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ON THE MINIMUM MODULUS OF A SUBHARMONIC OR
AN ALGEBROID FUNCTION OF p,.<1/2

By HipEHARU UEDA

0. Introduction. Let y(z) be an N-valued entire algebroid function defined
by an irreducible equation

€Y) F(z, y)=y"+Al2)y" '+ - + Ax(2)=0.
Denoting the j-th determination of y by y, we set

M(r, y)=max max |y,(2)|, m*(, y)=min max |y;(2)|.
1z|=7 15)sSN 12|=7 1SJsN

Let A be the system (1, A;, ---, Ay) and put
B<Z)=f§’§}fv |Ai2)|, M(r, B)= max B(z), m*(r, B)= [rr}in B(z).
J zi=r zi=1

Then Ozawa [12] showed that

@) Nlog* m*(r, y) _ logm*(r, B)+0(1)
log M(r, y) — log M(r, B)+0Q1) °

And he obtained the following theorem by making use of Kjellberg’s method [10].

THEOREM A. Let v(z) be an N-valued entire algebroid function of lower
order p, 0=4<1/2. Then
— N?%log m*(r, y)

3 [im

>
re log M(r, y) = OSTH:

We can improve his result by two different methods. The first method is
due to Baernstein [3]. He proved there

THEOREM B. Let f be a nonconstant entire function. Let B and 2 be num-
bers with 0<A<co, 0< =7, fA<m. Then either

(a) there exist arbitrarily large values of r for which the set of 6 satisfying
log|f(re*®)| >cos Balog M(r, f) contains an interval of length at least 23, or else

(b) lrm;lo r=*log M(r, f) exists, and is positive or oo.
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MINIMUM MODULUS OF SUBHARMONIC OR ALGEBROID FUNCTION 299

It turns out by a minute observation of his papers [2], [3] that Theorem B
still holds when we replace |f|, log|f(re*?)| and log M(r, /) by B(z), log B(re'?)
and log M(r, B), respectively. Hence choosing f=r and A=pg4¢ in Theorem B,
it follows from (2), Theorem B and the above remark that

_ *
T Nlog m*(r, y)

= .
re log M(r, y) = OST#

The second method is to make use of the notion of a local form of the
Phragmén-Lindelsf indicator. This notion was introduced by Edrei [7] and is
closely related to Pdlya peaks. Drasin and Shea [6] proved that Pélya peaks of
order p exist if and only if p&[ s, A+], p<co, where

_ . o TCr, A
ts= p(T)=Iinf {p : r,l%:rf‘lmePT(r, ) _0},

€

. T(Cr, A
Ax=2Ax(T)=sup {p :7110%° TfT(: A)) :oo}

It is easy to see that pe<p=<A=21s, where 1 and p are the order and the lower
order of T, respectively. Edrei defined a local indicator for a sequence {fn(2)}T
of analytic functions such that f,(z) is regular and single-valued in the annulus:
rm=<|z|<rl (m=1, 2, ---). However, his definition is naturally extended for a
sequence {B,(z)}T of subharmonic functions. Exact definition of the local indi-
cator for a sequence {B,(z)}T will be stated in §1. In §2, we shall state some
elementary facts on subharmonic functions defined in C. In §3 we shall prove
the following Theorem 1. The case when u(z)=log|f(z)|, and f(z) is entire, is
due to Edrei [7, Theorem 1]. In what follows, for a subharmonic function » in
C, we put

N(r, u)z%gjzu(re”’)dﬂ, M(r, u)———_ggﬁpﬂu(re”), m*(r, u)=_}£ﬁfﬂu(re‘0).

THEOREM 1. Let u(z) be a nonconstant subharmonic function in C and let
T(r, wy=N(r, u*). Assume that ps=px(T)<1. Let {rn}T be a sequence of Pdlya
peaks of ovder p (ux=p=2y, 0<p<l) of T(r, u). Then given ¢>0, 1t 15 possible

to find a bound s=s(¢)>0, independent of m, and such that, in O [rme™s, rme']
m=1
there exist arbitrarvily large values of r satisfying the inequality :

(5) m*(r, u)>(cos rp—e)M(r, u).

COROLLARY 1. Let y(z) be an N-valued entire algebroid function and have
pe<1l/2. Let {rn}T be a sequence of Pdlya peaks of order p of T(r, ¥) (ux=p=2x)
and let 0<p<1/2. Then given ¢>0, 1t is possible to find a bound s=s(e), inde-

pendent of m, and such that, in O [rme™*, rme®] there exist arbitrarily lavge values
m=1
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of r satisfying the inequality :
(6) Nlog m*(r, y)>(cos mp—¢)log M(r, ¥).

This ts also an improvement of Theorem A. However, since pe=p (Equality does
not always hold.), the second method 1s superior to the first one for this problem.

It is natural to consider an analogous problem to Theorem 1 for d-subharmonic
functions—differences of subharmonic functions. That is, for a J-subharmonic
function v(2)=u®(2)—u®(2) of p4x<1/2, what can we say about the relation
between m*(r, v)zwzignofﬂv(re“’) and T(r, v)=N(r, v)+N(r, u®)? In [1], Anderson

and Baernstein considered a more general problem for J-subharmonic functions.
The following theorem is a part of their consideration. Here we put for a d-
subharmonic function v=u®—y® in C

— N, u®)

o(co, v)zl—]rl—-m-o T(r, v)

THEOREM B. Let v(z2)=u®(2)—u®(z) be a o0-subharmonic function in C of
lower order p, 0=u<1/2. And assume that cos wu—1-+0(co, v)>0. Then it 1s
possible to find a positive number R and Pélya peak sequence {rn}T of order p
of T(r,v) satisfying the inequality :

MR m, v)>{ zpuLeos M;i;(;za(oo’ v)J —E}T(er, v).

Using the concept of a local indicator, we can prove the following Theorem

2. The case when v(z)=log|f(z)|=log|fi(z)| —log|f.(z)|, where f=f,/f, is mero-
morphic, is due to Edrei [7, Theorem 2]. (The proof of Theorem 2 will be

omitted.)

THEOREM 2. Let v(2)=u®(2)—u®(z) be a 0-subharmonic function in C and
have pye<1/2. Assume that v(z) satisfies the following conditions (i) and (ii):

@ N, uP)~T(r, v) (r—o0),
(ii) 0(oo, v)+cos wp—1=k>0, where ux=p=21s, 0<p<1/2.

And let {rn}3T be a sequence of Pdlya peaks of order p of T(r,v). Then gien
e>0, it 1s possible to find a bound s=s(e)>0, independent of m, and such that, in

Ol[rme‘s, rme'] there exist arbitrarily large values of v satisfying the inequality :
me

wp(k—e)

*
@ m*(r, v)> sinzp

T, v).

COROLLARY 2. Let y(z) be an N-valued algebroid function and have pyx<1/2.
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Assume that p satisfies the following three conditions;
(i) ps=p=2s (i) 0<p<1/2, (ili) (oo, y)+coswp—1=k>0.

Let {rn}7 be a sequence of Pdlya peaks of order p of T(r, y). Then gien >0,
it s possible to find a bound s=s(e)>0, independent of m, and such that n

Ol[rme's, rme’] there exist arbitrarily large values of v satisfying the inequality:
me

wo(k—e)

%
® log m*(r, y)> sinzp

T(r, ).

The derivation of Corollary 2 will be done in §4.

Finally, in §5, as another application of a local indicator, we shall show the
following theorem.

THEOREM 3. Let v=u®—u® be a 6-subharmonic function in C and have
px<1/2. Assume that N(r, u®)~T(r, v) (r—c0) and let p satisfy the following
three conditions:

(i) ux=p=2A,, (i) 0<p<1/2, (iii) cos wp—1+d(co, v)/(2—d(c0, v))=Fk,>0.
Further let {rn}T be a sequence of Pdlya peaks of order p of T(r, v), and let
mo(r, v)={N(r, v} /%,
Then gwen >0, 1t is possible to find a bound s=s(¢)>0, independent of m, and
such that in mg[rme's, rme’] theve exist arbitrarily large values of r satisfying

the inequality :

ks
V'1/2+(sin 2z p)/4rp

In particular, if v 1s subharmonic, then the assumption: N(r, u®)~T(r, v) can be
dropped.

9 m*(r, v)>{ —a}mz(r, V).

If d(co, v)=1, the estimate (9) is best possible. For example, consider a sub-
harmonic function :

wye

sin wp

v(z)= cos p@ .
For an N-valued algebroid function y(z), we introduce the following quantity :

Clr, )= [—Z%St:g {log*]y,(re“’)l}zdﬁ]m(yj: J-th determination of y).
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COROLLARY 3. Let y(2) be an N-valued algebroid function and have py<1/2.
And let p satisfy the following three conditions:

) m=p=h, () 0<p<1/2, (i) ks=cos rp—1+d(co, ¥)/(2—d(c0, 3)>0.

Further let {rn}T be a sequence of Pdlya peaks of ovder p of T(r, ). Then given
e>0, it is possible to find a bound s=s(e)>0, independent of m, and such that n

O [rme™%, rme’] there exist arbitrarily large values of v satisfying the inequality :
m=1

k2—€
\/ﬁ2+(sin2np)/47rp

Nlog m*(r, y)> C(r, 3).

1. Definition of the local indicator of order p of a sequence {B,(z)}T of
subharmonic functions.

(i) three infinite sequences of positive numbers {rn.} T, {r=} T, {rn}T such that
P <rm<rh <rmn. (m=1, 2, ---), and such that, as m—oo

Tm/tm —> 00,  ¥h/Tm—>00,

(i) a sequence {Bn(2)}%T such that B,(z) is subharmonic in the annulus:
rm <zl <rh.

(ifi) a strictly positive sequence {V(r,)}T and a quantity p (0<p<co). We
then define a sequence {V,(2)}T of analytic “comparison functions” :

_ 100 — T\ 00 Y
Vn(2)=Vi(r)e _V(rm)(rm)e Pl (z=rerf).
The symbol V., (r) always refers to the choice of 8=0.
(iv) Consider the intervals I,=[rn, rn] (m=1, 2, ---) as well as the intervals
I.(s)=[rne®, rne’] (m=1, 2, --, s=1, 2, ---), and let

A=Uln,  AS)=Ulnls) (=12, ).

m=1
(v) Let the sequence {Bn(2)}T be chosen so that

red
where B(z) stands for B,(z) in the annulus: r,<|z|<r%. (m=1, 2, ---). We set
for every real value of 4,

B(re?)

W (s':l, 2! ):

hy(6)= Iim
r‘g;lo?s)

and consider
h(8)= lsim hs(0).
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The real function A(@) is, by definition, the local indicator of order p of {B,(2)}7
at the peaks {r,}7. With this definition, Edrei’s Fundamental Lemma can be
extended straightforwardly for the sequence {Bn,(z)}T of subharmonic functions
(For the proof, cf. [7, pp. 159-1627).

Fundamental Lemma. Let h(8) be the local indicator of order p (0<p<co)
of {Bu(2)}T at the peaks {rm}%. Let 6., 0, be given such that 0<0,—0,<=x/p,
and let the constants a, b be such that the sinusord H(0)=a cos p0-+b sin pf
satisfies the conditions h(0.)<H(0,), h(0,)<H(0,). Then given ¢>0 and any
integer $>0, there exists a bound ro=ry(c, S, a, b, 61, 0,), independent of 6, such
that for re A(s), 6,<0=<0,, r=r,

B(re*")=(H(0)+¢)V(r).

From Fundamental Lemma, we immediately have h(8)<H(0) (0,<0<80,), that
is, the subtrigonometric character of A(6). It is known that many important pro-
perties of an indicator depend only on its subtrigonometric character (cf. [5]).
For example, we have the following fact (cf. [5, pp. 42-45])).

Let h(8) be the local indicator of order p of {Bn(2)}5. Assume that h(6)
F—oo, and let 0, 0,, 05 be such that 0<0,—0,<=z/p, 0<8,—0.<zm/p. Then

h(6,) cos pb, stn p6,
h(f:)  cos pl, sin pf, |=0.
h(6s) cos p0, sin pl,

In particular, 1f 0=60<x/p, then

h(—8)+h(8)
2

(10) = h(0) cos p0 .

2. Some elementary facts on subharmonic functons defined in C. Since we
are interested in results for large values of » in Theorem 1, we may assume that
u(z) is harmonic in a neighborhood of the orign. Further we may prove Theorem
1 for u(0)=0. In fact, assume that Theorem 1 is valid for an arbitrary subhar-
monic function v(z) of px<1/2 which is harmonic in a neighborhood of z=0 and
satisfles v(0)=0. Take an arbitrary subharmonic function u(z) of px<1/2 which
is harmonic in a neighborhood of z=0. Put v(z)=u(z)—u(0). By the Riesz repre-
sentation theorem there exists a positive Borel measure v and C such that for
[z| <R (0< R <o)

an o=h(@)+ | _ loglz—=Cldu(O

=n(a+{,_ logltlaw©+{_,log|1—F|dx®),
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where h(z) is harmonic in |z|<R. Let n(r)=v(|{|<r). Then Jensen’s formula
for subharmonic functions (cf. [9]) gives

(12) N, 0= o "rendo=|

T

0@ A=<T(r, V=M@, v),

which implies that “N(r, v) is bounded. < v(z) is harmonic in C.” Assume now
that T'(r, v) is bounded. Then v* is harmonic in C. Since v*=0, this shows that
v* is a constant. Therefore N(r, v) is bounded, so that v is harmonic in C. How-
ever, since v is bounded above, v must be a constant. Hence the nonconstancy
of v implies that T'(r, v), o and that M(r, v) oo (r—co). Thus there exists a
re=ro(e)>0 such that =7, implies

5

2

Further by the above assumption, there exists a sequence {¥,}T oo contained in

(13) (O (1—cos mp+5) <5 M(r, v).

mczl[rme“s, rme’] ({rn}s: a Pdlya peak sequence of order o of T(r,u); s=s(e): a

positive integer) satisfying the inequality :
&
* —_
(14) (L, )>(cos 7o ML, v).
It follows from (13) and (14) that

m*X, u)>(cos wp—e)MXn, u)  (Xn=r0).

In what follows we may assume that u(z) is harmonic in a neighborhood of 0
and satisfies #(0)=0.
Now, we put

(15) 1z, R>:S|c|<R log | 1— —Z—l O,

ualz, R):S 1og{1+ |dp(c>=gflog\1+§‘dn(t>.

Z
Il

Then wu,(z, R) and u,(z, R) are subharmonic in C and they satisfy

II<R

(16) m*(r, up)Em*r, u)=M(r, u)=M(r, us).
Next, let
a7 uy(z, R)=u(2)—ui(z, R).

Then, using (17), (11), and (15), we have

ue, Ry=h()+|,_logllldw® (21 <R).
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which shows that us;(z, R) is harmonic in |z| <R. Let f(z) be regular in |z| <R
such that Re f(z)=u,(z, R) and f(0)=0. Hence by a theorem of Carathéodory

2| z|

a8) @IS p

MR, uy)  (lz]<R).

Further, an estimate due to Kjellberg [10, p. 927 or Barry [4, p. 182] gives
19) MQR, u)<MQ2R, u).
Combining (18) and (19) we obtain

20) uz Il < MERL (12 =r<B).

3. Proof of Theorem 1. Since we are mainly interested in Corollary 1, we
shall prove only for the case of px<1/2, pse=p=2x and 0<p<1/2. Let {rn}T
be a sequence of Pdlya peaks of order p of T(r, u). And let {rn}s, {r}s, {ents
be the associated sequences with Pdlya peaks {rn}T of order o. Choose {V(rm)} T
as follows.

21 Virm)=A+en)Tmn, u)  (m=1,2, ).

This implies

(22) T(r, u)<V(r) red).
Put
@) Bu@=ude ra/w=] " log [Lt Z]an)  (rhsizisr),

and we consider the local indicator A(#) of order p of {Bn(2)}7 at the peaks
{rm}of-

(i) Existence of A(#): By definition we may show that

— B(r)
Put
rm
w0 (1=7)

naw (t)=

Then
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nw®) o, rS‘” AN R®)
0

Bu(r)= S?l"g (1 F)anso=r| (t+n t+r

”
7

e e

Since

N@)

rm
=)
N (T es(3) - (> 75),

N =

we easily obtain

T;n/4 N(t)
T;n (t+'l’)2

7’m

dt

= N+ A N+

(A: an absolute constant).
By (22) we have

N, ST, )<V (ely).
Thus for rel,

dt

Sr”m/«; V(t)
(t+7)?

FRETIE

< V(r>[1+A+§

>V(T)< )*V(r)g (1+x)2

xP
(I+x)? ] ’
This shows (24).

(ii) hA(0)=1: By definition we may prove

. B(rn)
@ W Vi)

From (21), (17), (16), (23) and (20) it follows that

=1.

TV%s"%:T(rm, UW=Mrm, W=M(rn, u)+Mrm, us)
< M(rm, )+ M(rm, u3>§B<rm>+4—M’—//f—”> .

=B(rn)+16M(r7,

’ﬂl



MINIMUM MODULUS OF SUBHARMONIC OR ALGEBROID FUNCTION 307

S B(rn)+48T @, u)

T < B8V (L2)
'm m

where we used the fact that M(r, u)<3T(2r, u) (cf. [9, Chapter 3]). Since 7, /7m
—(0 as m—co, (25) follows.

(iii) By (23) we have Bp(re*’)=Bn(re %) for 0=<6=r, which implies h(0)=
h(—80) (0£6<x). It follows from this, (10) and (ii) that

(26) h(8)=h(0) cos pf=cos pd>0.
(iv) By (17), (16), (20) and (22) we have for »r<r%/8
m*(r, w)zm*(r, u)+m*(r, us)

AMGrn/2, w) . _ N
——_r%//l r=m*(r, us)—48V(ri, pT)

27) Zm*(r, Uy)—

=m*(r, u)—48(—-) V).

r

In the same way we obtain

(28) M, WEMG, w)+48(—-) V) (r=ri/8).

m

(v) For given >0 (small enough), choose s (a positive integer) such that
hy(zw)>h(z)—7. By the definition of h4(x), there exists a sequence {X,}3( ")

CWQIEMe'S: rme’] satisfying B(—X,)>(hy(z)—n1)V(X)>(h(z)—27)V(X,). Hence by
(27) and (26)

m*Un, w)>(R()=3n)VAn)  (n=n«y, s))
(29)
>(h(0) cos rp—379) V(An)=(cos wp—3n) V(Xz) .

We may assume that cos zp—37>0. On the other hand, by the definition of A(0)
and (28)

(30 M, w)<(hO)+9)VH)+7V(XL) (n=znyn, s)).
It follows from (29) and (30) that

m*(xn) u) h(ﬂ')—gﬂ
ML, w) ~ h(0)F27

>cosmp—e.

Proof of Corollary 1. Let y(z) be an N-valued entire algebroid function
defined by (1). And let A be the system (1, A,, -+, Ay). Then Valiron [13]
proved that
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61y T(r, A)=NT(r, y)+0(1).

Next, put u(z)=log B(z)= max log| A z)|. Evidently
Js

(32) T(r, A)=N(r, ut)=T(r, u).

From (31) and (32) we deduce that {r,}% is a Pdlya peak sequence of order p of
T(r, u)(p<1/2). Hence Theorem 1 implies the existence of a positive integer
=s(e) and a sequence {X,}% oo contained in A(s) such that

log m*(X,, B)>(cos rp—e)log M(X,, B)  (n=1, 2, --).

Combining this and (2), we have the desired result.

4. Proof of Carollary 2. Let y(z) be an N-valued algebroid function defined
by the irreducible equation

F(z, y)=Ay2)yN+ - +Ax(2)=0.
And let A=(A,, -, Ay). Then
min max log|A;(z)/Al(z)| =N log*tm*(r, y)+0(1).

1z|=7 15J=N
For the proof, cf. [12, p. 167]. Since (31) holds also in this case, we have

log* m*(r, ») _ f?'”l max, log*| A;(2)/ Au(2)| +0(1)

T(r,») — T(r, A)+0()

Now, let v=u®—u®, where u“)(z)zor;la}fv log| A,(2)|, u®(2)=log| A«(z)|. Then
Js
it is clear that

(33)

T(r, v)=N(r, v)+ N, u®)=N(r, v)+N(r, u®)
(34)
=N(r, u)=T(r, A)=NT(r, v)+0Q1),

and

N, u®) = N, 0, Ay) _— Nir, o, )

T, o) A% T(r, A) BTG, ) b o)

(35) 1—d(co, v)=Im
We deduce from (34) that {r,}7 is a sequence of Pdlya peaks of order p of
T(r, v). Further note that the condition (ii) in Theorem 2 follows from (35) and
the condition (iii). Hence Theorem 2 guarantees the existence of a positive integer
s=s(e) and a sequence {X,}TCA(s) tending to oo such that

min max log | A (2)/ Ax(2)] >”—‘0(@—)

lzl=r 1=57s S o

T, A).

Combinig this and (33) we have the desired result.
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5. Proof of Theorem 3. We may assume that ©* and ¥® are harmonic in
a neighborhood of 0 and that u®(0)=u®(0)=0. In fact, assume that Theorem 3
holds for the set & of such J-subharmonic functions. Take an arbitrary noncon-
stant d-subharmonic function v=u®—u® satisfying the assumption of Theorem
3. Since we are interested in results for large values of », we may assume that
u® and u‘® are harmonic in a neighborhood of 0. Next put #®(z2)=u™(z)
—u®D(0), #P@2)=u®(z)—u®(0), and =04 —4®. Since nonconstancy of v im-
plies that T'(r, v) oo as r—oco (For the proof, cf. § 2), we easily have

(36) T(r, )=T(@, H+0D)=~10A+oI)NT(r, )  (r—o0).

From (36), if {r»}7 is a sequence of Pdlya peaks of order p of T(r, v), it is also
a Pdlya peak sequence of order p of T(r, #). Further evidently (36) implies that
“All the assumptions of Theorem 3 are satisfied for v(z). & All the assumptions
of Theorem 3 are satisfied for #(z).” Hence by assumption Theorem 3 guarantees
the existence of a positive integer s=s(¢)>0 and a sequence {X,}TC A(s) tending
to co such that

ko—e/2

* 7 —_ 2 - e
(37) m (Xn; 1})> '\/1/2+Sll'l 271_[0/471_‘0 mz(Xn, U) n 1, 2, )
Next, it is clear that
(38) m*Xn, V)=m* Uy, D)+u(0)—u*(0),

and
39) my(r, V)=N(r, |v|)=N(r, v*)+N@r, v)=2T(r, v)—N(r, u?)—N(r, u®).

It follows from (39) and d(co, v)>0 that my(r, v)—co as r—oco. Since =
v—(UP0)—u®0))=v—c, we have

mi(r, O)=mi(r, v—c)=mi(r, v)+c*—2|c|my(r, v)={my(r, v)—|[c|}?,
so that
(40) my(r, Dzmar, v)—lc|  (r=rdlcl)).
Now, noting that m(r, v)—oo as r—oo, there exists a ;>0 such that »=#, implies

&

N ky—e/2 )
4D el 7 e Sxp/dnp )< 5T Srpjiny T V)

Combining (37), (38), (40) and (41) we deduce

kz—‘e
V1/2+sin2rxp/drp

From now on, we assume that ve&. Let v be the Riesz mass associated with

mo(Xn, V) (n=n,).

M*An, v)>
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u? (5=1, 2), and let n@)=vP(|{|<t). Further let {ri}s, ¥4}, {en}T be the
associated sequences with {r,}7. Choose V(rn)=14¢en)T(#n, v), which implies

(42) T(r, v)< V(r) (red).
Put
L z
Bn(2)=u(z, rii/H+uf(z, r; /4)—50 log|1—|—7\d{n<1>(t)+n<2>(t)}.
Now, we consider the local indicator h(0) of order p of {Bn(2)}7 at the peaks

{rm}3. As in the proof of Theorem 1, we can easily see the existence of h(@).
Here we shall show A(0)=1. By our assumptions, as m—co

D) Ty, DN, 1P)= N, 18N, 18+ 12)Z B
Hence by the definition of A(0)
. Ba(rm)
h(O)g}Ll_gxo—V(rm) =1.
Next, using (17) we have
(43) (2)=uP@)—u®@)=ul(2)—uB.(2)+uh(z2)—uB(2)

Zuln(@)—uPn(2)+Wa(2).

Since W,(2) is harmonic in |z|<rZ%/4=R, and W,(0)=0, it is the real part of]a
regular function f,(z) which may be taken to satisfy f,(0)=0. Let

(44) fal2)= X CuRw)z*  (|2| <Rn).
Then
n(Rm)r"—%S” w(re e d0(r < R, n21).
=~ "orenemtag——{Tupreen0a0+ L[ ugreneran
*r T - _1_ _§_ n 1 1 L n 1
S v(re 9)@ 0d0+ngmsr(7’> dve )(C)+gSr<lélsRm<C) dvt )(C)
1o By " e
e F) 0= L (E) 0. et
Evidently

l;lr—gzv(re“’)e-m"da| <2N(r, [v))Z4T(r, v)—2N(r, u®)—2N(r, u™®),
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) S]Cls(é)n du(l)(c)‘ §S:dn(1)(t)_—:n(l)(r) B etc.

-
Hence by (45) we have

AT(Rm, v) I nP(Rp)+n(Rn)

|Cu(Rm) = R

(46)
<4T(21‘?m, v) . 2TQ2R,, v)
= R2 n-R2-log 2

Substituting (46) into (44), we obtain for r=|z| <Rn./2

W2 =1 fn@| = B |Ca(Ru) |7

7 AR v 3 (7= 2T R oy E(5)
_ r/Rn L _r/Ra
=AT@Ru, V)1 T 2T QR Vo1

TRy, v)
< R, (8+ log 2 )

From (43), (16), (47) and (42), we deduce that for any >0 and any integer
s>0, there exists a mo=m(y, s)>0 such that r&l,(s), m=m, imply

(48) m*(r, V)Z U (—r)—uZn(r)—n V(r).

Now, for given >0, choose an integer s>0 such that A z)>h(z)—%. By the
definition of h,(x) there exists a sequence {X,}TCA(s) tending to oo such that

(49) B(—2)> (ho(m)—0) V) > (h(7)—29) V(An) > (h(0)cos wp—29) V(Xa) .
We may suppose that cos 7p—25>0. By (48) and (49) we have

(50) m*Un, v)> (A(w)—=37) V) — {ufin(—Xn) + uffn(Xa)}

Since N(r, u)~T(r, v) (r—o0), we obtain for any ¢>0,

(51) N(r, u@n)~N(r, u®)<(1—=0(c0, v)+e)N(r, u®)  (rel(s), r=rye)).

As we have shown in the proof of Theorem 1,

NG, uin)
(t+7)?

Using this and (51), we easily have for r&l,(s), m>mqy, s)

ugn(r)=r|" di.
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uPn(r)<(1—=0d(co, VYU (r)+9 V).

Thus for rI,(s), m>myy, s)

6D P uSa S S(G D Yulha(r) )
2—20(c0
(st ROV,

where 7/, »”(>0) satisfy 5, ”—0 as »—0. Substituting (52) into (50),

2—20(c0, v)

(53) m*Xn, U)>{h(”)_377h(0)-4 2—0(c0, v)

h(0)— 77”}1(0)} V(L) .

We may suppose that the right hand side of (53) is positive. On the other hand,
by (43) and (47),

ML, V)=, U B+ o W8

54) 125 W e e )= a0
TJo

SmdUn, U —uBn)+ 9 (VUn))+2me(Xn, uitn—uiln)nVds).
As Miles and Shea [11] proved,
(55) Me(Xny i —uPn) SmeXn, usin+uin
Here we note that for |z|=

0< U (2)+uPn(2) <(H(O)+e) VL),

where
Hi)— O sin(n—sti?rifr-;h(ﬂ) Sin0o 0 _pen.
Hence
Moy Ut <2>><V<xn>{ ~{Ho)+eran}”
2 9 sm 27'L'p To 1/2
NIRRT g a ) hOn (T —cos mp)
__|_77/// ’
sin zp

where 5”—0 as ¢e—0. Combining (53)—(56), we obtain
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m*An, v)
mZ(Xny U)

&7

(h(n>~-22}%(z(o‘jj’v’;> h(O)—37h(0)—7"h(0))sin 7p

> - p 172
R T e ey we)

The function
_ 2—20(c0, v)
2—0(o0, v)

{(H- 2‘2)<%‘— Sizj‘:p )—f— f( si;;p —Cos ﬁp)}

t

1/2

increases as ¢ increases, and therefore, in view of A(z)>h(0)cos xp, the right
hand side of (57) is not smaller than

cos g 272000, )
0T 950, v)
V1/2Fsin2zpfdnp

Proof of Corollary 3. We make use of some estimates stated in §4. As
Valiron [13] showed

N
2 log*| y;| < max log|A;/A.l+0().
J=1 0sJsN

Hence

ﬁ; (re“’>|}~2d0](1+o(1>) :

(58) C¥r, y)é[-l—gfﬂ{ max logl

2w J)-=los)=n

We apply Theorem 3 to u“’=orsna>]3 log|A,|, u?=log|A,|. Then there exist an
Js

integer s=s(¢)>0 and a sequence {X,}TCA(s) tending to oo such that

(59) { min max logIAj/Aol}‘2

12I=1n 1S)SN

k2 _ 2[i + A] " 2 ]
>{«/1/2+sin S7p/dnp e/2) zns_x{o?,i% log| A, e )|fae).
Combining (58), (59) and an estimate stated in §4, we have

ko
T _e)cocn, ).

Nlog m*(X,, y)>(
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