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DE RHAM-HODGE THEORY ON A MANIFOLD
WITH CONE-LIKE SINGULARITIES

By MASAYOSHI NAGASE

Introduction

The classical theorem of de Rham-Hodge asserts that the cohomology of an
oriented closed Riemannian manifold can be represented by harmonic forms.
The similar one still holds for an oriented compact Riemannian manifold with
boundary by imposing certain boundary conditions, such as absolute and relative
ones ([107]). But it is pointed out in [5] that, in genaral, such a result does not
directly extend to non-compact cases, even if we use square-integrable forms.
Nevertheless, there are analogues of the de Rham-Hodge theory on manifolds
of certain types, such as an oriented Riemannian manifold with cylinders ([2])
and an oriented non-compact Riemannian manifold on which a discrete group I’
of orientation-preserving isometries acts freely so that its quotient by /" is com-
pact ([6]). These examples, however, are obtained from complete Riemannian
manifolds.

Recently, it was announced by J. Cheeger ([4]) that the Hodge theory on
compact (therefore, complete) Riemannian manifolds can be extended to incom-
plete Riemannian manifolds of certain types. Actually, according to his announce-
ment, the L%-cohomology group of an oriented Riemannian manifold X=C,, ()
UM with cone-like singularities is closely related to the space of harmonic
forms on X and the cohomology groups H*(M), H*(M, N) and *(H*(M, N)),
where the map 7 is the inclusion (M, ¢)<(M, N), and, moreover, the Hodge
theory itself still holds for X. He was further proceeding with saying, “Our
results serve to illustrate new phenomena that are typical of the more general
situation.” Hence, we expect that, if we can find the other way to approach
the Hodge theory on X=C, ;(N)UM, such new phenomena will be clearer.

It seems that the motivation for Cheeger’s work was aroused to solve the
problem on analytic torsions which is known as Ray-Singer conjecture. This
problem was independently solved by W. Miiller ([9]) who made use of the
simplicial approximation method which had been exploited by J. Dodziuk-V. K.
Patodi ([7]). Therefore, we are naturally led to consider that there might be
the way to reconstruct the de Rham-Hodge theory on X=C, (N)UM from the
view-point of the simplicial approximation.

Then, our problem setting is now stated as follows. Is it possible to deduce
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Cheeger’s results from the view-point of the simplicial L*-cohomology? We
especially want to establish a direct relation between the harmonic forms and
the simplicial L2-cohomology group. It will induce a relation between the har-
monic forms and H*¥(M), H¥(M, N) and *(H*(M, N)) which agrees with Cheeger’s
results.

After explaining various notations and definitions in §1, we will state our
results in §2.

The paper is devided into five sections as follows.

§ 1. Preliminaries
1.1. Spaces of differential forms
1.2. Simplicial L2-cohomology
1.3. A manifold with cone-like singularities, its triangulation and its
subdivisions
14. A manifold with cylinders, its triangulation and its subdivisions
1.5. De Rham map and Whitney map
1.6. HB(K*) and HE(K*)
1.7. Estimates on C(N)
1.8. Remark
§2. Main results
§3. The harmonic forms on C(N); the proof of Theorem 2.2
§4. The proof of Theorem 2.1
§5. Appendix

The auther is grateful to Professor K. Shiga for giving him an opportunity
of learning these subjects and for useful conversations during the preparation
of the present paper.

§1. Preliminaries

1.1. Spaces of differential forms

Let X be an oriented Riemannian manifold without boundary, which may
be compact or not. But we are mainly concerned with a non-compact case. Let
AP=/AP(X) be the space of smooth p-forms on X and A% its subspace of com-
pactly supported smooth p-forms on X. A% is a pre-Hilbert space with an inner
product given by

(@, D=, P x=| ons,

where = is the x-operator associated with the Riemannian metric. The comple-
tion of A% with respect to this inner product is denoted by A7, which is
regarded as a Hilbert space with this inner product.

M Since we consider d, ( )o, ||+]lo on various spaces, we will use subscripts to indi-
cate the precise domains. For examples, dx, ( Do;x, |*llo;x-
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Let d,; AP—AP** be the exterior derivative, d,=(—1)Pdim&+dim X+l & the
formal adjoint of d, and 4,=d,-10,-1+0,d, the Laplacian.

To avoid the repetition occurring in defining the Sobolev spaces, we take a
finite set S which consists of polynomials generated by d and §. As examples
of S, we may take {d}, {6} or {4, 4° --- 4%*}. First we put

A= {we AP°~A?|For any DeS, Dw is square-integrable.}.

Then we define the Sobolev spaces 4?8 and 475 associated with S as follows.

DEFINITION 1.1. AP is the completion of A% by the norm
lols=(loli+ > | Do)§)"?,
DES

where |w|i=(w, ®)}. And AP is the closure of A% in A7,

In case S=¢, we write |lw|, for |wls, which coincides with the norm in
AP hence we have P¢=/P¢*=/r° We prefer to use the notation A?* in
this case. Moreover we set

. id, J2, 1k To; Tp; 2,4k
Apik—= gpitd 42, ] ; APk pitd, 42,4k
and
lolle=lwlu, s .00 .

It is clear that the follwing implications of these spaces are valid.

AP D A D AR
n n
AP0 gpi8S— APiS

If X is compact, we have A?S=/75. But, in case X is non-compact, the situa-
tion is rather delicate. Of course, generally we have A?S2 475, while, as M.F.
Atiyah ([1]) showed, if X is a Galois-covering space of a compact manifold, we
have Apid+DHb— fpicr+drk)

Besides, when we say a “Sobolev space”, we usually regard it as a Hilbert
space, but, in our case, we regard it just as a “Banach space”, except the case
S=4¢.

dp dp
It is easily verified that AP¥DAE, — AP0 APOD A2 — fP+10 [P+150
51? D
DABO — AP and APHOD A — AP are closable operators. Actually

the domains of their respective closures d,, d,, 6, and 8, are biven by

dom d,=A7"%, domd,=/A7%,  dom§,=AP+id
and
dom §,= AP+,

In general, if X is non-compact, dom d,=2dom d, and dom §,22dom 6,, moreover,
for we A7, dw=0 (as a distribution) does not always imply dw=0w=0 (as dis-
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tributions). Therefore we should give clear definitions of what are called har-
monic forms.

DEFINITION 1.2.
I X)={we AP dw=0w=0 (as distributions)},
G X)={wedom d,|do=0, dw=0 (as a distribution)},
F2(X)={wedom b,-,]dw=0 (as a distribution), dw=0}.
By the well-known regularity theorem, we easily verify that
I X)= Ao anIa™(X) .
And we have
HP(X)= NP4~ grP(X )=dom d ,~dom 6 -, NHP(X),

B X)=dom d ,NHP(X)
and
FBX)=dom 6,_, NHP(X).

LEMMA 1.3.

(1) ker d,=H*(X)DdAT T,
@ imd,,=dA5",

3) ker dy=FHX)Bim d,-, .

Proof. The space A7° has the following orthogonal Hodge decomposition

(L5D. -
AP =92 (XD dAF DoAFH.

The lemma is then a natural consequence of this decomposition.

On the other hand, according to M. F. Atiyah ([1]), we call APk = [piicd +k)
and APd+DHE the minimal and maximal domains of (J-+4)*. If these domains
coincide, then APHUI+HFi—= rik a5 Banach spaces. In this case, we regard A?*
as a Hilbert space with the natural inner product given by

(o, ﬂ)k:((1+4’)kw, (["'r‘A)kﬁ)o

for w, 1}6/ll"'k:/ll)»‘“-’)k!:/Tp;t(HJ)k;:/Tp;k_
Then the following proposition follows from the same proof as that of [1] and

[6].

PROPOSITION 1.4. If the mummal and maximal domains of (I+-A)* concide

‘D Unless otherwise stated, the “closure” operation is always taken in the L®-sense.
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for k>0, (I+4)* 1s a self-adjoint operator on AP*° with domain AP** and a Hil-
bert space 1somorphism of AP* onto AP°, moreover, we have

(D) A (X)=HYX)=JF(X)
={we A7°| dw=0 (as a distribution)}
={we AP |do=bw=0} = {we 47| dJo=0}
for =1, 2, -,
(2) imdp,=dAE .

1.2. Simplicial L%-cohomology

We define the simplicial L*-cohomology spaces of an infinite simplicial com-
plex K of which each p-simplex is a face of at most n simplexes of dimension
p-+1, where the integer » is independent of simplexes. Let C?(K) be the space
of real, oriented cochains of K of degree p. We think of cochains feC?(K) as
infinite formal linear combinations of oriented simplexes of K. A cochain
f=2fs0is in L% feCyK), if the sum of squares of coefficients is finite.
Since there exists the above integer n, the simplicial coboundary d.f of an L2
cochain f is in L? and the coboundary operator d.:C3(K)—CE+(K) is bounded.
We define the simplicial L2-cohomology spaces as follows.

Hp(K)=ker d. ,/imd. ,-; and HBE(K)=kerd. ,/imd, p-1,
where im d., ,-; denotes the closure of im d,, ,-; with respect to the norm

Ao for f=2fs-0€CHK).

1.3. A manifold with cone-like singularities, its triangulation

and its subdivisions
Let N be an m-dimensional oriented closed Riemannian manifold (which

might not be connected) with metric g. By the metric cone Cy ,(N) on N, we
mean the space (0, u]XN, equipped with the metric

dr@dr+rig.

DEFINITION 1.5. An (m-+1)-dimensional oriented Riemannian manifold X
without boundary is said to have cone-like singularities if there exists an (m-1)-
dimensional compact submanifold M in X such that X\int M is isometric to a

k
disjoint union UCo,uj(N}”) of a finite number of metric cones for some u,>0
=1

and N7
It is easily verified that, without losing generality, we may assume k=1 and
u;=1. And we write X=C, (N)UM, where 0M=N and the union is along the

boundary. Therefore, X is an incomplete Riemannian manifold.
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Now we triangulate X in such a way that its infinite simplicial complex K*
satisfies the condition in 1.2 and is available for our purposes.

Let {{»™*', ™1} 5= be a triangulation of (0,1], where 7 is a fixed real num-
ber such as 0<7<1. Put ancﬂnﬂ_ﬂn(N):[n”“, "X N with metric dr&dr
+7%g, and 7, : Co «(N)2(r, x)—(n"r, x)EC,,(N).

Let (K, L) be an arbitrary triangulation of (M, N). Then we have a cellular
decomposition {7y, (1+7)/21X o,[(14+%)/2,11X 0, p X a,(1+79)/2X 0,1 X 6} scr of No.
We subdivide it into a simplicial complex L, without adding new vertices and
symmetrically with respect to the face (14%)/2XN. The triangulation of N, is
given by L,==,(L,). The collection K* of all these simplicial complexes forms
a triangulation of X.

Next we describe a method of subdividing K*. The method is an applica-
tion of the standard subdivision introduced by H. Whitney in [11]. It is very

well suited to our purposes. Let {p,, ---, p;} be all vertices of L and {gy, -, qs}
all vertices of K\L. We give the following ordering to vertices of K\UL,.
1 1
7 X pi< +7 X Pyl weeerreran <”—1j_i><]?z
2 2 2
<77><p1<77><p2< ........................ <7?><pl
AIXPp1=p1<IX pam= o<l oevvereee <IXpi=p,

< g < g annnnT < g
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This ordering gives us the standard subdivision Sd(K\JL,) of K\JUL, ([11]).
Each simplex of Sd(K\JL,) has ordered vertices and we can subdivide it again.
Inductively, we define

Sd**(K\JL)=Sd(Sd*(K\JL,)).
Then Sd**'(L,)=z(Sd**(Ly)) is a subdivision of Sd*(L,). Put
Sd*(Co,«(L))=Co,((SA¥(L))=Sd*(Lo)\ISd*(L )\ -
Sd*K*)=Sd*(K)JSd*Cy1(L)).
Then Sd*(K*) is a subdivision of K*, k=0, 1, 2, ---.

and

1.4. A manifold with cylinders, its triangulation and its subdivisions

Let M and N=0M be the same Riemannian manifolds as in 1.3. We suitably
change the metric on M near N in such a way that there exists a neighborhood
of N which is isometric to [0, ¢)XN with metric du®@du+g for some ¢>0.
The manifold with this changed metric is also denoted by the same symbol M.
Set X'=(—o0, 0]X NUM (the union is along the boundary), which we call a
manifold with cylinders.

Let (K, L) be the triangulation of (M, N) used in 1.3, which we also assume
a triangulation of (M, N) of this case. The triangulation K* of X’ is given
by the similar way as in 1.3. The notations in this case are similarly defined.

M
(4
N, O 4
~ A
/’>
1
\
\
7 1 13
\\ Pid - \\ = =~ -
8 3PS o8 - AT
T o AU
[ .7 ] S~
% I S~ L_,: the triangulation of N_
117> -—-;4«-5-” ------- 17 ' g '
9 ‘ ="r > 15
’ 3/ - // R
- 7 \\
’ 7 / N
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Tp i (—00, 00)XN —> (—o0, co)XN, for n=0, —1, =2, ---,
) U]
(u, x) (u+n, x)

L,=n%_(L_,); the triangulation of N,,
K¥=K\UL_,\JUL_,\J --+; the triangulation of X’,
Sd*(K*).

Remark. K*=K* 6 Sd*(K*)=Sd*(K*') as simplicial complexes; hence, when
we treat these simplicial complexes, we prefer to use the notations in 1.3.

1.5. De Rham map and Whitney map
We continue to use the same notations as in 1.3 and 1.4.

The de Rham map S: AP(X)—CP(K*) is defined by Ssz(S w)-a, where

o runs over all p-simplexes of K*. The de Rham map S 1 AP(X)—CP(K*) is
also similarly defined.

Next, according to H. Whitney, we define the Whitney map W : CP(K*)—
AP(X) in the following way. Let {U.,}.cx+° be an open covering of X by open
stars of vertices of K*, {¢.}exn® be a C=-partition of unity on X subordinate
to {Uy such that ¢y ma=@z_,w for v&(Co (LN\L). If o=[v,, -+, vp] is an
oriented p-simplex of K*, then

O, : p=0,
Wo= ) o~
P! igo(——l)lgavid@vl/\ e ANd@y N\ e Ndge, s p=0.

Now, for an arbitrary cochain f=3 f,-0, we define Wf=23f,-Wo. As supp ¢,
Csfo, where v is a vertex of o, this sum is locally finite and defines a C*-form.
The Whitney map has the following properties.

1) d-W=W-d,,
@) SoWzI on CHK*),

@) =W f=W(z-a(f)).

These properties are proved in [117] and by our choice of partition of unity. If
necessary, we use the partition of unity by the barycentric coordinate functions
to construct the Whitney map. In this case, (1), (2) and (3) remain true, but the
image of W no longer consists of C*-forms.

The Whitney map W’ : CP(K*)—AP(X’) is similarly defined and has the same
properties.

1.6. HE(K*) and HE(K*)
We continue to use the same notations as in 1.3.
Since K* and Sd*(K*) satisfy the condition of 1.2, we can define the L2-
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cohomology spaces HE(K*), HB(K*), H5(Sd*(K*), HE(Sd*(K*)). First we
study the basic properties of the natural subdivision map.

PROPOSITION 1.6. The subdivision map s: CP(SA(K*))—CP(K*) restricts to a
bounded operator s: CE(Sd(K*))—CE(K*) and induces 1somorphisms;

HE(SA(K*) == HB(K*),  HE(SA(K*) =5 HB(K*).

Proof. Note that s is a cochain map and a local operator. More precisely,
for every p-simplex o of Sd(K*), s(¢)=7, where z is the unique p-simplex of
K* such that Int|¢|ClInt|z|. As a result, it is easily verified that s can restrict
to a bounded operator and induce the maps §: H3,(Sd(K*)— HE,(K*) and
§: Hoy(Sd(K*)—HE(K*). To prove that these are isomorphisms, it is sufficient
to show the existence of a cochain map ¢: CP(K*)—C?(Sd(K*)) with the follow-
ing properties.

(i) seot=I on CP(K*),

(ii) t is local in the sense that, for every p-simplex ¢ of K*, t(r)=c¢ for
some p-simplex ¢ such that |o|C|z].

(iii) tes is cochain-homotopic to the identity on C*(Sd(K*)), i.e. there exists
a family of maps G : C* Sd(K*))—C*-}(Sd(K*)) such that

tes—I=Ged+d.G.

Moreover G is local in the sense that, for every simplex ¢ of Sd(K*), the
cochain G(o) is supported in the uniquely determined closed simplex of K* whose
interior contains Int|o].

These maps can be constructed in the following way. Construct ¢/, G’
satisfying (i), (ii) and (iii) on K\JUL_, and Sd(K)JSd(L_,). Then define the fol-
lowing operation ; turn down [—1, —1/2]X L on [—3/2, —1]X L then[—3/2, —1]

XL on [—2, —3/2]X L and so on.

A

L/\[—-].—-%]xL

-t [

If an oriented simplex ¢ of [—1, —1/2]X L is carried to an oriented simplex ¢
by this operation, where the orientations must be turned down accordingly, then
we define that #(z) and G(zr) are the images of t’(¢) and G’(¢) by the operation,
respectively. Then the proof that ¢ is a cochain map and satisfies the three
properties is straight-forward.
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Next, since there exist the short exact sequences of cochain complexss
l J
0 —> CHK, L) —> CHK) —> C*L) —> 0
? J
0 —> C¥(K, L) —> CH(K*) —> CH(Co. (L) — 0,

we have the following long exact sequences.

51 1 1
(1.1) o HP(L) s HK, L) —> HP(K) i>HP<L>—»
0y
1.2) e HEYCo,o( L) —> HUK, L) —> HB(K*) LN HE(Coo(L)) —

ProposITION 1.7.

1 H 2>(K*) = i,(H?(K, L))@H 5(Cy, 1(L))
—— Hp(K*)CHB(K*)

jXG |24

o (HY(K, L)).

Proof. Let S be a natural triangulation of the cylinder (—oo, co)X N,

EANGES N
O\ -7 N = - \ LN
- o o o e e TN o — 3 et N ainn Rkttt
T -7 1 i Py S
1 L v . <ot
_r 1 v ] \\*.
-------- i & ....'.7;___.._ +. :);L_-..—.._, e - - - - - —
4 7 7 = 7 /'
N - 7 - 7 N/

f I—I,O X
Then HE(S) = 97((—o0, o)X N) [ %] Nzl(Hi"([—-l, 0IXN, {—=1} X NU {0} XN))

=0 (2], [6]).
kerd, s=imd, gs. (1.3)

Therefore we have

For feHB(K*), we put g=ficy, ;> ficy, - Then gekerd.s. Therefore,
(1.3) implies
Siuxr=giuxr€d,, L(CP7Y(L)). (14)

7
Consequently the image of the map H%(K*)>[ f]— [ fix]€ H?(K) is contained
in 4,(H?(K, L)) and ¢ is the inverse map of s,:1,(H?(K, L))—HE,(K*). There-

fore 1,: i:(H?(K, L))—HE(K*) is isomorphic. Since SK is isomorphic ([2]), in
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order to prove (2), it suffices to show that the image of S is contained in CZ(K*),
which is samely proved as [6]. (Since the minimal and maximal domains of
(I+4)% on X’ coincide, it is directly proved that S is isomorphic. (Proposition

14 and [6])).

Next, in order to prove (1), we will show that g, is the O0-map. For [f]e
H54Co (L)), (1.3) implies that there exists heC?~*(L) such that fyy..=d., rh.
Therefore g=(f—d. c,  ,crh)+d.h belongs to kerd. k. and gic, ,y=f, which

imply d.[ f1=0.

1.7. Estimates on C(N)

Let C(N) be (0, o)X N equipped with the metric dr@dr-+r2g. For an arbi-
trary smooth p-form w(r, x)=wi(r, x)+dr Awyr, x) on C(N), where w; and w,
are p and (p—1)-forms on N smoothly parametrized by r<(0, o), respectively,
we define several norms as follows.

DErFINITION 1.8. For 7, s>0, we put
1/2

lel<s.7>={g(s,N)[(zi‘,rwl)(s, KINF(E )8, 2)F(E w0)(s, X)NF(E w2, x)]} ,

where ¢s,,: (s, N)=2(s, x)—(r, x)e(r, N) and %, is the *-operator on (s, N) whose
metric is s®g. Moreover, we put
1/2
. = F
Jollory r={{,, 0 D)Axalr, )}

and
“wnk;‘rl,rz:{ > “Alw”g;rl.'rg}llz
0slsk

for 0=r,<r,.
The definition of the norm |w|,» is essentially due to J. Cheeger ([3], [4]).
Then we have

T2 T2
olr =] ol ndr =" (0l o+ ol dr,
1 1

ot n=r""*"lot » (1.5)
and
| zdwillt, »=llo: % pnrd .

Therefore, we have
1
Hﬂ?‘iwlll%m.lzgvr""”’llwlll%l.nnndr:r]'"“’“z”*”lellﬁ;ﬂnﬂ.m

and
[75oldy = atllsy o+ I xfwsl§ . v =7 " " 22 P wlf e, yn . (1.6)

Moreover, by using volume elements, we can easily prove
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tﬁrirw1=rm'2”§1(?‘,ra)1 .
Then we have

(m¥F,)(r, x)=(f yaFpnwi (v, x)=n" "D (Fxfw )7, x) 1.7
and
Th*@=n" "2 Dxrty)

Therefore we have
la(r, x)|=n"2"|[(zFw)(n~"r, x| (1.8)
and
rido=7""dr}w. (1.9)
We also define |wl| ;v by the formula

lolo=(] = dorsdiv)”
U

for every relatively compact, open subset UCC(N) and every smooth p-form w
on C(N). Then (1.6) implies

|m3wl§o=n"""" 2wl @ . (1.10)
PROPOSITION 1.9. The de Rham map S induces a bounded operator

S : APHCo ((N)) —> CZ(Co (L))
for 2p=m-+1 and k>(m-+1)/4-+1/2.

Proof. Every element of AP*¥(C, (N)) is of class C'. Let 7y, ---, 7, be all
p-simplexes of Lo\ {5} XL and U, -, U, their relatively compact neighborhoods,
respectively. Then, for we A7 *¥C, (N)),

2 2
— %
<Szn@“’) —(Sqﬂﬂu)
<(vol ¢, sup | (we)(»)]
J
=(olz,)?C-||rkwl iy : (Sovolev lemma)
<C(vol z'j)zoggklln’,‘idlwﬂg;vj

=C(vol ¢,y =2Vl f - ,wp,  (by (1.9) and (1.10))

where C>0 is independent of n, ;7 and w. Therefore, since m—2p+1=0, we
have

2( o)'=Clolt,



50 MASAYOSHI NAGASE

where C’>0 is independent of w.
Therefore, we have

COROLLARY 1.10. The de Rham map 5 induces a bounded operator

S : APHX) —> CBK*)
for X defined in 1.3, 2p=m+1 and k>(m-+1)/44+1/2.

1.8. Remark
Unless otherwise specified in the subsequent sections, X and K* denote the

manifold with cone-like singularities and its triangulation defined in 1.3.

§2. Main results
We can now describe the main results.

THEOREM 2.1.
2.1) In case 2p>m-+1, we have an isomorphism;

[+ wrct) = wn(k, L.

v

(22) In case 2p=m++1, we have an isomorphism ;

S s IP(X) 22, ig(iy(HP(K, L))).

(2.3) In case 2p<m—+1, for some wsIHP(X), Sw might not be an L*-cochain.

Remark. The following implications are valid; see Proposition 1.7.

w(t(HP(K, L))Ci(HY(K, L)CH(K*)

I
Hp(K).

THEOREM 2.2. The restriction to C, (N) of any element of H?(X) can be
written as a convergent sum of forms of the following types;

@4) in case 2p>mA1, dror-1g) and d(rTPY By,
(2.5) 1n case 2p=m+1, drvFw,) and

(2.6) n case 2p<m+1, ¢ and d(r“p'lﬂ/“%‘””w#),

where ¢ and ¢ are harmonic forms on N, w, 15 a co-exact eigenform on N with
eigenvalue p and a,-,=14+2(p—1)—m)/2.
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Then we can easily verify that

COROLLARY 2.3.
@2.7) In case m=2k—1, we have

H?(M) D p<k,
P X)=1 HHYM, NYCHYM) : p=Ek,
H?(M, N) Cp>k.

2.8) In case m=2k, we have
H?(M) D p=k,
HP(X)=
H?(M, N) >k
Moreover, in case 2p>m-1, every element of the kernel of S IP(X)—HB(K*)

1S exact on every relatwely compact open set in X. And we have

JHEYUX) 1 2p<m,
(2.9) HP(X)={ HAUX)=HE(X) 1 2p=m-+1,
H2(X) D 2p>m2.

Proof of Corollary 2.3. (2.7) and (2.8) are rewrittings of (2.1) and (2.2). We
have Swedccg'l(K*), for any element w of the kernel of S HP(X)—HE(K*),
which implies that g wsd,Cy Y (KJL,NJ ---\UL,) for any ne N. Then

JEULGU-ULy,
DUy, yn is exact. (2.9) when 2p>m+2 can be proved as follows. Let ¢,
be a smooth function on X which is equal to 1 on C,»,,(N)UM, identically 0 on
Cyo, yn+2(IN), moreover, depends only on » on Cyn+z »n(N) and [0¢,/0r| =1/5™(1—7).
Then, for we%?(X), lim p,o=0w in the L*-sense and

lim [ d(@r@)lo=lim [d(gn@)]o;zn sz n

=lim “ —dr ANw
oo 039+, 0

: 7n 1 P m-2piian 142/l tn 1z
Kl {§7 () e ar]

2”\/0{ g 2(n+2>\/a +,,
=K’ lim *4,,_,,_1__2_”(1?—1])2 777_771' —0 ,

which mean that we #5(X). (2.9) when 2p<m can be easily proved by applying
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the =x-operator to (2.9) when 2p>m-+2. (2.9) when 2p=m+1 will be referred
after the proof of (2.1).

§3. The harmonic forms on C(N); the proof of Theorem 2.2

We will examine the harmonic forms on C(N); see [4], [3.9] of which seems
to be incorrect. The proofs are so long that we will assign them to Appendix.
Here d, § and 4 denote the intrinsic operations on N.

PrROPOSITION 3.1. The harmonic p-form 6 (46=0) on C(N) can be written
as a convergent sum of forms of the following four types;

3.1) Pr=rr*®g 1 u(p)=0,
¢pr=¢, logr-¢ s u(p)=0,
where ¢ 15 a co-closed eigenform of 4 with eigenvalue p,
(3.2) w*=r*" PVt a*(p—1)r* PV gy Ao=d(r**? Dw)
= ,qj(ztg)‘a(r—a:(m—P)+1dr/\gw) ,
where w is a co-exact eigenform of 4 with eigenvalue p,

(3.3) pE=a*(p—1)-ra= @D o et @Dy AFp  :u(p—1)%1,
‘0+:a+(p_l)ra,+(p—l)+2p_ra+(p—l)+1dr/\gp : v(p—l):l ,

o= 7(a"(l7—%u+2)2+,u re @i log e pbr® @0 log r dr AGp
u(p—D=1,

where p 1s an exact eigenform of 4 with eigenvalue p,

(3.4) PE=rat @Dy N s u(p—2)=%0,
p*=r-drA\¢, rlogr-drA¢ : v(p—2)=0,
where ¢ 1s a closed ergenform of 4 with eigenvalue A

14+2p—m
2

where a,=- , vp)=vai+p and a*(p)=a,xv(p).

Then, we can easily verify that

COROLLARY 3.2. The harmomc form 6(d9=060=0) on C(N) can be written
as a convergent sum of forms of types; ¢+ (p=0 and 2p=m—1), ¢~ (u=0 and
2p=m), w*, o7, ¢t (p=0 and 2p=m+3) and ¢~ (#=0 and 2p=m-+-2).
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COROLLARY 3.3. The harmomc form 6 (6 A%%Cy (N)), d0=0660=0) on
C(N) can be written as a convergent sum of forms of types; ¢*(p=0 and 2p=
m—1), ¢~ (=0 and 2p=m), w*, ¢* (=0 and 2p=m-+3) and ¢~ (=0 and 2p=m-+2).

Then, Theorem 2.2 is the rewritting of Corollary 3.3.

§4. The proof of Theorem 2.1

We begin with the examination of the basic properties of the Whitney map
consisting of the barycentric coordinate functions.

LEMMA 4.1. For every p such that 2p=<m-+1, the Whitney map W induces a
bounded operator
W CyK*) —> AP,
Proof. Let f=2f,-0=CiK*).
Wi=>fsWa

= Y (o Wok S I ey W)
J=1 n=0

dEKULp\ (XL
l o0
= 2 [foWot X T frep (@)W,
gEKULo\{ni1*xL J=1 n=0

where 7y, -+, 7, are all p-simplexes of L\ {5% X L. Then, (1.10) implies

| 2 frncep ERWEIES 3 F 2l W, |

-
= 3 e I W3

Since m—2p--1=0, summing up over j=1,2, ---, [, we obtain the estimate

2 , 2 X . 2
IWrlli=C gg{{;nfeo?(cw{llWallo, IWesligh - 17117,

where C>0 is independent of f.
Besides, exchanging K* for Sd*(K*), where k is an arbitrary positive integer,

we can samely prove that W induces a bounded operator
W CB(SdHK*) —> AP°

for each p such that 2p<m-1. Moreover the norms |IW| are bounded inde-
pendently of %.

LEMMA 4.2. Set [>(m~+1)/4+1/2. Then there exists C>0 such that, for every
ws A7 and k<N, we have
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o= Wsasaws] o] =C-hmO2 o),

Sdk(K*

where h(k) 1s the mesh of Sd*(K) ([11]).

Proof. For every (m-+1)-simplex o of K* we will take a coordinate system
Ug, (x&, -+, x2*Y) such that U,D|e¢]| and U, is compact. Moreover we assume
that, for every (m-+1)-simplex o of C, (L) and every n< N, the following con-
ditions are satisfied.

(1) ﬂn(Ua):Uzrn(a%

(i) The coordinate functions of U, are

1 . 2 .2 . mAl _ m+1
Xapn(od)=Xg°Tony, X2, (0)=Xg°T-n, *** 5 Xap@—Xg °T-n.

Since Sd*(K*) is a subdivision of K*, for every (m-1)-simplex 7 of Sd*(K*),
we have an unique (m-+1)-simplex ¢ of K* such that |z|C|e].

Let ¢ be an (m+1)-simplex of Sd*(K\JUL,JL,). Then there exists a con-
stant C>0, independent of ¢, w and k, such that, for every p-form w and every
ke N.

S

a))(x). <(C diam o sup
* ZE|o]

sup w(x)—(WSdk(K‘)S
zE| 0! Sdk(K
because of the compactness of C,s(N)UM, [7] and [9].

Let oy, -+, o, be all (m+1)-simplexes of L\ {»* XL and U, -+, U, all their
coordinate neighborhoods as above. Let (r, x)=r,(a,).

2

oty )=(Wsaras| . . @)r,

Sdk(K*

epn . N
=n-re | (who)yr, D—(2iWsasers| L @)nr, 0)|* by (18)
=9 2" (ko) n ™r x)—(W S n*w)( “ny x)‘2

7 @A) Y, R P /A
<y-2"C¥(diam o,)* su } Omie 1 ?
=77 J yew%l ay Y
<y~*P"C¥diam 0,)°C; | r¥w| .y, (Sobolev lemma)
§77-n<m+1)cchh(k)2||w]|§;,,nw]) (by (1.9) and (1.10)),

where h(k) is the mesh of Sd¥(K\UL,JL,) ([11]) and C,>0 is independent of
7 and w.
Therefore, we have

Sﬂ'n(”j)

o(r, x)—<WS”(K"Ss K‘)w)(r, x)’de

224
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=CCiyp "™V h(kYllwltz,w (n" diam ¢,)™*
=C*Cth(R)™llollfiz @

where dV is the volume element of X.
On the other hand, for every (m-+1)-simplex ¢ of K\JUL,, we have

[ o = (Wsara|, @), )| AV =Ch(™ 0], -

Sak(k*

Hence,

2

Nw—WSdk(K‘)S

w
Sakck* o

o(r, X)‘(W,gdk(Kt)SSdk(K.)CU>(7', x) ’ de

§ g
dEKULo\(71xLJ) o

+ Zl) > S o(r, x)"<WSdk(K*)S w)(r, x)\de

J=1 n=0

Tn (o)) Sdk(K*
=Csh(R)™**|o|?.

Then, we have

PROPOSITION 4.3. For every p such that 2p=m-1,

[+ o) — HacKn

is injective.

Proof. Suppose [Sx‘w]=0 for we%?(X). Since the following diagram is

commutative, for every ke N, S a)]:O.
L)Sdakcxe

JP(X)

HE(K*)
O ) ? §; the natural subdivision map

HE,(Sd*(K*))
Therefore, for every k<N, there exists /=2 f,-c=CE (K*) such that
SSdk(K*)w:dcf.

Hence, if we put w=w,+dr Aw,, we have
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’(WSdk(K*)SSdk(K*)w’ w)o;Cma(N)UM ‘ - |(dWSdk(K')f’ w)o;cﬂ"'l(N)le

= (WSdk(K‘)f ):an/\';"wnorm
{(pT)xN

I

‘ Wignixsara(frignixsarw) N Fw,
(n™xN

by (L.7))

Sl NW1xsdk(L)(7r—n(f|u,n)xsd k<L)))/\ ﬁn(m_z(p_l));’gﬂﬁwz
X

écvn(m—2<p-1)+a)

SlxNWIXSdk(L)(n'—n( fl(;yn)xsdk(L)))/\;S

=C

frncoWixsarar o A%

SIXN se1xSd k(L)

=C _ 3, Nfuol || WrseramonF

sE1x8dk(L

),

where a and & can be determined according to Corollary 3.3 and, in any case,
we know that m—2(p—1)4+a=0. And we know that lim > [ fzncor =0,
Ly

n-o gE1xSdk(

=C X ]f:rn(a>]< SlxNWuSdk(L)a/\;kE

ge1x8d k(L) se1xSdk(L)

which yields

tim | (Wsancin| =0. .1)

w, a)) l
JSdk(K* 0;Cym, 1 (NOUM
On the other hand, from Corollary 3.3 and Lemma 4.2, we have

1}11; ||w”o;co. ,yn(N)ZO

and

LIP;}, HWSdk(K‘)S

w
Sakcr* 1l0;Co, pn(N)

< lim {“CD_WSd k(K*)S

n—co

SR

@
Sakck*y l0:Co,yn(N)

= lnl_f}olo {C'h(k)(m+3)/2||w||o;co_ ,yn(N)"l' ||w||o;co, .,,n(N)} =0.

Therefore, we have
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Wsar S 0} w) _<Wsdk(Kt)S w a)) i
‘( SAEED Y sarks " oogn. 1 voun sakegy | Joix|

§ [(Wsdk(K*)S

w, w)
Sdk(K*) 05Co, 7 (N)

|
1
Sdakck* |

é HWSd’NK‘)S

Nolloic,, pr(VOIL —> GO,
0;Cop, ny(N) n-00

This, combined with (4.1), implies

(WSduK.)S w>0'X=O for every ke N. 4.2)

w}
Sdk(K*

Therefore, Lemma 4.2 and (4.2) imply w=0.
On the other hand, from Corollary 3.3, we can easily verify that

PROPOSITION 4.4. For each p such that 2p=m+1, the image of
S: HP(X) —> HE(K™)
is contained in i,(H?(K, L)).

Proof. 1t suffices to prove that ]'z(gw)édc,c0,1<L>C§”1(Co,1(L)) for any we

H#P(X). Since 2p=m-+1, Corollary 3.3 implies that w,c, v, Can be written as
a convergent sum of types; o*, ¢*(¢=0 and 2p=m-+3) and ¢ (¢=0 and 2p=

re* -1y and S 7 mold (=0
Co,1(L) Co,1CL)

and 2p=m+2) belong to C3~%C, (L)), which are straight-forward.

m+2). Hence we should prove that S

Now we will prove (2.1) of Theorem 2.1. From Proposition 4.3 and 4.4, it
suffices to prove dim H?(X)=dim H?(M, N) for 2p>m+1, which is equivalent
to dim #?(X)=dim H?(M) for 2p<m-+1. Then we will prove the latter. It is
well-known that H2..(M)={0€A?(M)|d0=00=0 and 0,,,n=0 on dM=N} is
isomorphic to H?(M) by the inclusion ([10]). Then, let § be the p-form which
is equal to 8P, (M) on M and equal to the natural extension of &, on
Coi(N). It is easily verified by using (1.5) and the assumption 2p<m-1 that §
belongs to A7°(X). Moreover, df=0 holds in the weak sense; ie. for any
Be AR(X), (G, 38),=0, which, using the Friedrichs molifier ([8]), implies f=dom d
and df=0 i.e. feker d,=H"(X)DdAL(X); see Lemma 1.3. We define § as
the harmonic part of §. Then the linear map 42, .(M)>60—0<%?(X) is injec-
tive. The proof is as follows. Suppose §=0. Then f=dA2-(X), which implies
6edA?~(M). But, for any acA?-Y(M), (da, 0)y=(at, 60)o;y~+(Atan, Onorm)oox
=0; i.e. 6 is orthogonal to dA?-*(M). Therefore §=0. Thus the proof of
dim #?(X)=dim H?(M) for 2p<m-+1 is complete.

Note that, if 2p=m-1, then § does not belong to A7 X) except the case
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0.ox=0. Therefore, we cannot apply the above method to the case 2p=m-1.
Then, we will prove (2.2) of Theorem 2.1. In this case, both the bounded
de Rham map and the bounded Whitney map can be defined.

4.3 S T APHX) — CH(Sd*(K™*)) for {>(m-+1)/4+4-1/2 and keN.
(4.4) W CYSd*K*)) —> AP(X) for keN.

First, we will prove that S: HP(X)—1,(2;(HP(K, L))) is injective. Suppose
1:,(1,(H?(K, L)))=I7(‘;>(K*)9UK‘Q)]=O for we #?(X). Since the following diagram

is commutative for every k<N, we have [S w]:O.
Sdk(K*

I

27X Az (K"

G ”2 the natural subdivision map

SSdk(K‘)

HE(Sd*(K*)
For every ¢,>0, from Lemma 4.2, we can choose 2N such that

<€1 .

0

Hw"‘WSdk(K*)S (O]

Sdk(k*

Now, since Ss .)wEdC(Cfg“(Sd”(K*))) and d. is bounded, we can find, given

akx
arbitrary &,>0, a finite cochain feC3-*(Sd*(K*)) such that

”SSdk(K')w_dcf

<e.

Therefore, we have

lo—dWsq kumf”o

HWsascxol ||, 0= def

Sdk(K% ak(KY

é”a)_WSdk(K‘)S o

St Wsaecxsl e .

Since ||Wggrcxsl is bounded independently of %2 and dWgarxf belongs to
dA%-(X), this shows that wedA2-Y(X), i.e. =0.

Next, we will prove that S: HP(X)—1,,(HP(K, L)) is surjective. Let fi,

-+, fn be finite cocycles consisting of p-simplexes of K\L whose images in
HB(K*)=0,(i,(H?(K, L))) form a basis of HZ,(K*). Let f be a non-zero linear
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combination of these elements. Then, for the smooth Whitney map W, ng——- f.
Therefore, when we decompose W[ into Wf=w-+v, where wsH?(X) ~and ye
dA2-Y(X), it suffices to prove that Su belongs to d,C2(K*). Since v=Wf—w
eker (d : AP'*—AP'-1) for arbitrary /, gv belongs to ker d,,,. We can decompose

Sv as follows;

Su=h+d0,p_1a—l—g,

where heker(d, ,=d¢ p x.1>: CP(K, L)—CP*(K, L)), acC?Y(L) and ge&
d.CEK*\(K\L), L) because of (1.3) and (1.4). Therefore SK v="h-+d. -1 xa
belongs to Kker(d, p x: CP(K)— CP*Y(K)). Then it suffices to prove he
de,p-1:CP"Y(K, L). Suppose hed,, ,-.CP YK, L). Then, SKueEdc,p_l,KC”"(K) and

we can find the harmonic form ¢ on M which satisfies the absolute boundary
condition ;

wnorm:(dsﬁ)norm:() on aM:N y

such that SKgp—SKvedC, »-1 kC? K, because the space of such harmonic forms
on M is isomorphic to H?(K) by the de Rham map SK (C10]). On the other hand,
by using non-smooth Whitney maps, ¢ and v, can be approximated by

w dk(K)S
s Sdkx

tively (Lemma 4.2, [7] and [9]). Therefore, p=vy-+(p—vi») can be approxi-
mated by elements of dAP-}(M) in the L%sense. But ¢ is orthogonal to
d AP-Y(M), which is a contradiction.

Thus the proof of (2.2) of Theorem 2.1 is complete.
Then, we refer to (2.9) when 2p=m-+1. Since erkerdpzﬁ{,’(X)@d/\{)’“(X)
for f in the proof of the surjectiveness of S: HP(X)—15(e,(HP(K, L))), the har-

monic part w of Wf belongs to H2(X). Therefore #?(X)=42(X). Moreover,
HP(X)=J3(X) is easily verified by using the action of the *-operator.

¢ and WSdk(K)SS vy in the L%*sense when k—oo, respec-
> K>

dk¢

Finally, we refer to (2.3) of Theorem 2.1. If, for we%?(X), ‘a) belongs to

CP(K*), then w,y is exact because of (1.4). Let 4#?(X) be the subspace of #?(X)
consisting of forms whose restrictions to N are exact. Then, the restriction of
any element of #2(X) to Co (N) can be written as a convergent sum of forms
of type d(r‘”“’"”w#) ; see (2.6) and Corollary 3.3. Therefore, for ws4?(X),
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Sw belongs to CR(K*) if and only if we2(X) (cf. the proof of Proposition 4.4).
And S: HUX)—HE(K*) is injective. It is samely proved as the proof of the
injectiveness of S: HP(X)—15(0.(HP(K, L))) when 2p=m+1. Therefore, we have
dim H2(X)<dim i¥(H?(M, N)), i.e. #P(X) is, in general, not equal to HP?(X).

§5. Appendix

We will prove Proposition 3.1, Corollary 3.2 and 3.3.

Let N™ be an m-dimensional oriented closed Riemannian manifold. Let C(N)
be the space (0, co)X N with metric dr@dr-+r*g, where g is the metric on N,
Let d, §, ¥ and 4 be the exterior derivative, its formal adjoint, the x-operator
and the Laplacian on N. Let d, 6, * and 4 be those on C(N).

LEMMA 51. Let 0(r, x)=g»)@(x)+f(r)dr Nw(x) be an element of NP(C(N)),
where g, f are smooth functions of r<(0, o0) and ¢, w are smooth p and (p—1)-
forms on N, respectively. Then, we have

(5.1) #0=(—1)Pr™-22g dy N¥¢+r""*@Df%q),

(5.2) d=gdo+g'drNg—fdrNdw,

(5.3) 60=r"2g ¢—(m—2(p—1))r*fo—f wo—r-2fdr Néw
and

(5.4) A0={—g"—(m—2p)g’y p-+r-gdp—2r"3g dr N6¢

+{—f"—m=20p—)rf'+(m—2p—D2f} dr New
+r2fdr Ndo—2r-f do.

Proof. (5.1) and (5.2) are obvious. (5.3) is easily verified by noticing o=
(—1)@-bHam+b+iydx, Then we have
do0=—2r"3g dr Nog+r-2g’ dr Nép+r2g di¢
+(m—20p—1)r"%f dr Ao—(m—2p—)) " f dr Ao—(m—2(p—1)rf dw
—f"dr No—f dw-+r*f dr Ndéw

and
odl=rg 5(7525—(771—Zp)r‘lg’gzﬁ—g”gé——r'zg’ drNég

+(m—2p)r"f dw+f’ do+rifdrNédw,

which imply (5.4).
Now, we will investigate the harmonic forms 6 (46=0) on C(N). Let
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{0)ch. p2» Ojcce, 231 Djce, 2} jtn. p3, jce, m. sce. » DE the orthonormal base of AP(N) con-
sisting of harmonic forms, co-exact eigenforms and exact eigenforms of 4. The
eigenvalues of wjce p and wje, py are denoted by 2,cce, py and Ajce. p, respectively.
Note that {(l)j(h,p), Wijcce, p)s ij(ce.p—l)} iCh, P, jlee, ). lce, p-1) is also the Orthogonal
basis of A?(N) and dwjce p-1» has the eigenvalue Ajce p-1». Then, we will ex-
pand < AP(C(N)) as follows;

(55) 6(7", x>:J(§p)g1<h, p)(r)w](h‘ p)(x)+](c;p) gicce, p)(r)wf(ce, p)(x)

> gj(ce,p-l)(r)dw;(ce,p—l)(x>

J(ce, p-1)
2 i p-p() dr A@jcn, p-n(x)

JCh,p-1)

. > fj(ce, p—l)(r) dr/\wj(ce. p—l)(x>

jcece, p-1)

2 fiep-0) dr Awjce, p-n(x),

jce, p-1)

whose derivatives converge on every relatively compact open subset of C(V).
Then, from (5.4), we have

Aﬁ:](th) {—gin pp—(m=2p)r ' gicn, o} Wjcn, p (5.6)
1y {—g§’<ce, p)*(m~2P)7"1g§cce. p)+/zj<ce. p)i"zgme. p)}wj(ce, ) (5.7
+ 3 A—glee p-o—(M—2p)r " glcce. p-v>
J(ce,p-1)
+21(ce, p-l)r_2gj(ce. p—l)—zr_lfj(ce, p—l)} ij(ce, -1 (58)
+ 3 A=flap-o—m=200—1)"fjn p-v
JCh, p=1)
Fm=2p—D)r 2 fscn. p-00} A¥ AWjcn. p-1 (5.9
"!‘ E {_22j(ce,p—1)7’_3gj(ce,p—l)_f,;/(ce,p—l)
J(ce, p-1)
—(W‘Z(P—l))r'lﬂxce, p—l)‘!‘(nl_“z(p_1))"_2fj(ce, p-1
+/zj(ce, p—l)r_zfj(ce, p-l)} dr/\wj(ce, p-1 (510>

T, (/e p-0—m=20p=)r " fice. p-v>+m—=20p—1)r*f;ce. p-1)

‘|‘/2j(e,p~1)7'—2fj(e,p—l)} dr/\a)](e,p—l) . (5]—1)

Therefore, 40=0 if and only if (5.6)=0, (5.7)=0, (5.8)=0, (5.9)=0, (5.10)=0 and
(5.11)=0, which are Euler’s differential equations. And the solutions of (5.6)=0
and (5.7)=0 are (3.1). The solutions of (5.9)=0 and (5.11)=0 are (3.4). Finally,
the solutions of (5.8)=0 and (5.10)=0 are (3.2) and (3.3). Now we prove them
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actually.
To solve (5.6)=0 and (5.7)=0, it suffices to solve

(5.12) —g"—(m—=2py g’ +ur?g=0 for p=0.

Set g=r® Then (5.12) holds if and only if
—ala—D)—(m—=2p)a+p=0, ie a’—1+2p—m)a—p=0.

Consequently,

a= A+2p—m= '\/(2]~j'_217:m)2+4/“ =a*(p).

Therefore, when v(p)=0, (5.6)=0 and (5.7)=0 if and only if

(5.13) > Batn @i ‘|‘j( > Gicce, pWDjcee, p)

JCh, P ce, p)

can be written as a convergent sum of forms of types; ¢*; see (3.1). When
v(p)=0, it is obvious that (5.6)=0 and (5.7)=0 if and only if (5.13) can be written
as a convergent sum of forms of types; ¢ and logr-¢; see (3.1).

To solve (5.9)=0 and (5.11)=0, it suffices to solve

(5.14) —f"—=(m—=20p—D))r 2 f' +(m—20p—1))r ' f4 ur-2f=0 for 4=0.
Set f=r%*, Then (5.14) holds if and only if
—(a+Da—(m—2p—D)Ya+1)+m—20p—D+m=0,

ie. a®—142(p—2)—m)a—p=0.
Cosequent]y,

g 1 2p—2)—mr V(14 2(p—2)—m)*+4u
2

Therefore, when v(p—2)=0, (5.9)=0 and (5.11)=0 if and only if

=a“(p—2).

(5.15) > i p-0d7 ANOjcn p-vF 2 frce p-A7 A®jce, p-1>
JCh,p-1) jce

,P-1)

can be written as a convergent sum of forms of types; ¢*; see (3.4). When
v(p—2)=0, it is trivial that (5.9)=0 and (5.11)=0 if and only if (5.15) can be
written as a convergent sum of forms of types; » drA¢ and rlogr drA¢; see
(3.4).

Finally, to solve (5.8)=0 and (5.10)=0, it suffices to solve the following
simultaneous differential equations;

(5.16) —g"—(m—=2pyg'+pr-*g—2r=1f=0
and

G617 =2prPg—f"—(m—=2p—Dy 1 +(m—20p—))yr2f+pr2f=0 for p>0.
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Set g=r? and f=cr®"'. Then (5.16) and (5.17) hold if and only if

(5.18) —ala—1)—(m—2p)a+pu—2c=0
and
(5.19) —2p—cla—1)a—2)—(m—2(p—1)c(a—1)+(m—2(p—1)+pm)c=0.

By eliminating ¢ from (5.18) and (5.19), we have
a*+2m—2p—1)a*+(m*+4p*—4pm—4m+8p—2p—1)a*
—@2m*+8p*—8pm-—+2um—A4pup—2p—2)a+(p*+-2pm—4pp—2p)=0,

Le. (a—a*(p—DNa—a (p—DXNa—(a*(p—D+2))Na—(a (p—1)+2)=0.

In case a=a*(p—1), we have

2c=—ala—1)—(m—2p)a+p=2a*(p—1), i.e. c=a*(p—1).
In case a=a*(p—1)+2, we have
2¢=2a%(p—1), ie. c=a¥(p—1).

Therefore, when a*(p—1D>xa " (p—1)+2, i.e. v(p—1)=1, (6.8)=0 and (5.10)=0 if
and only if

(5~20> E s gj(ce, p—l)d"wj(ce, p—l)+](e§_l)fj(e. p—l)dr/\wj(e, -1

J(ce,p-1

can be written as a convergent sum of forms of types; w*,

(5.21) ret@-vrrdgd g-(p—1)r* TPy A
and
(5.22) reT @Dy L g (H— 1)t PO A,

where @ is a co-exact eigenform of 4 with eigenvalue p. If we set p=dw,
(5.21) and (5.22) induce p*; see (3.3). Suppose a*(p—D)=a (p—1+2, ie.
y(p—1)=1 which means that 2p=m and p=3/4, 2p=m+1 and p=1 or 2p=
m+2 and p=3/4. Then, (5.8)=0 and (5.10)=0 if and only if (5.20) can be
written as a convergent sum of forms of types; w* (5.21) and

o=@t |og &wé (@ (p—D)42°+ g re" @O log r-dr Aw .

Thus the proof of Proposition 3.1 is complete.

Next, by (5.2), we know that the form @ satisfying 46=0 is closed if and
only if ¢ can be written as a convergent sum of forms of types; ¢* (¢=0 and
a,=0, i.e. p=0 and 2p=m—1), ¢~ (¢=0 and a,>0, i.e. p=0 and 2p=m), w*,
o™, ¢ and ¢~. By (5.3), we know that the form ¢ satisfying 40=0 is co-closed
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if and only if # can be written as a convergent sum of forms of types; ¢*, ¢-,
o, o, ¢* (p=0 and a,-,=0, i.e. p=0and 2p=m+3) and ¢~ (=0 and a,-,<0,
i.e. =0 and 2p=m-+2). Thus the proof of Corollary 3.2 is complete.

Finally, we will prove Corollary 3.3. For a p-form »°®, where a is a real
number and ¢ is the natural extension of a non-zero p-form on N, we have

72l = | 1@l mdr=({ rm-7+22dr)- gl ; see (15). Therefore, such a p-

form r%¢ belongs to A?*C,,(N)) if and only if m—2p+42a>—1. Thus, for a
p-form r?¢—+r’dr A¢, where ¢ and ¢ are natural extensions of non-zero p and
(p—1)-forms on N, respectively, and a and b are real numbers, r®¢-+r°dr A¢
belongs to A?°C, (N)) if and only if a>a,-; and b>a,_,. Therefore, the
form @ which satisfies 46=0 and belongs to A*%C, (N)) can be written as a
convergent sum of forms of types; ¢*, ¢~ (u(p)<1), w*, p*, p~(U(p—1)<2), ¢*
and ¢~(v(p—2)<1). This, combined with Corollary 3.2, implies Corollary 3.3.
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