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DE RHAM-HODGE THEORY ON A MANIFOLD

WITH CONE-LIKE SINGULARITIES

BY MASAYOSHI NAGASE

Introduction

The classical theorem of de Rham-Hodge asserts that the cohomology of an
oriented closed Riemannian manifold can be represented by harmonic forms.
The similar one still holds for an oriented compact Riemannian manifold with
boundary by imposing certain boundary conditions, such as absolute and relative
ones ([10]). But it is pointed out in [5] that, in genaral, such a result does not
directly extend to non-compact cases, even if we use square-integrable forms.
Nevertheless, there are analogues of the de Rham-Hodge theory on manifolds
of certain types, such as an oriented Riemannian manifold with cylinders ([2])
and an oriented non-compact Riemannian manifold on which a discrete group Γ
of orientation-preserving isometries acts freely so that its quotient by Γ is com-
pact ([6]). These examples, however, are obtained from complete Riemannian
manifolds.

Recently, it was announced by J. Cheeger ([4]) that the Hodge theory on
compact (therefore, complete) Riemannian manifolds can be extended to incom-
plete Riemannian manifolds of certain types. Actually, according to his announce-
ment, the L2-cohomology group of an oriented Riemannian manifold X=COιl(N)
yJM with cone-like singularities is closely related to the space of harmonic
forms on X and the cohomology groups H*(M), H*(M, N) and z*(#*(M, N)\
where the map i is the inclusion (M, φ)c^{M, N), and, moreover, the Hodge
theory itself still holds for X. He was further proceeding with saying, "Our
results serve to illustrate new phenomena that are typical of the more general
situation." Hence, we expect that, if we can find the other way to approach
the Hodge theory on X=COil(N)^JM, such new phenomena will be clearer.

It seems that the motivation for Cheeger's work was aroused to solve the
problem on analytic torsions which is known as Ray-Singer conjecture. This
problem was independently solved by W. Mϋller ([9]) who made use of the
simplicial approximation method which had been exploited by J. Dodziuk-V. K.
Patodi ([7]). Therefore, we are naturally led to consider that there might be
the way to reconstruct the de Rham-Hodge theory on X=C0Λ(N)^JM from the
view-point of the simplicial approximation.

Then, our problem setting is now stated as follows. Is it possible to deduce
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Cheeger's results from the view-point of the simplicial ZΛcohomology? We
especially want to establish a direct relation between the harmonic forms and
the simplicial ZΛcohomology group. It will induce a relation between the har-
monic forms and H*(M), H*(M, N) and i*(H*(M, N)) which agrees with Cheeger's
results.

After explaining various notations and definitions in § 1, we will state our
results in §2.

The paper is devided into five sections as follows.

§ 1. Preliminaries
1.1. Spaces of differential forms
1.2. Simplicial IΛcohomology
1.3. A manifold with cone-like singularities, its triangulation and its

subdivisions
1.4. A manifold with cylinders, its triangulation and its subdivisions
1.5. De Rham map and Whitney map
1.6. H?2)(K*) and # & ( # * )
1.7. Estimates on 'C(N)
1.8. Remark

§2. Main results
§3. The harmonic forms on C(N); the proof of Theorem 2.2
§ 4. The proof of Theorem 2.1
§ 5. Appendix

The auther is grateful to Professor K. Shiga for giving him an opportunity
of learning these subjects and for useful conversations during the preparation
of the present paper.

§ 1. Preliminaries

1.1. Spaces of differential forms
Let X be an oriented Riemannian manifold without boundary, which may

be compact or not. But we are mainly concerned with a non-compact case. Let
AP=AP(X) be the space of smooth jb-forms on X and A% its subspace of com-
pactly supported smooth £-forms on X. A\ is a pre-Hilbert space with an inner
product given by

(ω, η)o=(ω, η\ x=\

where * is the ^-operator associated with the Riemannian metric. The comple-
tion of A% with respect to this inner product is denoted by Ap:0, which is
regarded as a Hubert space with this inner product.

( ΐ ) Since we consider d, ( ) 0, || ||o on various spaces, we will use subscripts to indi-
cate the precise domains. For examples, dx, ( )0 ;χ, || ||o;x
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Let dp; ΛP->ΛP+1 be the exterior derivative, δp=(-l)pάimX+dimX+1*dp* the
formal adjoint of dp and Δp=dp-1δp-1^rδpdp the Laplacian.

To avoid the repetition occurring in defining the Sobolev spaces, we take a
finite set 5 which consists of polynomials generated by d and δ. As examples
of S, we may take {d}, {δ} or {Δ, Δ2, ••• Δk). First we put

Λv

s={ω<=Λv'°Γ\Λv\¥oτ any D^S, Dω is square-integrable.}.

Then we define the Sobolev spaces ΛpiS and Ap;S associated with S1 as follows.

DEFINITION 1.1. Λp;S is the completion of Λ% by the norm

\\ω\\s={\\ω\\l+?A\Dω\\l)ιι*,

where \\ω\\l={ω, ω\. And Ap;S is the closure of Λp

s in Λp;S.
In case S=Φ, we write ||ω||0 for \\ω\\s, which coincides with the norm in

Λp;0; hence we have p >Φ=zΛp;φ=Ap''°. We prefer to use the notation Λp;0 in
this case. Moreover we set

j[p\k-=.j[p\{Δ,JZ,~ lk) 2tP'>k = Ap''{J'A2'"'Ak]

and
\\ω\\k=\\ω\\{A,j2,...jk}.

It is clear that the follwing implications of these spaces are valid.

Λp

Λp;0

ID

Z).

Λp

sz
Π

Ap;S'

D Λ §

n
D Ap;S

If X is compact, we have Λp;S=Λp;S. But, in case X is non-compact, the situa-
tion is rather delicate. Of course, generally we have Λp;S^Ap'>s, while, as M.F.
Atiyah ([1]) showed, if X is a Galois-covering space of a compact manifold, we
h a v e /[p'>^I+Δϊk}=zj[

p'ΛiI+Δ:>k].

Besides, when we say a "Sobolev space", we usually regard it as a Hubert
space, but, in our case, we regard it just as a "Banach space", except the case
S=φ.

It is easily verified that Λp'°Z)Λfdi-^ Ap+1;0, ΛP'°Z)ΛP

O —i Λp+1]0, Λp+V'°
δp δp

Z)Apstv'°—> Λp]0 and ΛP+1]OZ)ΛP

Q

+1—> Λp;0 are closable operators. Actually
the domains of their respective closures dp, dp, δp and δp are biven by

dom dp=Λp;{d], dom dp=Λp;{d], dom δp=Λp+v'[δ]

and
άomδp=Λp+VΛδ].

In general, if X is non-compact, άomdp^άomdp and domJ P 2dom^ p , moreover,
for ω^Λp;0, Δω=0 (as a distribution) does not always imply dω=δω=Q (as dis-
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tributions). Therefore we should give clear definitions of what are called har-
monic forms.

DEFINITION 1.2.

Mp(X)~{ω^Λp'°\dω=δω^=O (as distributions)},

Mp

d(X)~{ω<^άom dp\dω=0, δω=0 (as a distribution)},

J($(X)={ω(Ξdomδp-1\dω~0 (as a distribution), δω=0}.

By the well-known regularity theorem, we easily verify that

And we have

and
Jtp

s(X)=dom δp-:

LEMMA 1.3.

(1)

(2)

(3)

Proof. The space ylp;0 has the following orthogonal Hodge decomposition
([5]).

Λ

The lemma is then a natural consequence of this decomposition.

On the other hand, according to M. F. Atiyah ([1]), we call Λp)k^Ap>{a+Δ'k]

and Ap'UI+A')k] the minimal and maximal domains of (/+J)*. If these domains
coincide, then j[vΛίi+^k}—/[v Λ a s Banach spaces. In this case, we regard Λp;k

as a Hubert space with the natural inner product given by

(ω, ?)*=((/+J) k ω, {I+Δ)kηX

for ω, v^Ap;k=Λp'{I+^k]=Λ
Then the following proposition follows from the same proof as that of [1] and
Cβ].

PROPOSITION 1.4. // the minimal and maximal domains of (I+A)k coincide

r ΐ ) Unless otherwise stated, the "closure" operation is always taken in the ZΛsense.
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for k>0, (I-\-Δ)k is a self-adjoint operator on Λp;0 with domain Λp;k and a Hil-
bert space isomorphism of Λp;k onto Λp;0, moreover, we have

(l)

= {ω^Λp''°\Jω—0 (as a distribution)}

= {ω^ΛpU I dω=δω=0} = {ωe Λp;ί \ dω=O

for 1=1, 2, •••,

(2) im dv-1-=dAl~1.

1.2. Simplicial L2-cohomology
We define the simplicial ZΛcohomology spaces of an infinite simplicial com-

plex K of which each ^-simplex is a face of at most n simplexes of dimension
p+1, where the integer n is independent of simplexes. Let CP(K) be the space
of real, oriented cochains of K of degree p. We think of cochains f^Cp(K) as
infinite formal linear combinations of oriented simplexes of K. A cochain
f=Έfσ-σ is in L2, f^Cp

2(K), if the sum of squares of coefficients is finite.
Since there exists the above integer n, the simplicial coboundary dcf of an IΛ
cochain / is in L2 and the coboundary operator dc: Cp

2(K)-+Cl+1(K) is bounded.
We define the simplicial ZAcohomology spaces as follows.

ker dc, p/im dc, P-i and //f2)(^)==ker dc, p/im dc, P-i,

where ιmdc>p-1 denotes the closure of imdc,p-i with respect to the norm

II/IKΣ/?)172 for / = Σ Λ <τeC?(/D.

1.3. A manifold with cone-like singularities, its triangulation
and its subdivisions

Let N be an m-dimensional oriented closed Riemannian manifold (which
might not be connected) with metric g. By the metric cone COlU(N) on N, we
mean the space (0, u^\xN, equipped with the metric

DEFINITION 1.5. An (m+l)-dimensional oriented Riemannian manifold X
without boundary is said to have cone-like singularities if there exists an (m+1)-
dimensional compact submanifold M in X such that X\mί M is isometric to a

k

disjoint union \J Co,u.(Nψ) of a finite number of metric cones for some Uj>0
3 = 1 ' 3

and 7V;

m.
It is easily verified that, without losing generality, we may assume k=l and

Wi=l. And we write X—COιl(N)^JM, where 3M=N and the union is along the
boundary. Therefore, X is an incomplete Riemannian manifold.
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X

Now we triangulate X in such a way that its infinite simplicial complex if*
satisfies the condition in 1.2 and is available for our purposes.

Let {[_ηn+1, ηn2}n=o be a triangulation of (0,1], where η is a fixed real num-
ber such as 0<7?<l. Put Nn=Cηn+i,vn(N)=lηn+1, ηn~]xN with metric dr®dr
+r2g, and πn : COtl(N)Ξi(r, x)^{ηnr, it)GCOll(iV).

Let (if, L) be an arbitrary triangulation of (M, iV). Then we have a cellular
decomposition{[r?, (l+3?)/2]Xσ,{_{!+η)βf Y]Xσ,ηXσ, (l+^)/2Xσ, 1Xσ) σ(ΞL of No.
We subdivide it into a simplicial complex Lo without adding new vertices and
symmetrically with respect to the face (l+η)/2xN. The triangulation of Nn is
given by Ln—πn{LQ). The collection if* of all these simplicial complexes forms
a triangulation of X.

Next we describe a method of subdividing if*. The method is an applica-
tion of the standard subdivision introduced by H. Whitney in [11]. It is very
well suited to our purposes. Let {plt ••• , pt} be all vertices of L and {qu •••,<?*}
all vertices of if\L. We give the following ordering to vertices of ifWL0.

<7]Xp1<7]Xp2<

<lXpi=p1<lXp2=p2<

< <7i < #2 < < Q

10
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This ordering gives us the standard subdivision Sd(ifWL0) of K^JLQ ([11]).
Each simplex of Sd{K^JLo) has ordered vertices and we can subdivide it again.
Inductively, we define

Sdk+\KyJL0)=Sd(Sdk(KULo)).

Then Sdk+1(Ln)=πn(Sdk+\L0)) is a subdivision of Sd\Ln). Put

and
Sd \K*)=Sd \K)\JSd *(C0, i(

T h e n Sdk(K*) is a subdivis ion of K*, k=0, 1, 2, ••• .

1.4. A manifold with cylinders, its triangulation and its subdivisions
Let M and N=dM be the same Riemannian manifolds as in 1.3. We suitably

change the metric on M near N in such a way that there exists a neighborhood
of N which is isometric to [0, ε)xN with metric du®du-\-g for some ε>0.
The manifold with this changed metric is also denoted by the same symbol M.
Set Z'=(—oo, 0]x7VWM (the union is along the boundary), which we call a
manifold with cylinders.

Let (K, L) be the triangulation of (M, N) used in 1.3, which we also assume
a triangulation of (M, N) of this case. The triangulation K*' of X' is given
by the similar way as in 1.3. The notations in this case are similarly defined.

- 2 0

X'

L-x\ the triangulation of
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πn: (-00, oo)χN—>(-oo, oo)χN, for n=0, — 1, -2,

UJ UJ

( w , # ) ' "(u + n, x)

L7l=τr/

7l-i(L_1); the triangulation of ΛfTO,
y<J •••; the triangulation of

Remark. K*=K*', Sdk(K*)=Sdk(K*') as simplicial complexes hence, when
we treat these simplicial complexes, we prefer to use the notations in 1.3.

1.5. De Rham map and Whitney map
We continue to use the same notations as in 1.3 and 1.4.

The de Rham map f: Λp{X)->CP(K*) is defined by \ω=Σl([ ω) σ, where
J J a \J a /

σ runs over all ^-simplexes of K*. The de Rham map Γ : ΛKX')—C^ϋί*) is

also similarly defined.
Next, according to H. Whitney, we define the Whitney map W: Cp(/Γ*)->

ΛP(X) in the following way. Let {t/J «£<#*)° be an open covering of X by open
stars of vertices of K*, {φυ}υ&cκ^° be a C°°-partition of unity on X subordinate
to {Uυ} such that φΌ-πn=φπ-n^ for V(Ξ(C0,I(L)\L)°. If σ = [i;o, ••• , ̂ p] is an
oriented ^-simplex of K*, then

p\ ΈQ{-l)ιφndφVι/\ ••• Λ d ^ Λ - ΛdφVp: p=0 .

Now, for an arbitrary cochain /=Σ/<χ oi, we define Wf^=^Σfσ Wσ. As supp ^ υ

CZstσ, where z; is a vertex of σ, this sum is locally finite and defines a C°°-form.
The Whitney map has the following properties.

(1) d°W=Wodc,

(2) ^W=I on C*(K*),

(3.) π*Wf=W(π-n(f)).

These properties are proved in [11] and by our choice of partition of unity. If
necessary, we use the partition of unity by the barycentric coordinate functions
to construct the Whitney map. In this case, (1), (2) and (3) remain true, but the
image of W no longer consists of C°°-forms.

The Whitney map W : CP(K*)-^ΛV{X') is similarly defined and has the same
properties.

1.6. Hfc(K*) and HfaK*)
We continue to use the same notations as in 1.3.
Since K* and Sdk(K*) satisfy the condition of 1.2, we can define the ZΛ
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cohomology spaces Hf2){K*), Hfa(K*), H?2)(Sd\K*)\ H?2)(Sdk(K*)\ First we
study the basic properties of the natural subdivision map.

PROPOSITION 1.6. The subdivision map s: Cp(S^(if*))->Cp(/r*) restricts to a
bounded operator s : C?2(Sd(K*))—>Cf (if*) and induces isomorphisms

HUSd(K*)) ^ HMK*), βfaSd(K*)) ^H RUK*)

Proof, Note that s is a cochain map and a local operator. More precisely,
for every ^-simplex σ of Sd(K*), s(σ)=τ, where τ is the unique ^-simplex of
K* such that I n t [ σ | C l n t | r | . As a result, it is easily verified that s can restrict
to a bounded operator and induce the maps s: H&)(Sd(K*))-+H&)(K*) and
s : Hw>(Sd(K*))-+Hp2)(K*). To prove that these are isomorphisms, it is sufficient
to show the existence of a cochain map t: Cp(/ί*)^Cp(S<i(/ί*)) with the follow-
ing properties.

( i ) sof=/ on Cp(K*\
(ii) Ms local in the sense that, for every ^-simplex τ of K*, t(τ)=σ for

some ^-simplex σ such that | σ \ c | τ \.
(iii) t°s is cochain-homotopic to the identity on C*(Sd(K*)), i.e. there exists

a family of maps G: C*(Sd(K*))-^C*-\Sd(K*)) such that

Moreover G is local in the sense that, for every simplex σ of Sd(K*), the
cochain G(σ) is supported in the uniquely determined closed simplex of K* whose
interior contains Int | σ \.

These maps can be constructed in the following way. Construct f, G'
satisfying (i), (ii) and (iii) on K\JL-ι and Sd(K)\JSd(L-x). Then define the fol-
lowing operation; turn down [—1, —1/2]XL on [—3/2, — l ] x L then [—3/2, —1]
XL on [—2, —3/2]XL and so on.

1, -7T \XL>

If an oriented simplex σ of [—1, —1/2]XL is carried to an oriented simplex τ
by this operation, where the orientations must be turned down accordingly, then
we define that t(τ) and G(τ) are the images of t'(σ) and G'(σ) by the operation,
respectively. Then the proof that Ms a cochain map and satisfies the three
properties is straight-forward.
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Next, since there exist the short exact sequences of cochain complexes

C*(K, L) —^> C*(K) C*{L)

, L)).

0

0

we have the following long exact sequences.

(1.1) ••• - Hp~\L) ~^> Hp(K, L) -^-> Hp(K) -^> HP(L) -

(1.2) > HfcKCOιl(L)) - ^ Hp{K, L) —^> HP

2){K*) -^ ,

PROPOSITION 1.7.

(1)

(2)

Proof. Let S be a natural triangulation of the cylinder (—00, <χ>)χN.

o« - 2 - 1 0 —>

_ ί J[-l,0]χiV

Then Hp

2)(S)^ Mp((-oo, OD)XN) ^ ii(Hp(l-l, 0]xN, {-1} XiVU {0} XiV))

Therefore we have

For feHfa
(1.3) implies

= 0 ([2], [6]).

R e r u C ) ί 5 r : = = i m dCιg .

, we put g=f]C (L)W/|Λ ( L ) . Then

(1.3)

CtS. Therefore,

(1.4)

_
Consequently the image of the map H^K^^lf] \ > [flK2^Hp(K) is contained

in t!(Hp(K} D) and i is the inverse map of ι2: ιλ(Hp(K, L))-*H?2)(K*). There-

fore z2: ii(Hp(K, L))—>i/f2)(^*) is isomorphic. Since \ is isomorphic ([2]), in
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order to prove (2), it suffices to show that the image of 1 is contained in Cξ(K*\

which is samely proved as [6]. (Since the minimal and maximal domains of

(I+Λ)k on X' coincide, it is directly proved that I is isomorphic. (Proposition

1.4 and [6])).
Next, in order to prove (1), we will show that d2 is the 0-map. For [ / ] e

Hf2^KC0,1(L)), (1.3) implies that there exists ΛeCp" 2(L) such that f\{i]XL=dc,Lh.
Therefore g~(f—dc,CθtlcL)h)+dch belongs to ker de.κ* and g\co,1cL^=f, which
imply o2[/]=0.

1.7. Estimates on C(N)
Let C(N) be (0, oo)χN equipped with the metric dr®dr-\-r2g. For an arbi-

trary smooth jfr-form ω(r, x)=ωi(r, x)JrdrΛω2(r, x) on C(N), where coi and ω2

are p and (p—l)-forms on N smoothly parametrized by re(0, oo), respectively,
we define several norms as follows.

DEFINITION 1.8. For r, s>0, we put

| C ( r i ) ( , )s(cΐ,Ί<ΰ1Xs, x)+(cf,rω2)(

where ^ s > r: (s, N)^(s, x)—*{r, x)e(r, iV) and * s is the *-operator on (s, AT") whose
metric is s2g. Moreover, we put

if
0 : r i r 2 =i\

and
Hω| | Λ : r i r 2 ={ Σ

for 0^r :

The definition of the norm ||ω||(S ) r ) is essentially due to J. Cheeger ([3], [4]).
Then we have

l|ω||§;r i,r2=\ 2 | |ω | |^, r ) ί/r=\ *{\M\\r r) + \\ω2\\\r>r)} dr ,

Hω1 | |?r>r)=rm-^||tϋ1 | |f1,r) (1.5)
and

Therefore, we have

fl
II—*.,, . 112 \ v m - 2 p | | Λ v 112 Λ v „ - n ( m - 2 p + l) |l . . 112

and

llπJωllS ^ H I π ί ω i l ^ (1.6)

Moreover, by using volume elements, we can easily prove
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Then we have

x)=(^vn^vnrωlXrf x)=η^m'2^rπiω1Xr9 x) (1. 7)

and

Therefore we have

and

π*dω=η-2nJπ*ω. (1.9)
We also define ||<w|U;ϋ by the formula

\\o)\\k;U=(\ Σ Διω/\*Διωll*

for every relatively compact, open subset UdC(N) and every smooth p-ίorm ω
on C(N). Then (1.6) implies

htωK u^-^-^^Ml,^^. (1.10)

PROPOSITION 1.9. The de Rham map \ induces a bounded operator

J: A*m KCQ§1(N))—>C?(Co,i(D)

/. Every element of Ap;k(COtl(N)) is of class C1. Let τ1 # •••, τL be all
^-simplexes of L0\{η} XL and L7Ί, •••, Ut their relatively compact neighborhoods,
respectively. Then, for ωeApιk(C0,i(N)),

^(vo\τjγ C \\πtω\\lUj (Sovolev lemma)

\\π*Διω\\l,Uη

β | | ί i S B ^ , (by (1.9) and (1.10))

where C>0 is independent of n, j and ω. Therefore, since m—2p + l^.Q, we
have
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where C > 0 is independent of ω.
Therefore, we have

COROLLARY 1.10. The de Rham map \ induces a bounded operator

for X defined in 1.3, 2/>^m+l and

1.8. Remark
Unless otherwise specified in the subsequent sections, X and K* denote the

manifold with cone-like singularities and its triangulation defined in 1.3.

§ 2. Main results

We can now describe the main results.

THEOREM 2.1.

(2.1) In case 2p>m+l, we have an isomorphism',

\: MP{X) ^ ι2(Hp(K, L)).

(2.2) In case 2p=m+l, we have an isomorphism;

J : MP{X) ^ i&i{H*(K, L))).

(2.3) In case 2p<m+l, for some ω^Mp(X), \ω might not be an L2-cochain.

Remark. The following implications are valid see Proposition 1.7.

THEOREM 2.2. The restriction to CQΛ(N) of any element of JCP(X) can be
written as a convergent sum of forms of the following types

(2.4) in case 2p>m+l, d(r2ap-ψ and d(rap-1+Λ/ap-ί+μωμ),

(2.5) in case 2p=m+l, d{r^ωμ) and

(2.6) in case 2p<m+l, φ and d(rap-1+Λ/aP-1+μωμ\

where ψ and φ are harmonic forms on N, ωμ is a co-exact eigenform on N with
eigenvalue μ and ap-1=(lJr2(p — l)
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Then we can easily verify that

COROLLARY 2.3.

(2.7) In case m—2k — l, we have

Hp(M) : p<k,

i*{Hp{M, N))(ZHP(M) :p=k,

Hp(M, N) : p>k.

(2.8) In case m—2k, we have

Hp{M) : p^k ,

Hp(M, N) : p>k .

Moreover, in case 2p>m+l, every element of the kernel of \ : MP(X)-*H?2)(K*)

is exact on every relatively compact open set in X. And we have

J(s(X) 2p<Cm,

. Jt&X) : 2p>m+2.

Proof of Corollary 2.3. (2.7) and (2.8) are rewrittings of (2.1) and (2.2). We

have [ω<ΞdcCl-\K*\ for any element ω of the kernel of f: MP{X)-*H?2)(K*),

which implies that f w^dcC
p

2~\KVJLQ\J ••• WL B ) for any n^K Then

ω\Muco,vn(Ni is exact. (2.9) when 2p>m+2 can be proved as follows. Let ψn

be a smooth function on X which is equal to 1 on Cηn>i(N)^JM, identically 0 on
C0,vn+2(N), moreover, depends only on r on Cvn+2,vn(N) and \dφn/dr\ 1=kl/ηn{l—η).
Then, for ω^Mp{X), lim φnω=ω in the ZAsense and

n -»oo

lim | |ύί(^nω)||o=liπi \\d(φnω)\\0;vn+2,ηn

=lim - ί —

<K\im

0;ηn+2> ηn

=Kf 1 im ~ - - -—--2 = 0 ,

which mean that &>eM\\X). (2.9) when 2p<m can be easily proved by applying
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the ^-operator to (2.9) when 2p>m+2. (2.9) when 2p=m+l will be referred
after the proof of (2.1).

§ 3. The harmonic forms on C(N) the proof of Theorem 2.2

We will examine the harmonic forms on C(N) see [4], [3.9] of which seems
to be incorrect. The proofs are so long that we will assign them to Appendix.
Here 3, δ and 2 denote the intrinsic operations on N.

PROPOSITION 3.1. The harmonic p-form Θ (J0=O) on C{N) can be written
as a convergent sum of forms of the following four types

(3.1) φφ

φ±=φ, logr φ : v(/>)=0,

where φ is a co-closed eigen form of 2 with eigenvalue μ,

(3.2) ω±=ra±cp3

μ

where ω is a co-exact eigenform of 2 with eigenvalue μ,

(3.3) p± = a±(p-iyra±^^+2p-ra±cp-1^

) + 2 l 0 g

where p is an exact eigenform of 2 with eigenvalue μ,

(3.4) ψ±=ra±cp-2^+1drAψ : v(/>-2)#0,

ψ±—r'dr/\ψ,r\ogr'dr/\ψ : v(p—2)=0 ,

where ψ is a closed eigenform of 2 with eigenvalue μ,

where ap= ζ , v(p)=ValJrμ and a±(p)—ap±v(p).

Then, we can easily verify that

COROLLARY 3.2. The harmonic form θ(dθ=δθ=0) on C(N) can be written
as a convergent sum of forms of types; φ+ (μ=0 and 2p^m—l), φ~ (μ=0 and
2p^m), ω+, ω~, φ+ (μ=Q and 2p^mJ

Γ3) and ψ~ (μ=0 and 2p^m+2).
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COROLLARY 3.3. The harmonic form θ (Θ^Λ^°(C0,i{N)), dθ=δθ=O) on
C(N) can be written as a convergent sum of forms of types', φ+(μ^=O and 2p^
m-1), φ~(μ=O and 2p=m), ω+, ψ+(μ=0 and 2p^m+3) and ψ-(μ=0 and 2p=mJ

r2).

Then, Theorem 2.2 is the rewritting of Corollary 3.3.

§ 4. The proof of Theorem 2.1

We begin with the examination of the basic properties of the Whitney map
consisting of the barycentric coordinate functions.

LEMMA 4.1. For every p such that 2p^mJrl, the Whitney map W induces a
bounded operator

W : Cp

2(K*) — > Λp'°.

Proof. Let / = Σ Λ σ e C\(K*).

Σ

Σ f
σ<ΞK{jL0\{η\xL

where τlf •••, τL are all ̂ -simplexes of LΛ{^2} x L . Then, (1.10) implies

Since m — 2 / ) + 1 ^ 0 , summing up over j — 1 , 2, •••, I, we obtain the estimate

max {\\Wσ\\l\\WτM-\\f\\>,
σ<ΞKVL0/{η}xL

where C>0 is independent of /.
Besides, exchanging K* for Sdk(K*), where k is an arbitrary positive integer,

we can samely prove that W induces a bounded operator

W: Cp

2(Sdk(K*))—>Λp'°

for each p such that 2p^m+l. Moreover the norms \\W\\ are bounded inde-
pendently of k.

LEMMA 4.2. Set />(m+l)/4+l/2. Then there exists 0 0 such that, for every
ω^AV)l and k^N, we have
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\\<0—Wsdkcκ*>)

where h{k) is the mesh of Sd\K) ([11]).

Proof. For every (m+l)-simplex σ of if*, we will take a coordinate system
(Uσ, (xl, "• , x™+1)) such that UσZD\σ\ and Uσ is compact. Moreover we assume
that, for every (m+l)-simplex σ of COιl(L) and every neiV", the following con-
ditions are satisfied.

( i ) πn(Uσ)=Uπ ( σ ) .

(ii) The coordinate functions of UπnCσ^ are

Since Sdk(K*) is a subdivision of if*, for every (m+l)-simplex τ of Sdk(K*),
we have an unique (ra+l)-simplex σ of if* such that | τ | C | σ | .

Let σ be an (m+l)-simplex of Sdk{K^JL0^JLx). Then there exists a con-
stant C>0, independent of σ, ω and &, such that, for every p-ίorm ω and every

sup
a ? G i i

sup
dω

because of the compactness of CηzΛ{N)\JM, [7] and [9].
Let <7i, ••• , σt be all (m+l)-simplexes of L^iη2} XL and Uu

coordinate neighborhoods as above. Let (r, x)^πn(σ3).

^ all their

ω(r, x)—

nr, x)\2 (by (1.8))

-*r, x)-(w'Sdk,κ

σjΓ sup
y&\ o ,ι

By

AπtωVi u3 (Sobolev lemma)

ω||f;ffnc^) (by (1.9) and (1.10)),

where h(k) is the mesh of Sdk(KUX0UL,) ([11]) and d > 0 is independent of
j and ω.

Therefore, we have

\ ω(r, x)-(wSdkcκ*Λ , ω\r, x)
Jπncσp \ JSdk(K*-) /

dV
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ω||filΓnα7>5(j?" diam σ3T
+i

55

where dV is the volume element of X.
On the other hand, for every (?n+l)-simplex σ of K^JLo, we have

ω\r, x)

Hence,

Σ
JL\{

\ ω(r, x)—(wSdkcκ*Λ . o)\r, x) dV

3=1
r, x)—(wSdHκ*λ . ω)(r, x)

\ JSdk(K*) /

dV

Then, we have

PROPOSITION 4.3. For every p such that 2p^

is injective.

Proof. Suppose \ ω = 0 for ω^Mv(X). Since the following diagram is

ΓΓ Ί
commutative, for every k<=N, \\ ω\=0.

s the natural subdivision mapo

Therefore, for every k<^N, there exists f=^Σfσ'σ^Cξ~1(K*) such that

ω=def.

Hence, if we put ω=ω1+drAω2, we have
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{ηn)

Hi *
I J l x Λ Γ

d k (K*-)f ) tan

by (1.7))

Σ

=C Σ

= C

where α and ζ can be determined according to Corollary 3.3 and, in any case,

we know that m—2(p—l)+α^0. And we know that lim Σ IΛncα)l=0,

which yields

lim
n-*oo

On the other hand, from Corollary 3.3 and Lemma 4.2, we have

lim ||α>||o;co, nc#)=0

and

lim
n-oo

(4.1)

ω

SdktK*) 0<.C0,vn(N)

< lim {C

Therefore, we have
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ω, ω) — (WSdkuc*λ ω, ω) \
'*) /0;C1in,1cN)\jM \ jSdk(K*) /o;X\

-Λ ωL..τ.a

< ω 0;C0, w^iV
' ||CJt>||o;Co, ηn(N)ΐl< > ° ° .

This, combined with (4.1), implies

(wSdk(κ*Λ ω, ω) =0 for every k^N.
\ JSdk(K* ) /o X

Therefore, Lemma 4.2 and (4.2) imply ω=0.
On the other hand, from Corollary 3.3, we can easily verify that

PROPOSITION 4.4. For each p such that 2ρ^m+l, the image of

(4.2)

is contained in i2(Hp(K, L)).

Proof. It suffices to prove that y2(\ωJG6ίc>ί7θfiα)C?":ι(Co,i(-ί')) f° r a nY

MV(X). Since 2p^m+l, Corollary 3.3 implies that ωι CQtlcN^ can be written as
a convergent sum of types; ω+, ψ+(μ=0 and 2 ^ m + 3 ) and ψ~(μ=0 and 2p =

m+2). Hence we should prove that f ra+cp~^ω and f r

2p'm-ιφ (μ = 0

and 2 j ^ m + 2 ) belong to CP

2~\CQΛ(L)), which are straight-forward.

Now we will prove (2.1) of Theorem 2.1. From Proposition 4.3 and 4.4, it
suffices to prove <XιmMp(X)^<XιmHP(M, N) for 2p>m+l, which is equivalent
to d i m j ^ ( Z ) ^ d i m / P ( M ) for 2p<m+l. Then we will prove the latter. It is
well-known that JCξorm(M)={Θ^Λp{M)\dθ=δθ=0 and #norm=0 on dM=N} is
isomorphic to HP(M) by the inclusion ([10]). Then, let θ be the £-form which
is equal to Θ^Mp

oτm{M) on M and equal to the natural extension of θ\dM on
COtl(N). It is easily verified by using (1.5) and the assumption 2p<m^-1 that θ
belongs to Λp;0(X). Moreover, dθ=0 holds in the weak sense; i.e. for any
β^Λ^(X), (θ, d/3)0=0, which, using the Friedrichs molifier ([8]), implies ^edom d
and dθ=0 i.e. fcker dv=Mv{X)®dAl~\X) see Lemma 1.3. We define θ as
the harmonic part of θ. Then the linear map Mp

oττΆ{M)^θ^θ <=MP(X) is injec-
tive. The proof is as follows. Suppose 6>=0. Then θ^dΛp~\X), which implies

\.,
dM

θ^dΛp~\M\ But, for any a^Λp~\M\{da, θ)0;M=(a, δθ\

= 0 ; i.e. θ is orthogonal to dΛp~\M\ Therefore ^ = 0 . Thus the proof of
Z)^dimi/ ί ? (M) for 2 £ < m + l is complete.

Note that, if 2p=m+l, then θ does not belong to Λp;0(X) except the case
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ΘMM—O Therefore, we cannot apply the above method to the case 2p=m+l.
Then, we will prove (2.2) of Theorem 2.1. In this case, both the bounded

de Rham map and the bounded Whitney map can be defined.

(4.3) ί: Λp \X)—>Cp(Sdk(K*)) for />(τn+l)/4+l/2 and

(4.4) W : Cp(Sdk(K*)) — > Λp;0(X) for k eiV.

First, we will prove that I : Mp{X)-^t2{il{Hv{K, L))) is injective. Suppose

iSi(Hv{K, L)))=H?2{K*)Ξϊl\κω]=0 for ω^Mp{X). Since the following diagram

is commutative for every k^Nf we have \ ω =0.

I the natural subdivision map

For every βi>0, from Lemma 4.2, we can choose &eiVsuch that

Now, since \ ω^dc{Cp

2~\Sdk(K*))) and dc is bounded, we can find, given
JSdk(K*)

arbitrary ε2>0, a finite cochain f^Cl~\Sd\K*)) such that

Therefore, we have

ω—dcf

Since ! is bounded independently of k and dWsdkcκ*)f belongs to

dΛp-\X), this shows that ω^dΛp

Q-\X), i.e. ω=0.

Next, we will prove that I : Mp{X)~^i2{ι1{Hp{K, L))) is surjective. Let flf

" , fn be finite cocycles consisting of ^-simplexes of K\L whose images in
Hf2){K")^i2{iι{Hp{Ky L))) form a basis of ίΐp

2)(K*). Let / be a non-zero linear
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combination of these elements. Then, for the smooth Whitney map W, \Wf=f.

Therefore, when we decompose Wf into Wf—ω-^-v, where ω^Mp{X) and y£

dΛl~\X), it suffices to prove that \v belongs to dcCξ-\K*). Since v=Wf—ω

eker (d : Ap;ί-^Λp ι~1) for arbitrary /, \v belongs to ker dc,p. We can decompose

v as follows

where h^ker(dC)P = dc,pΛκ,^:Cp(K,L)-Cp+KK,L)\ at=Cp-\L) and g ε

dcC
p

2-\K*\(K\L), L) because of (1.3) and (1.4). Therefore \ v = h + dc,p-liK*
J K

belongs to ker (dc,p>κ: Cp(K)->CP+\K)). Then it suffices to prove Λ G

dc.p-iCp-KK, L). Suppose h^dc,p-xC
p-\Ky L). Then, \ v^dc,p-l!KCp-\K) and

we can find the harmonic form φ on M which satisfies the absolute boundary
condition

On

such that \ φ—\ v^dc,p-i KCP~\K), because the space of such harmonic forms
J K J K

on M is isomorphic to HP(K) by the de Rham map \ ([10]). On the other hand,
J K

by using non-smooth Whitney maps, φ and vlM can be approximated by

WSdkaκΛ φ and WSdkcκΛ »\M in the ZΛsense when k->co, respec-

tively (Lemma 4.2, [7] and [9]). Therefore, ψ—v\M-\-{ψ—V\M) can be approxi-
mated by elements of dΛp~\M) in the ZΛsense. But φ is orthogonal to
dΛp~\M), which is a contradiction.

Thus the proof of (2.2) of Theorem 2.1 is complete.

Then, we refer to (2.9) when 2p=m+l. SmceWf^kerdp=Jtp

d(X)^dAp

0-\X)

for / in the proof of the surjectiveness of I : Mp(X)-^22(t1(Hp(K, L))), the har-

monic part ω of Wf belongs to Mp

d(X). Therefore Mp(X)=Mξ(X). Moreover,

Mp(X)=Mp

δ(X) is easily verified by using the action of the *-operator.

Finally, we refer to (2.3) of Theorem 2.1. If, for ω^Mp{X)f \ω belongs to

Cξ(K*), then ωlM is exact because of (1.4). Let JCi(X) be the subspace of MP(X)
consisting of forms whose restrictions to N are exact. Then, the restriction of
any element of JCP(X) to COίl(N) can be written as a convergent sum of forms
of type d(ra+cp-^ωμ); see (2.6) and Corollary 3.3. Therefore, for
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\ω belongs to Cξ(K*) if and only if ω^JCξ(X) (cf. the proof of Proposition 4.4).

And \ : JCP{X)-*Hf2)(K*) is injective. It is samely proved as the proof of the

injectiveness of f: JCp{X)-^ι2{ι1{Hp{K, L))) when 2ρ=m+L Therefore, we have

dimJCξ(X)^άimi*(Hp(M, N)), i.e. JCξ(X) is, in general, not equal to MP{X).

§ 5. Appendix

We will prove Proposition 3.1, Corollary 3.2 and 3.3.
Let Nm be an m-dimensional oriented closed Riemannian manifold. Let C(N)

be the space (0, oo)χiV with metric dr(g)dr+r2g, where g is the metric on N,
Let d, δ, * and Δ be the exterior derivative, its formal adjoint, the ̂ -operator
and the Laplacian on N. Let d, δ, * and Δ be those on C(N).

LEMMA 5.1. Let θ(r, x)=g(r)φ(x)+f(r)drΛω(x) be an element of ΛP(C(N)),
where g, f are smooth functions of re(0, oo) and φ, ω are smooth p and (p—1)-
forms on N, respectively. Then, we have

(5.1) *θ=(-ϊ)prm-2pg

(5.2) dθ=g dφΛ-grdr/\φ-f drΛoΊω,

(5.3) δθ=r~2g δφ-(m-2(p-l))r-1fω-fω-r-2fdrAδω

and

(5.4) Jθ= {-g"-(m-2p)r-1g'}φ+r-2

gΔφ-2r-3g drΛδφ

+ {-f/-(m-2(p-l))r-1fMm-2(p-l))r-2f} drΛω

+r-2fdrΛΔω-2r-1fάrω.

Proof. (5.1) and (5.2) are obvious. (5.3) is easily verified by noticing δ=
(—lp-ncm+D+i,^ Then we have

-2r-sg drί\δφ+r-2g' drΛδφ+r~2g <

+(m-2(p--l))r-2fdrAω-(m-2(p-l))r-1f/drAω--(m--2(p-l))r-1faω

-f" drΛω-f 3ω+r-2f drΛόlδω

and

δdθ=r~2g δ3φ-(m-2p)r-1g/φ-g//φ-r-2g/ drΛδφ

+(m-2p)r-1f 3ω+f 3ω+r~2f drΛδ3ω,

which imply (5.4).
Now, we will investigate the harmonic forms θ (Δθ—O) on C(N). Let
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{<0jih,p>, ω/cce.p), cojie.P)}jUi.P).jtce,p).jte.pi be t h e o r t h o n o r m a l b a s e of ΛP(N) con-
sisting of harmonic forms, co-exact eigenforms and exact eigenforms of Δ. The
eigenvalues of ω^ce,p ) and ωjUtP^ are denoted by ^cce,p) and λjce,p^ respectively.
Note that {ωjih>v^ ωjCce,Pϊ, 3ωjCce,P-i)} jCh.pXjUcp^jCce^-Ό is also the orthogonal
basis of ΛV{N) and Sωjcce.p-Ό has the eigenvalue λjcce.p-u- Then, we will ex-
pand ΘCΞΛP(C(N)) as follows;

(5.5) θ(r, x)= Σ gjch.

Cft.P)

+ Σ

+ Σ /jCce, p-l)(r) drΛCϋjtce, p-i)(x)
jtce.p-l )

+ . β Σ 2 fjίc.p-»(r) drΛωjQe,p-Ώ(x),

whose derivatives converge on every relatively compact open subset of C(N).
Then, from (5.4), we have

Δθ= Σ {-gj\fl,p^(m-2p)r-1g/

J,h)P)}ωjCh,P, (5.6)

+ Σ { — g'πce, p^—(rn — 2p)r-1gjCce, pi+λjίce, p^gjcce, p)} (Ojdce, p) (5.7)
JCce.p)

+ Σ {-g'ήce, p-Ώ-(m-2p)r-1g/

jCce, p-V
; C c e , p - l )

+ ĵCcβ. p-Ώr~2gjCce, p-Ώ~2r-1fj(ce> p-Ό} (IWjice, p-i) (5.8)

+ Σ {-f'Uu, p-i)-(m-2(ί-l))r-1/JCΛ. P-D
C Λ . P - 1 )

+(m-2(/)-l))r-2/ ;-( f t, „.„} dr AωjUι, P.Ώ (5.9)

1 XΛ f 9 5 - ^ - 3 ^ /"//
- f Z J I ^ Λ ; C c e , p - l ) ^ gjζce.p-Ώ Jj(ce,p-Ώ

; ( c e p l )

j p e , p - i ) (5.10)

+ Σ {-/;'(«. J,-i)-(m-2(ί-l))r-1/}<,.J).1)+(m-2(ί-l))r-iΛc«.p-i)
ce.P-i)

+ ^j(e,p-D?'"2/j(e,p-i)}^Λίϋj(e,p-i) . (5.11)

Therefore, J ^ = 0 if and only if (5.6)=0, (5.7)=0, (5.8)=0, (5.9)=0, (5.10)=0 and
(5.11)=0, which are Euler's differential equations. And the solutions of (5.6)=0
and (5.7)=0 are (3.1). The solutions of (5.9)=0 and (5.11)=0 are (3.4). Finally,
the solutions of (5.8)=0 and (5.10)=0 are (3.2) and (3.3). Now we prove them
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actually.

To solve (5.6)=0 and (5.7)=0, it suffices to solve

(5.12) -g"-(rn-2p)r-1g/+μr-2g=0 for

Set g=ra. Then (5.12) holds if and only if

Consequently,

(1 - ~ (I \P) <

Therefore, when v(p)±cθ, (5.6)=0 and (5.7)=0 if and only if

(5.13) Σ gjίh.p^jCh.p')'^' Σ gjC
J(h,p ) jice.p )

can be written as a convergent sum of forms of types; φ± see (3.1). When
y(£)=0, it is obvious that (5.6)=0 and (5.7)=0 if and only if (5.13) can be written
as a convergent sum of forms of types; φ and logr-φ; see (3.1).

To solve (5.9)=0 and (5.11)=0, it suffices to solve

(5.14) -f//-(m-2(p-l))r-2f+(m-2(p-l))r-1f+μr-2f=0 for μ^

Set / = r α + 1 . Then (5.14) holds if and only if

i. e. a2-(l-\-2(p-2)-m)a-μ=0 .

Cosequentjy,

Therefore, when v(p-2)*0, (5.9)=0 and (5.11)=0 if and only if

(5.15) Σ fj(h,p-ΌdrΛωJth,p-u+ Σ fjce,p
J(.h,p-i ) jte.p-i )

can be written as a convergent sum of forms of types ψ± see (3.4). When
v(p—2)=0, it is trivial that (5.9)=0 and (5.11)=0 if and only if (5.15) can be
written as a convergent sum of forms of types rdrΛψ and rlogrdrΛψ; see
(3.4).

Finally, to solve (5.8)=0 and (5.10)=0, it suffices to solve the following
simultaneous differential equations

(5.16) _ g " _ ( m _ 2 / O r - V + j " r - 2 £ - 2 r - 1 / = O

and

(5.17) -2μr-3g-fΛ'-(m-2(p-l))r-ψ+(m--2(p--l)y-2f+μr-2f=0 for μ>0.
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Set g=ra and f=cra-\ Then (5.16) and (5.17) hold if and only if

(5.18) -a(a-l)-(m-2p)a+μ-2c=0

and

(5.19) -2μ-c(a-iXa-2)-(m-2(p-l))c(a~l)+(m-2(p-l)+μ)c=-0.

By eliminating c from (5.18) and (5.19), we have

i. e. (a-a+(p-l))(a-a-(p-l)Xa-(a+(p-l)+2)Xa-(a-(p-l)+2))=0.

In case a = a±(p—l), we have

2c=-a(a-l)-(m-2p)a+μ=2a±(p-l), i.e. c=a±(p~l).

In case a = a±(p—1)+2, we have

2c=2ατ(/>-l), i. e. c=aτ(p-l).

Therefore, when a+(p-l)^a'(p-l)+2, i.e. v(/)-l)^l, (5.8)=0 and (5.10)=0 if
and only if

(5.20) Σ £\7Cce,p-l)<7ω? ( c e , p - 1 ) + Σ fjCe.p-udrAQ)jCe,p-i)
JCce,p-i) ce.p-i)

can be written as a convergent sum of forms of types ω±,

(5.21) rα + (^-1 )

and

(5.22) r α " ( ? - 1 )

where ω is a co-exact eigenform of Δ with eigenvalue μ. If we set p—dω,
(5.21) and (5.22) induce p± see (3.3). Suppose a+(p-l)=a-(p-l)J

Γ2, i.e.
v(p — l)=l which means that 2p~m and μ=3/4, 2/? —m+1 and μ = l or 2/) =
m+2 and μ=3/4. Then, (5.8)=0 and (5.10)=0 if and only if (5.20) can be
written as a convergent sum of forms of types ω±, (5.21) and

Thus the proof of Proposition 3.1 is complete.
Next, by (5.2), we know that the form θ satisfying Δθ=0 is closed if and

only if θ can be written as a convergent sum of forms of types ψ+ (μ=0 and
ap^O, i.e. μ=0 and 2p^m—V), φ~ (μ=0 and ap>0, i.e. μ=0 and 2p^m), ω+,
ω~, ψ+ and ψ~. By (5.3), we know that the form θ satisfying Δθ=0 is co-closed
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if and only if θ can be written as a convergent sum of forms of types φ+, φ'y
ω+, ω'9 ψ+ (μ=0 and α:p-2^0, i.e. μ=0 and 2p^m+3) and ψ~ (μ=0 and ap-2<0,

i.e. μ—h and 2p^m-\-2). Thus the proof of Corollary 3.2 is complete.

Finally, we will prove Corollary 3.3. For a />-form raφ, where a is a real
number and φ is the natural extension of a non-zero />-form on N, we have

ĤSίΛΓ see C1.5). Therefore, such a p-

form r α ^ belongs to ^ ; 0(C0 )i(A0) if and only if m—2p+2a> — l. Thus, for a
jb-form raφJrrbdrΛψ, where ^ and ψ are natural extensions of non-zero p and
(j&—l)-forms on N, respectively, and a and b are real numbers, raφ-\-rbdrΛψ
belongs to Λp''°(COtl(N)) if and only if α > α p _ 1 and b>ap-2. Therefore, the
form θ which satisfies J#—0 and belongs to Λ*''°(COtl(N)) can be written as a
convergent sum of forms of types; φ+, φ~(v(p)<l), ω+, p+, p-(v(p—ΐ)<2), ψ+

and ψ-(v{p—2)<l). This, combined with Corollary 3.2, implies Corollary 3.3.

REFERENCES

[ 1 ] ATIYAH, M.F. Elliptic operators, discrete groups and von Neumann algebras,
Soc. Math, de France, Asterisque, 32, 33 (1976), 43-72.

[ 2 ] ATIYAH, M.F., PATODI, V.K. AND SINGER, I.M., Spectral asymmetry and Riem-

annian geometry I, Proc. Camb. Phil. Soc, 77 (1975), 43-69.
[ 3 ] CHEEGER, J.; Analytic torsion and the heat equation, Ann. of Math. 109(1979),

259-322.
[ 4 ] CHEEGER, J. On the spectral geometry of spaces with cone-like singularities,

Proc. Natl. Acad. Sci., U.S.A., 76 No5 (1979), 2103-2106.
[ 5 ] DE RHAM, G. Varietes Differentiates, Harmann, Paris (1960).
[ 6 ] DODZIUK, J. De Rham Hodge theory for ZΛcohomology of infinite coverings,

Topology, 16 (1977), 157-165.
[ 7 ] DODZIUK, AND PATODI, V. K. Riemannian structures and triangulations of

manifolds, J. of Indian Math. Soc, 40 (1976), 1-52.
[ 8 ] GAFFNEY, M. The harmonic operator for exterior differential forms, Proc.

Natl. Acad. Sci., U.S.A., 37 (1951), 48-50.
[ 9 ] MULLER, W. Analytic torsion and i?-torsion of Riemannian manifolds, Adv. in

Math., 28 (1978), 233-305.
[10] RAY, D. AND SINGER, I.M. R-torsion and the Laplacian on Riemannian mani-

folds, Adv. in Math., 7 (1971), 145-210.
[11] WHITNEY, H. Geometric Integration Theory, Princeton Univ. Press, Princeton

(1957).

TOKYO INSTITUTE OF TECHNOLOGY




