXz))) (r — > oo).

Thus, since we are assuming cvSpvy

T{r, g^~\c\og\Pu,R{reiβ)\dθ + O{r^)+u{^)Vv+1T{2R, gv). (3.6)
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If we let NVιR(t, O)=JV(£, l/PViR), then by the definition of HPv as given in [2],

( log\Pv,R(rete)\dθ

£ X Λ ( f , 0)HPϊt(t, r, a u ••• , a P v + 1 ) d t , (3.7)

where
ί 1 for α p + 1 = τ τ ,

Ur)=\
{ 0 for aPυ+1<π .

Now
\NXt,0)=N(t, l/gv) if t^R,

N»,R(t, 0)= (3.8)
i NV(R, ϋ)+nv(R, 0)\ogt/R if t>R.

If follows easily from (3.6)—(3.8) that

T(r, gv)^X»(r)Nv(r, 0)+( — l)Pu\*Nv(t, 0)Hpβ, r, au ••• , aPv+ί)dt

where A is a positive absolute constant.
Taking the maximum over v in the both side, we obtain

T(r, /)^max lv(r)nN(r av, f)
V

nN{t',av, f)Hpβ, r, alt ••• , aPv+1)dt

in view of (2.4) and (2.8).
For the simplicity, we put

I sin τr/91
ί :

Assume that for all v

π - nN{r-,avyf) ^

Then

nN(χ;anf)
T(r, f)

<k(p)-ε=U, ε>0
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for r^r0. Put max Zv(r)=Z(r). Thus

T(r, f)<X(r)UT(r, /)+max(-l)" ' i/f* T(t, f)HPv{t, r, au - , aPv+1)dt
r0

, / ) . (3.9)

Now we make use of the notion of Pόlya peaks of the first kind, order p,
for T(t, /).

It is possible to find three positive sequences {am}, {Λm} and {rm} such that

lim α r o = l i m - — = lim - ^ - = 00 (3.10)

and we can choose m0 so large that for m>m0

T >̂ β ~^-Ya and A. =^4r

Fix m^iΠft and set

γr^γ R = R 4

With this choice of r and R, rm^ — Rm, we deduce that

5 Rm

T(t, f)HPv{t, rm, au -,aPv+1)dt

ιT(t,f)Hpβ,rm, au -,aPv+1)dt

+max(-iy\amT(t, f)Hpβ, rm, alt •••, aPv+1)dt

HPβ> rm, OLU ••• , aPv+1)dt

+ m a x ( — 1 ) P Λ ""T(r, f)HPv(t, rm, alf •••, aPv+1)dt. (3.11)
Jr0

Thus

( — ) Hpβ,rm,ai, -,aPy+1)dt

s, 1, alf ••• , aPi/+1)}dt

( i y [ c p v D / 2 ]

- Σ (sin a2j+ip—sin a2jp)
sm πp j=o ' '

^ ^ l (3.12)
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From (3.9), (3.11) and (3.12) we have

T{rm, f)^Ua + o(l)mrm, f) max \~-J-—{ + ( - 1 ) ^ ^ ^ ^

+ V(am,rm,Am), (3.13)

where

η{am, rm, Λ J - O ( r m « ) + A ( - 2 j > - Y 1 T { A m , f)

T(t, f)HPv(t, rm, alf - , aPv+1)dt.

r 0

By (3.11) and the definition of Pόlya peaks of the first kind, order p, we can see

Ύ]{am, rm, Am)=o(T(rm, /)) (m — > oo)

by means of the same process as in [2].
Hence in view of (3.13) we get

+0(Ό) max {- τ ^ l^^+(- l )p^- S HL^±A£l j_ ί , ( i ) ( m __> ^ . (3.14)
I sin 7Γ/? I |sin7r/9|

If p»<ρ^ pv+l/2, then

( - 1 ) ^ sin α P y + l i o ^ ( - l ) p ^ sin TΓ/J^ | sin πp \ .

Thus for pv<p^pv+l/2, consequently for q<ρ^qΛ-l/2 (3.14) implies

I sin πp\

By definition of U we have

which is a contradiction. If pv-\-l/2<ρ^pv-\-l, then (—I)2'1' sin α ^ + i ^ ^ l . Con-
sequently for #+l/2</9^<7+l (3.14) implies

which is a contradiction. Hence Theorem 1 follows.

4. Proof of Theorem 2. When μ=Λ, we are able to prove with slightly
modification of proof in the case μ<λ, with remark for making of sequence of
Pόlya peaks of the second kind.

Then it is enough to prove when μ<λ. We assume, therefore, that

pv+l (4.1)
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for the canonical products Gv(z) of genus pv.
In view of the definition of T(r, Gv) we know that if a'u a'2} ••• , a'Pv+1 are

any pv+l numbers satisfying

then,

T(r, G v ) ^

Σ — \ log\Gv(reίθ)\dθ if pv is odd,
t=i π J«2t-i

v/2 ^ Γα2t + 1I rα2t+i
— \ log\Gv(reίθ)\dθ if pv is even.

7Γ J«2ι

From Shea's Lemma [5] we see that (4.2) implies,

T{r, Gv)^Xv{a'+1)Nv(r, ΰ)-\-(-l)v^Nv(t, 0)Hp (t, r, a[, ••• , a' +1)dt,

(4.2)

where
1 if a'p +1=π ,

0 if a'Pv+1<π.
Hence

T(r, Gv)+m{r, eQ^)^Xv(ap+1)Nv(r, 0)+O(rc")+O(log r)

+ ( - D ^ Γ ^ α , 0)#Pl,(f, r, αj, .- , α^+
Jo

This implies

T(r, gv)^XΛa'Pu+1)Nv(r, 0 ) + O ( r c " ) + ( - l ) ^ j j^,(ί, O)i/Py(ί, r, αj, - ,

Taking maximum over v in the both sides

nT(r, /)^maxWα; v + 1 )niV(r;G, /)+O(r c)

in view of (2.4).
Assume that for all v

then

W£±Δ>HP)+, = V. (e>0)

for r^ro. Thus
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T(r, f)^maxXXa'Pv+1)Vnr, f)+O(rc)
v

, f)Hpβ, r, a[, - a'Pv+1)dt.

Letting {rm} be a sequence of Pόlya peaks of the second kind, order p, for
T(t, f) with {am}, {Am} the associated sequences, we have

T(rm, f)^

Setting t—srm, recalling that

lim Λm/rm— lim

, rm, a',, ••• , a'Ptι+1)dt.

(4.3)

and upon dividing in the both side of (4.3) by T(rm, f) and letting m—>oo, it follows

]_ CCpv + D/2]

m a x — : Γ Σ (sin a'2J+1p—sin a'2Jρ), (a'Pv+2=0).
sin πp |

Selecting a'k= Z — π/p if ^ = 1, 2, ••• , p»',a'Pv+1=π if pv<ρ^pv+l/2 and
2/) 4-1

αp y + 1 =-^-^ π/p if ^ v +l/2<jθ</? υ +l, we obtain the following inequalities in

view of (2.8)

\—Λ r+ll if q<p<q+l/2,
\smπp\ J r~~

l if

J

which are contradictions together. Hence we have the desired result.

5. Now we consider equality parts in the above Theorem 2. Let f(z p) be
the Lindelδf function

/(*; p)=UU+~) , ft,^1", v=l, 2, 3, - .
v=l\ Uv '

The asymptotic behaviour of f(z p) is well known [3]. Now we consider

f»+f(z;p)-l=Q.

Evidently we have

ft
T(r,f) ';"» (l/nmr,f(z;p))

a,, /) = l i m (i/wW(r;Q,/(z;ιo))
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N(r;O,f(z;p))
r- T(r;f(z;p))

I sin TΓ^I

for av=exp 2πvt/n, v~\> 2,

<7+|sin TΓ^I

I sin TΓ^ [
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