L. BROWN AND L. RUBEL KODAI MATH. J. 5 (1982), 132-133

RATIONAL APPROXIMATION AND SWISS CHEESES OF POSITIVE AREA

BY LEON BROWN AND LEE RUBEL

Abstract

Let J and K be two compact sets in the complex plane such that $K \setminus J$ has zero planar measure. If R(J) = C(J) then R(K) = C(K). This result is used to produce many Swiss cheeses K of positive area, for which R(K) = C(K).

For any compact set K in the complex plane, let C(K) and R(K) denote, respectively, the algebra of continuous functions on K, and the subalgebra of functions which are uniformly approximable on K by rational functions with poles off K. Hartogs and Rosenthal proved in [2] that if $m_2(K)=0$ (where m_2 denotes planar Lebesgue measure), then R(K)=C(K). We extend this theorem here, and apply it to get new examples of Swiss cheeses K with R(K)=C(K), yet $m_2(K)>0$.

THEOREM. Let J and K be compact sets such that $m_2(K \setminus J) = 0$. If R(J) = C(J) then R(K) = C(K).

The proof of this result depends on the following. Let μ be a finite measure with compact support in the complex plane. The Cauchy transform of μ is defined by $\mu^{\hat{}}(w) = \int (z-w)^{-1} d\mu(z)$. It is the convolution of μ with the locally integrable function 1/z. So the integral defining $\mu^{\hat{}}$ converges absolutely except for w belonging to a set of zero planar measure. Clearly, $\mu^{\hat{}}$ is analytic off the closed support of μ . A converse of this statement is true.

PROPOSITION 1. (See [1], Theorem 8.2.) Let μ be a finite measure of compact support in the plane. Suppose U is an open set, and f is a function analytic on U such that $f = \mu^{*}$ almost everywhere with respect to m_{2} on U. Then $|\mu|(U)=0$.

Proof of Theorem 1. We show that any measure μ with support in K which is orthogonal to R(K) must be the zero measure. In Proposition 1, set $f \equiv 0$ and U=CJ. Since $\mu \perp R(K)$, $\mu^{2}=0$ on CK. Since $m_{2}(K \setminus J)=0$, we have $\mu^{2}=f$ almost

¹⁹⁸⁰ Mathematics Subject Classification Numbers 41A20, 30E10.

This research was partially supported by the National Science Foundation. Received October 27, 1980.

everywhere with respect to m_2 on U because $U=CJ=(K\setminus J)\cup(CJ\cap CK)$. Thus the support of μ is contained in J. Also, $\mu^{-}=0$ throughout CJ because $CK\cap CJ$ is a dense open subset of CJ. So $\mu \perp R(J)$, and thus $\mu=0$ because R(J)=C(J), and the theorem is proved.

We shall consider some special cases of the theorem. If we take J to be a singleton, then we get the theorem of Hartogs-Rosenthal by a different proof from theirs. In another direction, we will construct a Swiss cheese K with $m_2(K)>0$, yet R(K)=C(K). Such an example, based on different ideas, was given by C. R. Putnam in [3]. Let us be more detailed.

If D_n , $n=1, 2, 3, \cdots$ are open discs contained in the unit disc D, with the D_n having disjoint closures, and with $\bigcup D_n$ dense in D, then $K=D\setminus \bigcup D_n$ is called a "Swiss cheese." Certain Swiss cheeses provide the simplest examples of compact sets K with empty interior for which $R(K) \neq C(K)$. These are the ones for which $\Sigma r_n < \infty$, where r_n is the radius of D_n . The Hartogs-Rosenthal theorem implies on the other hand that if $m_2(K)=0$, then R(K)=C(K). Putnam in [3] extended this result to show that if K is a compact set which is "areally disconnected," then R(K)=C(K). A corollary to this result if that is there exists a set of real numbers $\{t\}$ dense on the real line for which each of the vertical lines $\operatorname{Re}(z)=t$ intersects K on a set of zero linear measure, then R(K)=C(K). and R(K)=C(K).

Here is how we can use our Theorem to produce many other such examples. Let J be any compact subset of D such that $m_2(J)>0$ and R(J)=C(J). For example, J could be an arc of positive area or a Cantor set of positive area, in which cases Mergelyan's Theorem (see [1], Theorem 9.1) shows that P(J)=C(J) so that R(J)=C(J). (Here P(J) is the class of functions uniformly approximable on J by polynomials.) Now just construct the Swiss cheese K so that $K \supseteq J$ and $m_2(K \setminus J)=0$. This can easily be achieved by proper choice of the D_n . Clearly, $m_2(K)>0$, and yet our Theorem implies that R(K)=C(K).

Remark. By a slight variation of the above proof, one can prove the following. Let A(K) be the algebra of continuous functions on K that are analytic in the interior of K. Suppose now that J and K are compact sets with $m_2(K \setminus J) = 0$ and so that $J \setminus K$ has empty interior. If A(J) = R(J), then it follows that A(K) = R(K).

References

- [1] T.W. GAMELIN, Uniform Algebras, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1969.
- [2] F. HARTOGS AND A. ROSENTHAL, Über Folgen analytischer Funktionen, Math. Ann. 104 (1931), 606-610.
- [3] C.R. PUTNAM, Rational approximation and Swiss cheeses, Michigan Math. J. 24 (1977), 193-196.

WAYNE STATE UNIVERSITY UNIVERSITY OF ILLINOIS