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RATIONAL APPROXIMATION AND SWISS CHEESES

OF POSITIVE AREA

BY LEON BROWN AND LEE RUBEL

Abstract

Let / and K be two compact sets in the complex plane such that
K\J has zero planar measure. If R(J)=C(J) then R(K)=C(K). This
result is used to produce many Swiss cheeses K of positive area, for
which R(K)=C(K).

For any compact set K in the complex plane, let C(K) and R(K) denote,
respectively, the algebra of continuous functions on K, and the subalgebra of
functions which are uniformly approximate on K by rational functions with
poles off K. Hartogs and Rosenthal proved in [2] that if m2(K)=0 (where m2

denotes planar Lebesgue measure), then R(K)=C(K). We extend this theorem
here, and apply it to get new examples of Swiss cheeses K with R(K)=C(K),
yet m2(K)>0.

THEOREM. Let J and K be compact sets such that m2(K\J)=0. If /?(/)=
C(J) then R(K)=C(K).

The proof of this result depends on the following. Let μ be a finite measure
with compact support in the complex plane. The Cauchy transform of μ is

defined by μ*(w)=\(z—w)~1dμ(z). It is the convolution of μ with the locally in-

tegrable function 1/z. So the integral defining μ~ converges absolutely except
for w belonging to a set of zero planar measure. Clearly, μ" is analytic off the
closed support of μ. A converse of this statement is true.

PROPOSITION 1. (See [1], Theorem 8.2.) Let μ be a finite measure of com-
pact support in the plane. Suppose U is an open set, and f is a function analytic
on U such that f=μ" almost everywhere with respect to m2 on U. Then |μ|(£/)=0.

Proof of Theorem 1. We show that any measure μ with support in K which
is orthogonal to R(K) must be the zero measure. In Proposition 1, set f=0 and
U—CJ. Since μ_LR(K), μ*—0 on CK. Since m2(K\J)=0, we have μ~=f almost
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everywhere with respect to m2 on U because U=CJ=(K\J)\J(CJΓ\CK). Thus
the support of μ is contained in /. Also, μ*=0 throughout CJ because CKίλCJ
is a dense open subset of CJ. So μ±R(J), and thus μ—§ because R(J)=C(J),
and the theorem is proved.

We shall consider some special cases of the theorem. If we take / t o be a
singleton, then we get the theorem of Hartogs-Rosenthal by a different proof
from theirs. In another direction, we will construct a Swiss cheese K with
m2(K)>0, yet R(K)=C(K). Such an example, based on different ideas, was given
by C. R. Putnam in [3]. Let us be more detailed.

If Dn, n = l, 2, 3, ••• are open discs contained in the unit disc D, with the
Dn having disjoint closures, and with \jDn dense in D, then K=D\uDn is
called a "Swiss cheese." Certain Swiss cheeses provide the simplest examples
of compact sets K with empty interior for which R(K)φC{K). These are the
ones for which Σrn<oo, where rn is the radius of Dn. The Hartogs-Rosenthal
theorem implies on the other hand that if m2(K)=0, then R{K)—C{K). Putnam
in [3] extended this result to show that if K is a compact set which is "areally
disconnected," then R{K)—C{K). A corollary to this result if that is there
exists a set of real numbers {t} dense on the real line for which each of the
vertical lines Re(z)=t intersects K on a set of zero linear measure, then R(K)
=C(K). Using this corollary he constructs a Swiss cheese so that m2(K)>Q
and R(K)=C(K).

Here is how we can use our Theorem to produce many other such examples.
Let / be any compact subset of D such that ra2(/)>0 and R(J)=C(J). For
example, / could be an arc of positive area or a Cantor set of positive area, in
which cases Mergelyan's Theorem (see [1], Theorem 9.1) shows that P(J)=
C(J) so that R(J)—C{J). (Here P{J) is the class of functions uniformly ap-
proximable on / by polynomials.) Now just construct the Swiss cheese K so
that K^J and m2(K\J)=0. This can easily be achieved by proper choice of
the Dn. Clearly, m2{K)>Q, and yet our Theorem implies that R(K)=C(K).

Remark. By a slight variation of the above proof, one can prove the follow-
ing. Let Λ(K) be the algebra of continuous functions on K that are analytic
in the interior of K. Suppose now that / and K are compact sets with m2(K\J)
= 0 and so that J\K has empty interior. If A{J)~R(J), then it follows that
A(K)=R(K).
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