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SUBMANIFOLDS OF AN ALMOST PRODUCT

RIEMANNIAN MANIFOLD

BY TYUZI ADATI

§ 0. Introduction. When a Riemannian manifold M admits a tensor field F
of type (1, 1) such that F2=I (F is non-trivial), M is called an almost product
Riemannian manifold. Let M be a submanifold of an almost product Riemannian
manifold M. We denote by TP(M) the tangent space of M at F e M and by
Tp(M)1 the normal space of M at P. If FTp(M)dTp(M) for any point P G M ,
then M is called an invariant submanifold. If FTp(M)aTP(M)L for any point
P, then M is called an anti-invariant submanifold. In this paper, we shall study
non-invariant, invariant and anti-invariant submanifolds of an almost product
Riemannian manifold.

In § 1 and § 2, we obtain for later use fundamental formulas for submanifolds
of an almost product Riemannian manifold M. In § 3, we study hypersurfaces of
an almost product Riemannian manifold M. In § 4 and § 5, we mainly investigate
non-invariant submanifolds of M. We devote § 6 to the study of invariant sub-
manifolds of M. In the last § 7, we consider anti-invariant submanifolds of M.

§ 1. An almost product Riemannian manifold. Let M be an almost product
Riemannian manifold of dimension m. Then, by definition, there exist a non-trivial
tensor field F of type (1, 1) and a positive definite Riemannian metric G satisfying

F2=I, G(FX,FΫ)=G(X,Ϋ), X, ΫEΞ2C(M),

where / is the identity and 3C(M) is the Lie algebra of vector fields on M. It
is well known that

G(FX, Ϋ)=G(X, FΫ),

that is, Φ is symmetric, where Φ(X, Ϋ)=G{FX, Ϋ).
Let M be an n-dimensional manifold immersed in M (m—n — s) and i* the

differential of the immersion i of M into M. The induced Riemannian metric g
of M is given by

(1.1) g(X, Y)=G(i*X, ι*7), X, YeΞX(M),

where 3C(M) is the Lie algebra of vector fields on M. Let {Nlf N2} •••, Ns} be
an orthonormal basis of the normal space TP(M)X at a point P G M .
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The transform Fi*X of X^TP{M) by F and FNX of Nt by F can be respec-
tively written in the next form:

(1.2) Fi*X=ι*fX+ Σ ut(X)N%, X^DC(M),
1 = 1

(1.3) FN%=ι*Ut+ Έ^JNJ,

where /, ul} Ux and λtJ are respectively a linear transformation, 1-forms, vector
fields and functions on M. Using (1.1) and (1.2),

g(fX, Y)=G(i*fX, ι*Y)=G(Fi*X, ι*Y)=G(ι*X, Fi*Y)=G(ι*X, ι*fY).

Therefore we have g{fX, Y)=g(X, fY). Furthermore, from G(Fi*X, Nt)=
G{i*X, FNt) and G(FNt, Nj)=G(Nlf FNj), we can respectively get the equations

Ut(X)=g(X,Ut),

LEMMA 1.1. In submanifold M of an almost product Rtemanman manifold M,

(1.4) f2X=X- Σ uί(X)Uι or f2=I- Σ ui®Uι,

(1.5) Ui(fX)+± λιjuj(X)=0,

(1.6) /£/,+ ΣW=0,

(1.7) uj(Uι)=δJt- Σ^ λihλh%.

Proof. From (1.2),

ui(X)Uι)+Σ {uJJX)+Έ λιjui{X)}N1
J lJ

Since F%X=i*X, we get (1.4) and (1.5). Similarly,

F2Nι=ι^{fUiΛ-Έ λ//, ) + Σ (uk(Uτ)+Έ λxjλjk)Nk.
3 k 3

Thus we get (1.6) and (1.7).

(1.5) and (1.6) are equivalent.
Using (1.2), for X,

G(Fi*X, Fi*Y)=G(i*fX9 z*/F)+G(Σ ut(X)Nu Σ
i 3
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=g(fX,fY)+Έui{X)ui{Y),

from which

(1.8) g{fX, fY)=g(X, n - Σ Ui(X)Uι(Y).

§ 2. A locally product Riemannian manifold. We denote the covariant
differentiation in M by 7 and the covariant differentiation in M determined by
the induced metric on M by 7. Then the Gauss and Weingarten formulas are
respectively given by

Σ hi(X, Y)Nt, X,

where hi(ι = l, 2, , s) are the second fundamental tensors corresponding to Nt

respectively and hlX, Y)=hi(Y, X).
Covariantly differentiating G(ι*Y, Nt)—Q on M,

G(7,, xz*r, Nt)+G(ι*Y, l%#χNι)=0,

from which hi(X, Y)=g(HtX, Y). Similarly, covariantly differentiating G(Nτ,
Nj)=dij on M, we have_μtJ(X)-i-μji(X)=O.

Next, we consider lτ*χF.

t(X, Y)N%)

- Σ ut(Y)HτX-Σ hlX, Y)Ut}

+Έ{hi(X, /K)+(7χiί,χr)-Σ μιj{X)u3{Y)
i 0

-Έλuh3{X, Y)}NX.
3

When M is a locally product Riemannian manifold, that is, ΐF—Q ([2], [5]),
we have

LEMMA 2.1. // M is a locally product Riemannian manifold, then the next
equations hold good:

(2.1) (Vχ/)7=ΣίM,(r)i/»Z+A i(Z, Y)Ui}9

(2.2) ht{X,
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Similarly,

J 3

^-τ, μΛX)Uj- Σ λιJHJX}
J J

j , Uι)+hί(X, Uj

+ ΣλJkμkι(X)}Nj=0.

Thus we have

LEMMA 2.2. If M is a locally product Riemannian manifold, then the next
equations hold good:

(2.3) fHιX+VxUι-Έ μiJ(X)Uj-Σ λtJHJX=0,

(2.4) hj(X, Uι)+hί(X, UJ)+VzλιJ+^ λikμkj(X)+-% λjkμkι(X)=0 .

Calculating C7xut)(Y),

^zutXY)=lx{ui(Y)}-ui(lxY)=Vx{g(Y9 U%)}-g{lxY, Uτ)=g{lxUx, Y).

Hence, (2.2) and (2.3) are equivalent.

§ 3. Hypersurf aces of an almost product Riemannian manifold. Suppose
that M is a hypersurface immersed in an almost product Riemannian manifold
M [1], [3]. In this case, (1.2) and (1.3) are respectively written in the following
forms:

Fi*X=i*fX+u(X)N, FN=i*U+λN9

where N=Nlf u = ult U=Uly λ=λn and u(X)—g{X, U). From Lemma 1.1, we
have

(3.1) / 2 - / -

(3.2) fU=~λU,

(3.3) u(U)=l-λ2,

The Gauss and Weingarten formulas are respectively given by

V , Y)N,

where h = h1} H=H1 and h(X, Y)=g(HX, Y).
When M is a locally product Riemannian manifold, from Lemma 2.1 and
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Lemma 2.2 we have

(3.4) (Vxf)Y=u(Y)HX+h(X, Y)U,

(3.5) h(X,fY)+Wχu)(Y)-λh(X,Y)=O or fHX+τ7xU-λHX=0,

(3.6) 2h(X,

When λ2=l, U is a zero vector. Consequently, M is an invariant hyper-
surface and f2=L Furthermore, we get FN=λN. Thus we have

THEOREM 3.1. In order that M is an invariant hypersurface of an almost
product Riemannian manifold M, it is necessary and sufficient that the normal of
M is an eigenvector of the matrix F.

THEOREM 3.2. In order that M ts an invariant hypersurface of an almost
product Riemannian manifold M, it is necessary and sufficient that the induced
structure (/, g) of M is an almost product Riemannian structure excepting the
case where f is trivial.

Proof. If / 2 = 7 , we have u(X)U=0. Therefore, we get u(X)g(U, X)=

u(Xγ=0} that is, u(X)=0. Hence M is invariant.

In the next place, we consider the case where M is not invariant, that is,
λ2φl. Since eigenvalues of / are ± 1 and —λ, we have

When λ=0, the following equations hold good.

u{X)=g{X,U), g(fX,fY)=g(X, Y)-u{X)u{Y).

Thus, we get the following theorem [4].

THEOREM 3.3. Let M be a hypersurface of an almost product Riemannian
manifold M. If FN ts tangent to M, then M admits an almost paracontact
Riemannian structure.

THEOREM 3.4 [1]. When M is non-invariant hypersurface of a locally prod-
uct Riemannian manifold M, the following conditions are equivalent.

(i) V;r/=0, (ii) M is totally geodesic, (iii) U is parallel in M.

Proof, (i) When 7 ^ / = 0 , we get from (3.4) u(Y)HX+h(X, Y)U=0, from
which u(Y)HX=-h{X, Y)U. Therefore, for X, Y,

u{Y)h{X, Z)=-u(ZMX, Y).
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Thus, since u(Y)h(X, Z) is symmetric in X and Y,

u{Y)h(X, Z)=u(X)h(Y, Z)=-u(Y)h(X, Z).

By virtue of u(U)=l-λ2Φθ, we get h(X, Z)=0, that is, M is totally geodesic.
Furthermore, from (3.5) we have VXU=O.

(ii) When h(X, Y)=0, from (3.4) and (3.5), we have lxf=Q, 1XU=O.
(iii) When 1XU=O, from (3.5) we have fHX=λHX. Therefore f2HX=

λfHX=λ2HX, from which

HX-u(HX)U=λ2HX.

Since we have Λ=const. from (3.3) and VXU=O, we find h(X, U)=u(HX)=0 from
(3.6). Thus we get

from which HX=0. Consequently, V x /=0.

We denote by {elf e2, •••, ̂ n} an orthonormal basis of the tangent space
TP(M) at a point P^M. Then we have

THEOREM 3.5. Let M be a non-invariant hypersurface of a locally product

Riemannian manifold M. If Σ ( V ^ / ^ ^ O and Tr(/)=const, then M is minimal.

Proof. Since we have Λ=const. from Tr(/)—const., we get h(X, U)=0 from
(3.6). From (3.4)

Consequently,
n

Σ{u(eχ)h(eχ, U)+h(eχ, eχ)u(U)}=*Σ h{eμ, eμ)(l—λ2)=0,
λ μ = l

from which Σ h(eλ, eχ)=Q. Hence M is minimal.

§4. Submanifolds of an almost product Riemannian manifold (I). We
consider a non-invariant submanifold M immersed in an almost product Rieman-
nian manifold M and assume that Uι (i— 1, 2, •••, 5) are linearly independent.
Consequently we have

Έ(λik)
2<l ( i=l , 2, •••, s) and s^n.

k

Let {Nlf N2, -••, Ns} be the another orthonormal basis of TP(M)L at
We put

(4.1) Nτ= Σ feitiV,.
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By means of G(Nτ, Nj)=Έ kukl3, we have

s

1 = 1

from which

s

Z—i KifiFcjii V ij

Consequently matrix {ktJ) is an orthogonal matrix. Thus from (4.1), we have

Making use of (4.1), equations (1.2) and (1.3) are respectively written in the
next forms:

(4.2)

(4.3)

where

(4.4)

(4.5)

From

Uτ = Σi kuUi ,

I»=Σ k»λxi

(4.4), we obtain

L E M M A 4.1. Let M be a submanifold of an almost product Riemannian
manifold M. When the orthonormal basis {Ni} of TP(M)L is transformed to the
another orthonormal basis {Ni} of TP(M)L, if Uz ( f = l , 2, •••, s) are linearly
independent, then Ut (i=l, 2, ••• , s) are also linearly independent, and vice versa.

It is clear that if a submanifold M of a locally product Riemannian manifold
M is totally geodesic, then 7jr/=O is satisfied. Conversely, we have the follow-
ing

THEOREM 4.2. Let M be a submanifold of a locally product Riemannian
manifold M. If Uz (i=l, 2, ••• , s) are linearly independent and lxf=0, then M
is totally geodesic.

Proof. Since we have from (2.1) Ti{ui{Y)HιX-Vhi{X, Y)Ui}=0, we get the

equation

Σ{ut(Y)g(HtX, Z)+ht(X, Y)g(Ulf Z)}=0, X, Y,

from which
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X, Y)}

and consequently

Y, Z).

Therefore Σ Ui(Y)hi(X, Z) is symmetric and at the same time skew-symmetric

in X, Y. Thus we have

X, Z)=0.

Since U% (i—1, 2, •••, s) are linearly independent, we get hi(X, Z)—0 ( i=l , 2, •••, s),
that is, M is totally geodesic.

In TP(M), we denote by V(Ut) an s-dimensional vector space spanned by
U% (z=l, 2, •••, 5) and by V an eigenvector of / perpendicular to the vector
space V(Uι). Then the following equation holds good:

fV=PV,

where p is an eigenvalue of /. Therefore, f2V=pfV—ρ2V, from which
(I-Σ,ui(g)Uι)V=p2V, that is, V=p2V. Hence we have ^ = 1 .

When s<n, in TP(M), we denote eigenvectors of /, which are perpendicular
to V{U%) and mutually orthogonal, by VA (A=s+1, •••, n). We put

fVA=εAVA (A=s + 1, . - , n),

where ε / = l .
Next, if we take an eigenvector U of / in the vector space V{U%)} the

following equation holds good:

fU=σU,

where σ is an eigenvalue of /. Since we can put U—Σ CiUt, from (1.6)

from which Σ cτλ%J= — σc3. Therefore, if we denote by σ an eigenvalue of / in

V(Uι), then -σ is an eigenvalue of the matrix (λzj). The converse is also true.

LEMMA 4.3. Let M be a submanifold of an almost product Riemannian
manifold M. If Uι (z=l, 2, •••, s) are linearly independent, then we have

(4.6)

•• n).
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Proof. We shall prove the case of s<n. Since from (1.6) we have fUτ=
—ΣλuUj, matrices (/), (λτj) and (UJJ^ ••• U8) satisfy the relations

j

We define matrices 0, L by

tf=(tfiU,-t/,V.+1- Vn),

ί-λtJ 0

0 εAδAB

where 3 ^ = 1 , 3 ^ = 0 (AφB) (A, B=s+1, - , n). Then we have (f)O==UL.
Since |t?|=£0, we have (f)=θLθ~1. If we denote components of (/), L, 0 and
U'1 by /J, /̂ jt, uμ and vj respectively, then we get

fμ= Σ uilwV'μ (λ, μ, v, ω = l , 2, ••• , n).

Thus we have

LEMMA 4.4. Z^ί M be a submamfold of an almost product Riemannian
manifold M. If U% (z=l, 2, •••, s) are linearly independent and 7χ/— 0, then

Proof. Let {̂ , £2, •••, en} be an orthonormal basis of TP(M) and extend eλ

(λ=l, 2, -" , n) to local vector fields Eχ which are covariantly constant at
Then at

g
λ x

Thus we have Tr(/)=const., from which, Tr(^ ι ; )=const..

THEOREM 4.5. Let M be a submanifold of a locally product Riemannian
manifold M. If U% (z=l, 2, •••, 5) are linearly independent, Tr(/)=const. and M
is totally umbilical, then M is totally geodesic.

Proof. If we put i=j in (2.4), we can get

2 Σ hi(X, Ut)+Vx Σ λu+2 Σ λikμki(X)=Q.
I I I, k

Since λl3 is symmetric and μl3 skew-symmetric in i, j , Σ λikμkι(X)=0. And by
I, k

means of Tr(/)=const. and (4.6), we have Σ ^ z i=const.. Hence we find
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Σ h,(X, ί/,)=0.

Putting hi(X, Y)=σig(X, Y) and substituting in the above equation, we have
Σ oιg{X, Uι)=0, from which Σ σiUι—Q. Thus we have σz=0, that is, M is

totally geodesic.

THEOREM 4.6. Let M be a submanifold of a locally product Riemannian
manifold M. If Ux (z=l, 2, ••• , s) are linearly independent, ΣCJeλf)eλ=0 and

Tr(/)=const., then M is minimal.

Proof. If we put X=Y=eχ in (2.1), we have

from which

χf eλ)Ux)=0.
λ I λ λ I λ

By means of Tr(/)=const. and (4.6), we have Σ ht(X, Ut)=0, which was shown

in the proof of Theorem 4.5. Therefore Σ g(HtX, ί/»)=Σ g(HiUι, X)=0, from

which Σ HiUt=0. Thus we find

and consequently Σ hi(eχ, eχ)=0. Hence M is minimal.

Next, we consider the case of λιj—λiδlj (λt

2<l). In this case, since from
(1.7) we have

uj(Uι)=δji—λjλiδji,

Uτ ( ι = l , 2, •••, s) are mutually orthogonal. Consequently these vectors are linearly
independent. Furthermore, since from (1.6) we have fUi——λiUt, Ut is an eigen-
vector of / and —λt is the corresponding eigenvalue of /.

Thus we have

THEOREM 4.7. Let M be a submanifold of a locally product Riemannian
manifold M. If λtj=λiδij (Λ2<1) and ^χf=0, then M is totally geodesic.

Similarly, in Theorem 4.5 and Theorem 4.6, we can replace the condition
that Uι ( i=l , 2, •••, s) are linearly independent by λι3=λiδi3 (λt

2<l).
Especially, we put λιJ=0, that is, Uj(Uι)=δji. In this case, FNt is tangent

to M. Since we have fzX=fX by means of fUt=0, we obtain the following

THEOREM 4.8. In a submanifold M of an almost product Riemannian manifold
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M, if FNt ( i = l , 2, ••• , s) are tangent to M, then the induced structure tensor f
satisfies / 8 - / = 0 .

It is obvious that the following theorems hold good.

THEOREM 4.9. In a submamfold M of a locally product Riemannian manifold
M, if FNt (z=l, 2, •••, s) are tangent to M and V x /=0, then M is totally geodesic.

THEOREM 4.10. In a submamfold M of a locally product Riemanman manifold
M, if FNt is tangent to M and M is totally umbilical, then M is totally geodesic.

THEOREM 4.11. In a submamfold M of a locally product Riemanman manifold
M, if FNt is tangent to M and Σ(Ve^/)e^=0, then M is minimal.

Furthermore, we assume s—n. Since /£/*=() and Ut ( z = l , 2, •••, n) are
linearly independent, we get / = 0 . Thus we have

THEOREM 4.12. In an n-dimensional submamfold M of a locally product
Riemannain manifold M of dimension 2n, if FNt is tangent to M, then M is
anti-invariant and totally geodesic.

§ 5. Submanifolds of an almost product Riemannian manifold (II). In
this section, we assume that Uι ( ι = l , 2, •••, s) are not always linearly independ-
ent. Let {Nlf N2, •••, Ns}, {Ni, N2, •••, Ns} be orthonormal bases of the normal
space TP(M)\ If we put

(5.1) ft=ΈknNl9

then the matrix (ktJ) is an orthogonal matrix and we have (4.2), (4.3), where

(5.2) Ut^Σ kuUt, Ot=ΣikiiUlf

(5.3) *ιh=£j kiιλ*>k» '

By means of (5.2), if Ut (z=l, 2, •••, s) are linearly dependent, then Ό%

( i = l , 2, •••, s) are also linearly dependent. And the greatest number of the
linearly independent vector fields in Ut ( i=l , 2, •••, s) is invariant under the
transformation (5.1).

Furthermore, because λtJ is symmetric in ι and j , from (5.3), we can find
that under a suitable transformation (5.1) λXJ reduces to Ίιj=λiδij, where λz

( ΐ = l , 2, •••, s) are eigenvalues of (λτj). In this case, we have ΰj(Uι)=δJi—λjλiδji,
that is,

(5.4) ΰt(Uι)=l-λt

t

> w/£Λ)=0

and
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(5.5) fθ%=-λiΰ%.

For h such as λh

2=l, Uh is a zero vector and FNh=λhNh. Consequently Nh

is an eigenvector of F. When λfφl {1=1, 2, •••, p^s), Ut (1=1, 2, •••, p) are

linearly independent, because these vectors are mutually orthogonal.

Therefore Fi*X, FNt can be written as follows:

(5.6) Fi*X=i*fX+ Σ Ut(X)Nι, (p^min(s, n)),

^hti+tfi (1=1, 2, .» , ί), (ί<s, p^

\ FNh= λhNh (h=p+l, - , s ) ,

respectively, where λt

2φl (1=1, 2, •••, p) and λh

2=l (h=p+l, •••, s). Especially,

when p=s, in place of (5.7) the following equation holds good:

(5.7/ Fft^itϋt+λtftt, λt

2Φl (1=1, 2, •••, s).

L E M M A 5.1. Let M be a submanifold of an almost product Riemanman mani-

fold M. A necessary and sufficient condition for U% ( z = l , 2, •••, s) to be linearly

independent is that at every point of M normals are not the eigenvector of F.

Proof. We consider the condition for U% (ι=l, 2, •••, s) to be linearly dependent.

Let iV be a unit normal of M which is an eigenvector of F. If we put NS=N

and transform the orthonormal basis {Nlf N2, •••, Ns} of TP(M)± to another

orthonormal basis {Nlt N2, •••, Ns}, then Uι (ι=l, 2, •••, s) are linearly dependent,

because 0s is a zero vector. Consequently, Uτ (ι=l, 2, •••, s) are linearly de-

pendent.

Conversely, if Ut (i=l, 2, •••, 5) are linearly dependent, then by a suitable

transformation of _{Nlf N2, •••, Ns}, we get a zero vector Us and the normal Ns

corresponding to Us is an eigenvector of F. Thus, the lemma was proved.

LEMMA 5.2. In a submanifold M of an almost product Riemannian manifold

M, we have

(5.8) T r ( / ) = - Σ ^ + Σ SA (P<s,p£n),
1=1 A=p+1

where λt (1= 1, 2, •••, p) are eigenvalues of (λtj) satisfying λ2φl and εA

2=l

(A=p + 1, ••-, n). Especially, when p=s,

Tτ(f)=-Tr(λtJ)+ Σ 6Λ, eA

2=l (s<n),
A=s + 1

or = - T r ( ^ ) (s=n).

Proof. We prove the case of p<s. From (5.5), we have fϋι =—λιθι

(1=1, 2, •••, p), where Ut (1=1, 2, •••, p) are linearly independent. Thus we get
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(5.8).

From Theorem 4.2 and Lemma 5.1, we have

THEOREM 5.3. Let M be a submamfold of a locally product Riemanman
manifold M. If at every point of M normals are not the eigenvector of F and
V x /=0, then M is totally geodesic.

Similarly, in Theorem 4.5 and Theorem 4.6, the condition that Ut (ι=l, 2,
•••, s) are linearly independent can be replaced by the condition that at every
point of M normals are not the eigenvector of F.

THEOREM 5.4. Let M be a submamfold of a locally product Riemannian
manifold M. If λl3=λiδiJ, where λt

2φl (Z=l, 2, •••, p), λh

2=l (h=p + l, - , s)
(P<s, p^n), and lzf=0, then ht(X, Y)=0 {1=1, 2, •••, p).

Proof. From (2.1) we have

Consequently,

Έut(Y)h

P
ZJ \UI\I JΓΊiΛ
1 = 1

h(X9 Z)=-ΣuL(Z)

=-ΣM t (n

:+hι(x, Y)ut}=o.

ht(X, Y)=Έiuι(X)h

hι(X,Z). (X,Y,

Thus, we get Σ uι(Y)hι(Xf Z)=0, from which ht(X, Z ) = 0 (1=1, 2, ••• , p).

Similarly, when λl3=λiδij, where 12Φ\ (1=1, 2, •••, p) and λh

2—l (h=p+l,
•••, 5) (p<s, pί^ri), the following theorems hold good.

If T r ( / ) = c o n s t . and M i s totally umbilical, then hι(X, Y)=0 (1=1, 2, •••, p).
If Σ ( V β , / ) ^ = 0 and T r ( / ) = c o n s t . , then Σ ht(eλ, eλ)=Q (1=1, 2, •••, p).

x x

§6. Invariant submanifolds of an almost product Riemannian manifold.
Suppose that M is an invariant submanifold immersed in an almost product
Riemannian manifold M. Then Ό\ (i=l, 2, •••, 5) are zero vector fields and con-
sequently (1.2), (1.3) are respectively written as follows.

where

(β.l) Έλj

that is Έtjk

2=l, Έλjkλkt=0 (iΦj).
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Moreover, from (1.4) and (1.8), we get

P=I, g(fX, fY)=g(X, Y), X,

Hence, M is an almost product Riemannian manifold excepting the case where /
is trivial.

LEMMA 6.1. // M is an invariant submanifold of an almost product Rieman-
nian manifold M, the next equations hold good.

Φ(i*X, i*Y)=φ{X, Y), ($ιtzΦ)(i*X, i*Y)=φzφXX, Y), X> Y>

where Φ(X, Ϋ)=G(FX, Γ), φ(X, Y)=g(fX, Y), X, Ϋ^DC(M).

Proof. Φ(HX, i*Y)=G(Fi*X, i*Y)=G(i*fX9 i*Y)=g{fX, Y)=φ(X, Y).

Next,

On the other hand,

t*zi*X, i*Y)

i(Z, X)Nt, I*Y)=G{FHΊZX+Y> hτ(Z, X)FNt,

Therefore

, Y)-φ(X,

THEOREM 6.2. Let M be a submanifold of an almost product Riemannian
manifold M. A necessary and sufficient condition for M to be invariant is that
the induced structure (/, g) of M is an almost product Riemannian structure
whenever f is non-trivial.

Proof. It is clear that, if M is invariant, then M is an almost product
Riemannian manifold whenever / is non-trivial. Conversely, suppose that M with
the induced structure (/, g) is an almost product Riemannian manifold. Then,
since Σ Ui(X)Uτ=Q, we get

from which ιii(X)=0. Hence M is invariant.

THEOREM 6.3. Let M be a submanifold of an almost product Riemannian
manifold M. A necessary and sufficient condition for M to be invariant is that
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the normal space TP(M)L at every point P e M admits an orthonormal basis consist-
ing of eigenvectors of the matrix F.

Proof. Suppose that, by the transformation of the basis {Nlf N2, •••, Ns},
Nι, U% and λtJ was respectively transformed into Nt, 0t and λiδiJt λz being
eigenvalues of (λτj). If M is invariant, then we have FNi=λiNli λι2=l. Hence
Nt ( i = l , 2, •••, s) are eigenvectors of F.

Conversely, suppose that Nt ( ί = l , 2,_ , s) are eigenvectors of F. Then, by
virtue of FNi—λiN% (λL

2=l), we obtain Ut=0. Consequently M is invariant.

THEOREM 6.4. // M is an invariant submanifold of a locally product Rieman-
nian manifold M, then M is a locally product Riemannian manifold whenever f is
non-trivial.

Proof. Making use of Lemma 6.1 (or (2.1)), from 7 F = 0 we can easily
obtain Vxf=0.

THEOREM 6.5 [5]. In a submanifold M of a locally product Riemannian
manifold M, if the equations

(i) or (ii)
[ FNt=-Nt

are satisfied, then M is totally geodesic.

Proof. In the case (i), we have / = / . Therefore from (2.3) we get HZX=O.
Hence M is totally geodesic.

Similarly, we obtain

THEOREM 6.6. In a submamfold M of a locally product Riemannian manifold
M, if the equations

(Z=l, 2, ...,0) or (ii)(i)

are satisfied, then hh(X, Y)=0 (/=1, 2, ••• , q<s).

FNh=Nh (A=?+l, - , s)

FN^Nt (1=1, 2, -,q),

FNh=-Nh (k=q+l, •-, s)

THEOREM 6.7. Let M be an invariant submanifold of a locally product
Riemannian manifold M. If M is totally umbilical and {Ύr(f)}2Φn2 {or equiva-
lently, f is non-trivial), then M is totally geodesic.

Proof. From (2.2), we have h&X, / 7 ) = Σ λιjhJ(X, Y). If we put hi{X, Y)

= σig(X,Y), we get σig(X, fY) = Έ λιJσjg{X, Y). Substituting X=Y=eλ, we
3
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find Oι Σ gifix, feχ)=n Σ λtjσJ9 that is,

(6.2) Ύτ(f)σι=nΣλιjσJ.
3

We multiply the above equation by Xjt and sum for i. Then we have

Tr(/) Σ λJiσι=n Σ Σ λjiλikGk — nσj
I Ik

by virtue of (6.1). Consequently

σj=~Tτ(f)^λjiσι.

Substituting the above equation into (6.2), we have

from which Σ,λτjσj=0. Since Σ Σ λhιλxjσ3— σh=0 ( Λ = l , 2, •••, s), M is totally
3 % 3

geodesic.

§ 7. Anti-invariant submanif olds of an almost product Riemannian mani-
fold. Last we consider an anti-invariant submanifold M immersed in an almost
product Riemannian manifold M. In this case, Fi*X, FNt are written as follows:

(7.1)

(7.2)

And (1.4), (1.6) become

(7.3)

(7.4)

FHX=Έ ui{X)Nι,

FN1=πUi+'ΣλιjN].
3

Σ,Ui<g)Ut=I,

Σ λtjU,=0.

In order that the solution of uι(X)=0 (ι=l, 2, •••, s) does not exist except
zero vector, it is necessary and sufficient that the rank of the matrix (U-JJz ••• Us)
is n and consequently s^n.

When s=n, Uι (ι=l, 2, •••, n) are linearly independent and we have λιJ=0
from (7.4). Thus we obtain the following theorem by virtue of Theorem 4.2.

THEOREM 7.1. In a locally product Riemannian manifold M of dimension 2n,
an antiinvanant submanifold M of dimension n is totally geodesic.

When s>n, Uι (i=l, 2, •••, s) are linearly dependent. Suppose that, by a
suitable transformation (5.1) of the orthonormal basis {Λ̂ , A ,̂ •••, Ns}, Nlf Uι and



SUBMANIFOLDS OF ALMOST PRODUCT RIEMANNIAN MANIFOLD 343

λtJ are transformed to Nlf Uι and λιδi3 respectively, which λτ are eigenvalues of

(λtj). Then, since (7.4) becomes λiϋi=θ (ι=l, 2, •••, s), we can assume that Dι

(1=1, 2, •••, n) are linearly independent, Uh (h — n+1, •••, s) zero vectors, λι=0

(1=1, 2, •••, n) and λ\=l (h = n+l, •••, s). Consequently Ut (1=1, 2, •••, n) are

unit vectors which are mutually orthogonal and Nh (h = n+l, •••, s) are eigen-

vectors of F.

Now, denote by {elf e2, •••, en) the orthonormal basis of TP(M). If we put

Fi*ek=N'k, Fi*ei=NΊ (k, 1=1, 2, •••, n], then G(N'k, NΊ)=δkι. Therefore, we can

take the normals Nt (1=1, 2, •••, n) such as Fi*et=Ni.

Thus we obtain

T H E O R E M 7.2. // M is an anti-invariant submanifold of a locally product

Riemannian manifold M, for the normals Nt (1=1, 2, •••, n) corresponding to the

orthonormal basis {elf e2, •••, en} of TP(M), hι(X, Y)=0 (1=1, 2, •••, n).

On a Riemannian product manifold M=M1xM2, K. Yano and M. Kon proved
Theorem 7.1 and Theorem 7.2 [6].
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