T. ADATI
KODAI MATH. J.
4 (1981), 327—343

SUBMANIFOLDS OF AN ALMOST PRODUCT
RIEMANNIAN MANIFOLD

By Tyuzi ADATI

§0. Introduction. When a Riemannian manifold M admits a tensor field F
of type (1, 1) such that F*=I (F is non-trivial), M is called an almost product
Riemannian manifold. Let M be a submanifold of an almost product Riemannian
manifold M. We denote by T,(M) the tangent space of M at P€M and by
T ,(M)* the normal space of M at P. If FT,(M)CT,(M) for any point PeM,
then M is called an invariant submanifold. If FT,(M)CT ,(M)* for any point
P, then M is called an anti-invariant submanifold. In this paper, we shall study
non-invariant, invariant and anti-invariant submanifolds of an almost product
Riemannian manifold.

In §1 and §2, we obtain for later use fundamental formulas for submanifolds
of an almost product Riemannian manifold M. In §3, we study hypersurfaces of
an almost product Riemannian manifold M. In §4 and §5, we mainly investigate
non-invariant submanifolds of M. We devote §6 to the study of invariant sub-
manifolds of M. In the last §7, we consider anti-invariant submanifolds of M.

§1. An almost product Riemannian manifold. Let A7 be an almost product
Riemannian manifold of dimension m. Then, by definition, there exist a non-trivial
tensor field F of type (1, 1) and a positive definite Riemannian metric G satisfying

F*=I, GFX, FY)=G(X,Y), X, Yex(M),

where [ is the identity and (M) is the Lie algebra of vector fields on M. It
is well known that
G(FX, Y)=G(X, FY),
that is, @ is symmetric, where @(X, ¥)=GFX, 7).
Let M be an n-dimensional manifold immersed in M (m—n=s) and 14 the
differential of the immersion ¢ of M into M. The induced Riemannian metric g
of M is given by

(LD g(X, Y)=GxX, 1Y), X, Yex(M),

where X(M) is the Lie algebra of vector fields on M. Let {N;, N,, -, N5} be
an orthonormal basis of the normal space Tp(M)* at a point P M.
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The transform FiyX of XeT(M) by F and FN, of N, by F can be respec-
tively written in the next form:

(1.2) FiX=1fX+ 3 uXON,,  Xex(M),
(1.3) FN,=1,U+ 21 2N,
2

where f, u,, U, and 1,, are respectively a linear transformation, 1-forms, vector
fields and functions on M. Using (1.1) and (1.2),

8 X, V)=G(ix/X, 15 Y)=C(Fis X, 14 Y)=Cs X, FixY)=G(xX, 1Y)

Therefore we have g(fX, YV)=g(X, fY). Furthermore, from G(FiyxX, N,)=
G(@ixX, FN,) and G(FN,, N;)=G(N,, FN;), we can respectively get the equations

u(X)=g(X,U)), XexM),
/2“221‘1' .

LEMMA 1.1. In submanifold M of an almost product Riemannian manifold M,

(L4) FX=X— S X)W, or fi=I—3u®U.,
(L5) wl(FX)+ ,2 2 X)=0, Xex),
(1.6) fU+ Jz 2,U,=0,

1.7 U U)=05— 3 Zoudes -

Proof. From (1.2),
FZi*X=F(l*fX+ZZ) ui(X)N@):l*(sz‘lr‘; ui(X)Uz)‘i'; {Uj(fX)‘i'; Auui(X)IN, .

Since F% X=1i:X, we get (1.4) and (1.5). Similarly,
FZszl*(fUi‘f“E /szUj)"*_g (u k(Ut)_l"? /sz}jk)Nk .
J
Thus we get (1.6) and (1.7).

(1.5) and (1.6) are equivalent.
Using (1.2), for X, Yex(M),

G(FirX, Fix Y)=Gixf X, 1t/ Y+ G(E wi(X)Ny, 2 u(Y)IN;)
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=g(fX, fY)+ S uXudY),
from which

(1.8) g(fX, FY)=g(X, ¥)=2 u X)u(Y).

§2. A locally product Riemannian manifold. We denote the covariant
differentiation in M by ¥ and the covariant differentiation in M determined by
the induced metric on M by V. Then the Gauss and Weingarten formulas are
respectively given by

Vixt Y =072 Y+ 3 X, YIN,, X, Yex(M),

VixN=—1H X+ 3 1, (ON,,

where h;(:=1, 2, ----, s) are the second fundamental tensors corresponding to N,
respectively and h(X, YV)=h,(Y, X).
Covariantly differentiating G(14+Y, N,)=0 on M,

C(Vouxtx¥, N)+GxY, Yoy x N)=0,

from which h (X, Y)=g(H, X, V). Similarly, covariantly differentiating G(N,,
Nj)=0;, on M, we have p,,(X)+p,(X)=0.
Next, we consider V,,xF.

Veux F)ise Y =V (Fix Y )= FV x5 Y
=Vox (S Y+ 2 ud YIN)—FxVx Y43 hi(X, YIN,)
= {i(x(VxNY =T uVHX~Z hi(X, YU}
+2 {hi(X, fY)+(VXu,)(Y)—§ pa(X)u(Y)

—2 Aish(X, YIN, .
J

When M is a locally product Riemannian manifold, that is, VF=0 ([2], [5]),
we have

LEMMA 2.1. If M is a locally product Riemanman manifold, then the next
equations hold good :

@D VxHY=Z{ud VIHX+hi(X, VU,

(2.2) hy(X, fY)-l-(quz)(Y)—ZJl ﬂlj(X)uJ(Y)_; Aujh (X, Y)=0.
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Similarly,
(Vosx F)N, =V, x(FN)— F¥,, x N,
=~V_ux(i*U¢+§) ZuNj)—F(—i*HzX+§‘_, L (XON))
=1y {VXUi—I-leX—Z]J /J;,(X)U,-—? A;H, X}
+ {§ {hi(X, U)+hy(X, Uj)-l-Vxlu'—i-Zk‘: At s(X)

+ 33 2K} N;=0.
Thus we have

LEMMA 2.2. If M s a locally product Riemannian manifold, then the next
equations hold good :

2.3) FHX ATV~ 3 (00U, =3 sH, X=0,
(2.4) hi(X, U)+hi(X, Uj)‘l'vX/L.j_l—% Zik#kj(X)_l_% et (X)=0.

Calculating (Vxu )XY,
(Vxu)Y)=Ve{u(Y)} —u (N3 Y)=Vx{g(Y, U} —g(V;Y, U)=g( U, V).

Hence, (2.2) and (2.3) are equivalent.

§3. Hypersurfaces of an almost product Riemannian manifold. Suppose
tl_}at M is a hypersurface immersed in an almost product Riemannian manifold
M [1],[3]. In this case, (1.2) and (1.3) are respectively written in the following

forms:

Fi, X=i:f X+u(X)N, FN=1,U+2AN,
where N=N,, u=u,, U=U,, 2=2;; and u(X)=g(X, U). From Lemma 1.1, we
have

(CRY) fi=I-u®U,
(3.2) fU=-2U,
3.3) u)=1-2, 0=2=L

The Gauss and Weingarten formulas are respectively given by

Vexixn Y=0i,Vy Y+h(X, )N, V,yN=—1HX,

where h:hl_, H=H, and h(X, YV)=g(HX, Y).
When M is a locally product Riemannian manifold, from Lemma 2.1 and
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Lemma 2.2 we have

(34) Ve NY=w(Y)HX+h(X, YU,
3.5) WX, fY)+(Vxu)Y)—=2h(X, Y)=0 or fHX+VyU—2HX=0,
(3.6) 2h(X, U)+Vyx2=0.

When =1, U is a zero vector. Consequently, M is an invariant hyper-
surface and f2=I. Furthermore, we get FN=AN. Thus we have

THEOREM 3.1. In order that M s an invariant hypersurface of an almost
product Riemannian manifold M, it is necessary and sufficient that the normal of
M is an eigenvector of the matrix F.

THEOREM 3.2. In order that M s an invariant hypersurface of an almost
product Riemannian manifold M, it is necessary and sufficient that the induced
structure (f, g) of M is an almost product Riemannian structure excepting the
case where f is trivial.

Proof. 1f f2=I, we have u(X)U=0. Therefore, we get u(X)g(U, X)=
u(X)?=0, that is, u(X)=0. Hence M is invariant.

In the next place, we consider the case where M is not invariant, that is,
A*#1. Since eigenvalues of f are &1 and —2, we have

Tr(f)=—2+const.
When 2=0, the following equations hold good.
[i=1—-u®U, ul)=1,
wX)=g(X, U), g(fX, f¥)=gX, ¥)—u(X)u(Y).
Thus, we get the following theorem [4].

THEOREM 3.3. Let M be a hypersurface of an almost product Riemannian
manifold M. If FN s tangent to M, then M admits an almost paracontact
Riemannian structure.

THEOREM 3.4 [1]. W/_L_en M s non-invariant hypersurface of a locally prod-
uct Riemannian manifold M, the following conditions are equivalent.
(1) Vxf=0, (ii) M ss totally geodesic, (iii) U is parallel in M.

Proof. (i) When Vyf=0, we get from (3.4) w(YV)HX+h(X, Y)U=0, from
which wW(YYHX=—h(X, Y)U. Therefore, for X, Y, Zcx(M)

w(Y)h(X, Z)=—u(Z)W(X, V).
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Thus, since u(Y)h(X, Z) is symmetric in X and Y,
uMh(X, Z)=u(X)WY, Z)=—u(Y)h(X, Z).

By virtue of u(U)=1—22+#0, we get h(X, Z)=0, that is, M is totally geodesic.
Furthermore, from (3.5) we have V. U=0.
(ii) When A(X, Y)=0, from (3.4) and (3.5), we have Vyf=0, VxU=0.
(iii) When VxU=0, from (3.5) we have fHX=AHX. Therefore f2HX=
AfHX=2*HX, from which
HX—u(HX)U=2HX .

Since we have A=const. from (3.3) and VxU=0, we find h(X, U)=u(HX)=0 from
(3.6). Thus we get
HX=1*HX,

from which HX=0. Consequently, Vyxf=0.

We denote by {ej, e, -+, e¢,} an orthonormal basis of the tangent space
Tp(M) at a point PM. Then we have

THEOREM 3.5. Let M be a non-invariant hypersurface of a locally product
Riemannian manifold M. If ﬁ) (Ne,/)e;=0 and Tr(f)=const., then M is minmimal.
A=1

Proof. Since we have A=const. from Tr(f)=const.,, we get h(X, U)=0 from
(3.6). From (3.4)

;(Vezf)ez=§)(u(ez)Hez+h(ex, e))=0.

Consequently,

?W(éx)h(ex, U)+h(es, eu@} =3 h(e,, e, (1—2%)=0,
r=1

from which X h(e;, e;)=0. Hence M is minimal.
2

§4. Submanifolds of an almost product Riemannian manifold (I). We
consider a non-invariant submanifold M immersed in an almost product Rieman-
nian manifold M and assume that U, (i=1, 2, ---, s) are linearly independent.
Consequently we have

%(Zik)2<1 (G=1,2,-+,s) and s=mn.

Let {N,, N, ---, N;} be the another orthonormal basis of Tp(M)* at PcM.
We put

4.1) N,= lé kuiN,.
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By means of G(N,, N,-)——-; ki ki, we have

Z—ZI kllkljzai] s

from which
hgl kihkjhzz‘ii] .

Consequently matrix (k,;) is an orthogonal matrix. Thus from (4.1), we have
Nj=§ kﬂN[ .

Making use of (4.1), equations (1.2) and (1.3) are respectively written in the
next forms:

4.2) Fix X=isfX+3 (XN,
4.3) Flei*ﬁl—k; ZinlN

where

(4.4) =3 ki, Ulz; kiU, ,
(4.5) i,hzg BuliBom .

From (4.4), we obtain

LEMMA 4.1. Let M be a submanifold of an almost product Riemanman
manifold M. When the orthonormal basis {Ni} of Tpo(M)* is transformed to the
another orthonormal basis {N;} of Te(M)*, of U, G=1,2,--,5s) are linearly
independent, then U, (i=1, 2, -+, s) are also linearly independent, and vice versa.

_ It is clear that if a submanifold M of a locally product Riemannian manifold
M is totally geodesic, then Vyf=0 is satisfied. Conversely, we have the follow-

ing

THEOR_EM 42. Let M be a submanifold of a locally product Riemanmian
manifold M. If U, (i=1, 2, -, s) are linearly independent and Ny f=0, then M
is totally geodesic.

Proof. Since we have from (2.1) g{ui(Y)HlX—khi(X, Y)U;} =0, we get the
equation

Z{HZ(Y)g(HZX: Z)+hl(X: Y)g(Ulr Z)} :0) X! Y’ ZE%(M),

from which
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2 {uYh(X, 2 ==2{udl2)hdX, Y}

and consequently
D uY)hi(X, Z)=—2 u(X)h(Y, Z).
Therefore > uy(Y)hy(X, Z) is symmetric and at the same time skew-symmetric
7
in X, Y. Thus we have
2 u(Y)hi(X, Z2)=0.

Since U, (i=1, 2, ---, s) are linearly independent, we get h(X, Z2)=0 (i1=1, 2, -+, s),
that is, M is totally geodesic.

In T,(M), we denote by V(U,) an s-dimensional vector space spanned by
U, (i=1,2, ---,s) and by V an eigenvector of f perpendicular to the vector
space V(U,). Then the following equation holds good:

fV=pV,

where p is an eigenvalue of f. Therefore, f*V=pfV=p?V, from which
I—=2 u;R@U,)V=p®V, that is, V=p*V. Hence we have p*=1.

When s<n, in Tp(M), we denote eigenvectors of f, which are perpendicular
to V(U,) and mutually orthogonal, by V, (A=s+1, ---, n). We put

fVAzeAVA (A:S+1) ] n):

where e,2=1.
Next, if we take an eigenvector U of f in the vector space V(U,), the
following equation holds good :

fU=adU,
where ¢ is an eigenvalue of f. Since we can put U:‘T“ c;U,, from (1.6)
fU=r% ciU1=—12] ¢ AU, ,
from which %}clll,:—acr Therefore, if we denote by ¢ an eigenvalue of f in
V(U,), then -¢ is an eigenvalue of the matrix (4,;). The converse is also true.

LEMMzi 43. Let M be a submanmifold of an almost product Riemannian
manifold M. If U, =1, 2, ---, s) are linearly independent, then we have

Tr(f)=—Tr(Lj)+§‘, s (s<n),

4.6)
=—Tr(4.;) (s=n),

where ¢4=1 (A=s-+1, --- n).
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Proof. We shall prove the case of s<n. Since from (1.6) we have fU,=
—> A,;U,, matrices (f), (4,;) and (U,U, -+~ U,) satisfy the relations
J

(f)(Ule Us)z(Ule Us)(_/zzj) .
We define matrices U, L by
U=(UUs + UVisr - Vi),

(0 sl
L= ,
0 €404

where 044=1, 845=0 (A#B) (A, B=s+1, -, n). Then we have ()U=UL.
Since || #0, we have (f)=ULU-*. If we denote components of (f), L, U and
U-1 by 4, Ly, uh and v respectively, then we get

fft: 2 uilwvvl;z ('z; U Y, a):l, 2y ) n)~
Thus we have

Tr(f)=#2fﬁ=§‘.4 lyv=—§) Xu‘f‘z‘? €4

LEMMA 4.4. Let M be a submanmifold of an almost product Riemanman
manifold M. If U, (i=1, 2, -, s) are linearly independent and Vyf=0, then
Tr(,;)=const..

Proof. Let {ey, e, -+, e,} be an orthonormal basis of Tp(M) and extend e;
(A=1, 2, ---, n) to local vector fields E; which are covariantly constant at PM.
Then at PeM,

VxTr(f)=Vx ? g(fes, e))= {zf‘_, Vxg(fE:, Ed}p
= {§ g(Nxf)Ez, Ex+2 ; g(VxE,, fE;)},;%} 8(Vx ez, en)=0.

Thus we have Tr(f)=const., from which, Tr(4,;)=const..

THEOR_EM 45. Let M be a submanifold of a locally product Riemannian
manifold M. If U, (i=1, 2, ---, s) are linearly independent, Tr(f)=const. and M
is totally umbilical, then M 1is totally geodesic.

Proof. If we put i=j in (2.4), we can get
23 hi(X, U)+Vyg 2 2u+2 Ekizikﬂki(x):o .

Since 4,, is symmetric and p,, skew-symmetric in 7, 7, 2 Ais s, (X)=0. And by
1, k

means of Tr(f)=const. and (4.6), we have > A,;=const.. Hence we find
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2 hi(X, U)=0.
Putting 7;(X, Y)=0:g(X, Y) and substituting in the above equation, we have
zng(X, U,)=0, from which X} ¢;U,=0. Thus we have ¢,=0, that is, M is

totally geodesic.

THEOREM 4.6. Let M be a submamfold of a locally product Riemanman
manifold M. If U, =1, 2, -, s) are lLinearly independent, 3(N.,f)e,=0 and
7

Tr(f)=const., then M 1s mimimal.
Proof. If we put X=Y=¢; in (2.1), we have
(vezf)eZ:;(ui(eZ>Hiez+hi(eb eU,),
from which

%) Ve, flea=2 (H, ; uiea)es +§) hi(exr, e)U)=2 (HiUH—; hi(es, e:)U)=0.

By means of Tr(f)=const. and (4.6), we have X h,(X, U,)=0, which was shown
in the proof of Theorem 4.5. Therefore Zi) g(H,X, U)=2 g(H;U,, X)=0, from
which > H;U,=0. Thus we find

; ZA) hi(es, e)U;=0
and consequently %} hi(e;, e;)=0. Hence M is minimal.

Next, we consider the case of 1,,=2:0., (4.°<1). In this case, since from
(1.7) we have
uj(Uz)=5ji—2Mi5ji »

U, =1, 2, -+, s) are mutually orthogonal. Consequently these vectors are linearly
independent. Furthermore, since from (1.6) we have fU,=—2A;U,, U, is an eigen-
vector of f and —2, is the corresponding eigenvalue of f.

Thus we have

THEOR_}EM 47. Let M be a submanifold of a locally product Riemanmian
manifold M. If 2,,=2:0:; (1,°<1) and Vyxf=0, then M is totally geodesic.

Similarly, in Theorem 4.5 and Theorem 4.6, we can replace the condition
that U, (1=1, 2, ---, s) are linearly independent by 2,,=1:0;;, (1,°<1).

Especially, we put 1,,=0, that is, u;U,)=0;;. In this case, FN, is tangent
to M. Since we have f°X=fX by means of fU,=0, we obtain the following

THEOREM 4.8. In a submanifold M of an almost product Riemannian manifold
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M, if FN, (i=1, 2, ---. s) are tangent to M, then the induced structure tensor f
satisfies f*—f=0.

It is obvious that the following theorems hold good.

THEOREM 4.9. In a submamfold M of a locally product Riemannian manifold
M, if FN, =1, 2, -+, s) are tangent to M and Vyxf=0, then M 1s totally geodesic.

THEOREM 4.10. In a submanifold M of a locally product Riemannian manifold
M, if FN, is tangent to M and M 1s totally umbilical, then M s totally geodesic.

_ THEOREM 4.11. In a submanifold M of a locally product Riemanman manifold
M, if FN, is tangent to M and ;(Vexf)egzo, then M 1s minimal.

Furthermore, we assume s=n. Since fU;=0 and U, (=1, 2, ---, n) are
linearly independent, we get f=0. Thus we have

THEOREM 4.12. In an n-dimensional submanifold M of a locally product
Riemannain manifold M of dimenswon 2n, if FN, 1s tangent to M, then M 1s
anti-invariant and totally geodesic.

§5. Submanifolds of an almost product Riemannian manifold (II). In
this section, we assume that U, gz-:l, 2,_~--, s) are not always linearly independ-
ent. Let {N,, N, -+, Ng}, {Ny, Ns, -+, N5} be orthonormal bases of the normal

space Tp(M)*. If we put
(5.1) NF; kN,

then the matrix (k,,) is an orthogonal matrix and we have (4.2), (4.3), where

(5.2) 121,:; kyuy, l71=>13 kU,
(5.3) jzhzizg kaAkin .

By means of (5.2), if U, (=1, 2, ---, s) are linearly dependent, then U,
(i=1, 2, ---, s) are also linearly dependent. And the greatest number of the
linearly independent vector fields in U, (i=1, 2, ---, s) is invariant under the
transformation (5.1).

Furthermore, because 1,, is symmetric in : and 7, from (5.3), we can find
that under a suitable transformation (5.1) A,, reduces to 2,;=A1:0;,, wWhere 2,

(i=1, 2, ---, s) are eigenvalues of (1,;). In this case, we have ﬁj(ﬁl)zﬁji—ljliﬁﬁ,
that is,
(5.4) a(U)=1-22, a0)=0 G=#j),

and
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(5.5) fU,=—2,0,.

For & such as 2,2=1, U, is a zero vector and FN,=2,N,. Consequently N,
is an eigenvector of F. When 2,°#1 (I=1,2, -, p=s), U, (I=1,2, -, p) are
linearly independent, because these vectors are mutually orthogonal.

Therefore FiyX, FN, can be written as follows :

(5.6) FigX=isf X+ é L(X)N,,  (p=min(s, n),

(5.7) { FN[:l*ﬁt+XlNl (l:]_’ 2’ e, p), (p<s, pén),

Fth ZhNh (h:P+1: ) S),

respectively, where A,2#1 (I=1, 2, ---, p) and A,2=1 (h=p+1, -+, s). Especially,
when p=s, in place of (5.7) the following equation holds good:

(5.7) FN,=i,U,+4N,, *#1 (=12, -, s).

LEMMA 5.1. Let M be a submanifold of an almost product Riemanman mani-
fold M. A necessary and sufficient condition for U, (i=1, 2, ---, s) to be linearly
independent 1s that at every point of M normals are not the eigenvector of F.

Proof. We consider the condition for U, 1=1, 2, -+, s) to be linearly dependent.
Let N be a unit normal of M which is an eigenvector of F. If we put N,=N
and transform the orthonormal basis {N;, Ny, -+, Ng of T(M)* to another
orthonormal basis {N,, N, ---, Ny}, then U, =1, 2, ---, s) are linearly dependent,
because U, is a zero vector. Consequently, U, (1=1, 2, ---, s) are linearly de-
pendent.

Conversely, if U, (1=1, 2, ---, s) are linearly dependent, then by a suitable
transformation of {N;, N,, ---, N}, we get a zero vector U’s and the normal N,
corresponding to U, is an eigenvector of F. Thus, the lemma was proved.

_ LEMMA 5.2. In a submanifold M of an almost product Riemannian manifold
M, we have

(.8) Tr(f)=— éxlﬂéﬂ“ (p<s, p=n),

where A, (I=1,2, -, p) are eigenvalues of (2,;) satisfying A #1 and e *=1
(A=p+1, -+, n). Especially, when p=s,

Te(f)==Tr)+ 3 ea,  e’=1 (s<n)
or =—Tr(4.;) (s=n).

Proof. We prove _the case of p<s. From (5.5), we have FfU,==2,0,
(=12, -, p), where U, (=1, 2, ---, p) are linearly independent. Thus we get
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(5.8).
From Theorem 4.2 and Lemma 5.1, we have

THEOR_EM 5.3. Let M be a submamfold of a locally product Riemanman
manifold M. If at every point of M normals are not the eigenvector of F and
Vxf=0, then M is totally geodesic.

Similarly, in Theorem 4.5 and Theorem 4.6, the condition that U, (1=1, 2,
-+, s) are linearly independent can be replaced by the condition that at every
point of M normals are not the eigenvector of F.

THEOREM 54. Let M be a submamjold of a locally product Riemanman
manifold M. If 2,,=2.0:,, where 3,*+1 (I=1,2, -+, p), 22=1 (h=p-+1, -, s)
(p<s, p=n), and Vxf=0, then h, (X, Y)=0 (I=1, 2, -, p).

Proof. From (2.1) we have
B (HX+h(X, YU} =0,
Consequently,
; w(Y)h(X, Z)=——Zl) u(Z)h(X, Y)=§‘, w (X)) (Y, Z)
:—; uMhi(X, Z). (XY, Zex(M))
Thus, we get ‘? w,(Y)h(X, Z)=0, from which ~,(X, Z)=0 (=1, 2, ---, p).

Similarly, when 2,,=2,0,;,, where A,2#1 (=1, 2, ---, p) and 2,°=1 (h=p+1,
-, 8) (p<s, p=n), the following theorems hold good.

If Tr(f)=const. and M is totally umbilical, then h,(X, Y)=0 (I=1, 2, ---, p).

If Zl)(Vezf)ef——O and Tr(f)=const., then ‘? hiey, e1)=0 (=1, 2, -, p).

§6. Invariant submanifolds of an almost product Riemannian manifold.
Suppose that M is an invariant submanifold immersed in an almost product
Riemannian manifold M. Then U, (=1, 2, ---, s) are zero vector fields and con-
sequently (1.2), (1.3) are respectively written as follows.

Fl*X:l*fX, FNl-:E ZU‘N_;,
J
where

6.1) Ek AirAri=0ji

that is %2”2:1, ‘kajkikFO a# 7).
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Moreover, from (1.4) and (1.8), we get

fi=I, g(fX, f=gX,Y), X YexM).

Hence, M is an almost product Riemannian manifold excepting the case where f
is trivial.

LEMMA 6.1._ If M is an invariant submanifold of an almost product Rieman-
nian manifold M, the next equations hold good.

PG X, ixV)=6(X, V), Vuz®)ixX, ixV)=(Vz)X, V), X, 7V, Ze2(M),
where O(X, V)=G(FX, 7), ¢(X, V)=g(fX, V), X, Ye2(M).

Proof. OG:X, i+ YV)=G(FixX, ixY)=GxfX, ixY)=g(fX, V)=¢(X, V).
Next,
(Vouz®) 65X, 15 Y )= (P(ix X, i5Y)— P(Voz14 X, 15 Y)— O X, Vouz14Y) .
On the other hand,
OV, 214X, ixY)
=0 N X+ hi(Z, X)N,, 1:.Y)=CG(Fiu Nz X+3 h(Z, X)FN,, 1Y)
=G(1x/V2X, 1.Y)=g(fVzX, V)=0(V:X, V).
Therefore
(Vouz D)1 X, 1Y )=V5(§(X, Y))—§(Vz X, Y)— (X, V. Y)=(Vz9)(X, V).
THEOREM 6.2. Let M be a submanifold of an almost product Riemanmian
manifold M. A necessary and sufficient condition for M to be invarant is that

the induced structure (f, g) of M 1s an almost product Riemanman structure
whenever f 1s non-trial.

Proof. 1t is clear that, if M is invariant, then M is an almost product
Riemannian manifold whenever f is non-trivial. Conversely, suppose that M with
the induced structure (f, g) is an almost product Riemannian manifold. Then,
since ? u (X)U,=0, we get

; u,(X)gWU,, X)z? u(X)2=0,
from which u,(X)=0. Hence M is invariant.

THEOR_{EM 6.3. Let M be a submamfold of an almost product Riemannian
manifold M. A necessary and sufficient condition for M to be wnvariant 1s that
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the normal space Tp(M)* at every point P €M admits an orthonormal basis consist-
ing of eigenvectors of the matrix F.

Proof. Suppose that, by the transformation of the basis {Nj, N, ---, Ny,
N,, U, and A,, was respectively transformed into N, U, and Ai0;;, A, being
eigenvalues of (,;). If M is invariant, then we have FN;=X;N,, 2,>=1. Hence
N, (=1, 2, ---, s) are eigenvectors of F.

Conversely, suppose that N, (i=1, 2,_~-- , s) are eigenvectors of F. Then, by

virtue of FN;=1;N, (1,*=1), we obtain U;=0. Consequently M is invariant.

THEOREM 6;4. If M is an invariant submanifold of a locally product Rieman-
nian manifold M, then M is a locally product Riemannian manifold whenever f is
non-trivial.

Proof. Making use of Lemma 6.1 (or (2.1)), from VF=0 we can easily
obtain Vyf=0.

THEOR_EM 6.5 [5]. In a submanifold M of a locally product Riemannian
manifold M, 1f the equations

(i)
FN,=N,

or (i) {
EFEN,=—N,
are satisfied, then M is totally geodesic.

Proof. In the case (i), we have f=I. Therefore from (2.3) we get H,X=0.
Hence M is totally geodesic.

Similarly, we obtain

THEOREM 6.6. In a submamifold M of a locally product Riemanman manifold
M, if the equations

Fi*X:l*X, Fl*X:—Z*X,
(1) FlVl:_Nl (l:]-; 2’ ) (]> or (ll) FNl:NL (Z:l, 2: ) C]),
FNy=N, (h=g-+1, -, ) FNp=—Ny (h=g-+1, -, s)

are satisfied, then h(X, Y)=0 (=1, 2, ---, ¢<5s).

THEOREM 6.7. Let __M be an invariant submanifold of a locally product
Riemannian manifold M. If M is totally umbilical and {Tr(f)}*#n® (ov equiva-
lently, f is non-trivial), then M 1s totally geodesic.

Proof. From (2.2), we have h(X, fY):%) 2ihy (X, V). If we put h(X,Y)
=0:8(X, Y), we get 0,9(X, fY)=2 A,0;¢(X, Y). Substituting X=Y=e;, we
J
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find o, 12 gley, fe)=n X A,j0,, that is,
(6.2) Tr(f)o,=n %“ A,j0; .
We multiply the above equation by 4;; and sum for ;. Then we have
Tr(f) ;} Aji0,=1 ; Zk) AjidikCr="na,

by virtue of (6.1). Consequently

aj=-;ll~Tr( 1S 2y
Substituting the above equation into (6.2), we have

{Tr(f)}? ; A jo,=n? %} A0,

from which X 1,;0,=0. Since X X A4.4,j0,=0,=0 (h=1, 2, ---, s), M is totally
J T

geodesic.

§7. Anti-invariant submanifolds of an almost product Riemannian mani-
fold. Last we consider an anti-invariant submanifold M immersed in an almost
product Riemannian manifold M. In this case, Fi.X, FN, are written as follows:

(7.1 Fi*X———; ui(X)N,,
(7.2) Flei*Ui—FZj) AN, .
And (1.4), (1.6) become

(7.3) Zz) u:QU, =T,

(7.4) ; A,;U,=0.

In order that the solution of #,(X)=0 (:=1, 2, ---, s) does not exist except
zero vector, it is necessary and sufficient that the rank of the matrix (U, U, - Us)
is n and consequently s=n.

When s=n, U, 1=1, 2, ---, n) are linearly independent and we have 2,,=0
from (7.4). Thus we obtain the following theorem by virtue of Theorem 4.2.

THEOREM 7.1. In a locally product Riemannian manifold M of dimension 2n,
an antitnvarant submanifold M of dimension n 1s totally geodesic.

When s>n, U, (i=1, 2, ---, s) are linearly dependent. Suppose that, by a
suitable transformation (5.1) of the orthonormal basis {N,, N,, ---, N}, N,, U, and
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A,; are transformed to N, U, and 4:0;, respectively, which 2, are eigenvalues of
(A,;). Then, since (7.4) becomes 2:0,=0 (=1, 2, ---, s), we can assume that U,
(=1, 2, ---, n) are linearly independent, U, (h=n+1, ---, s) zero vectors, 2,=0
({=1,2, -, n) and 2=1 (h=n-+1, -, s). Consequently U, (I=1, 2, ---, n) are
unit vectors which are mutually orthogonal and N, (h=n-+1, -, s) are eigen-
vectors of F.

Now, denote by {ei, e, ---, e,} the orthonormal basis of Tp(M). If we put
Fiye,=Nj;, Fiye,=Nj (k, (=1, 2, ---, n}, then G(N;, N;)=0d;,;. Therefore, we can
take the normals N, (=1, 2, ---, n) such as Fiye;=N,.

Thus we obtain

THEOREM 7.2. If _M is an anti-invarant submanifold of a locally product
Riemannian mamfold M, for the normals N; (I=1, 2, ---, n) corresponding to the
orthonormal basis {ey, es, -, es} of Te(M), h(X, Y)=0 (=1, 2, ---, n).

On a Riemannian product manifold M=M,X M,, K. Yano and M. Kon proved
Theorem 7.1 and Theorem 7.2 [6].
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