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ON MARDEN'S UNIVERSAL CONSTANT OF

FUCHSIAN GROUPS

BY AKIRA YAMADA

Let G be a Fuchsian group operating on the upper half plane H. For
and r>0, let Δ(z, r) be the open disc of radius r and center z. Define Gzr to be
the subgroup of G generated by

I(z, r)={g<=G; d(z, gz)<2r} = {g^G A(z, r)r\Δ(gz, r)Φφ},

where d(-, •) is the hyperbolic distance induced by the Poincare metric \dz\/lmz.
In this paper all references to distance, lines, discs, etc., will be with respect

to the hyperbolic geometry unless otherwise stated.
Marden [6] proved the following :

THEOREM. There is a constant r > 0 such that, for any Fuchsian group G and
z^H, the subgroup Gz>r is either cyclic or infinite dihedral (i.e. is generated by
two elliptic transformations of order 2).

Let μ(z, G) be the supremum of the set of constants r satisfying the conclu-
sion of the Theorem. In fact, this is the maximum by discreteness. Set

μ(G)= inf μ(z, G) and μ=inf μ(G).
zξΞH G

μ will be called Marden's constant in this paper. The purpose of the paper is to
determine Marden's constant explicitly. Our result is the following:

THEOREM 1. For any Fuchsian group G we have

— = 0 . 1 3 1 4 6 7 •••

with equality occurring precisely when G is the (2, 3, 7) triangle group.

If we restrict ourselves to the case where G is torsion-free, then much better
bound is obtained.

THEOREM 2. For any torsion-free Fuchsian group G we have
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)=0.88137 •••.

Equality occurs iff G satisfies one of the following conditions:
1. G is the (oo, oo, oo) triangle group.
2. G has signature (1 oo) and is generated by two hyperbolic transformations

with the same translation length 2sinh~1l.

Marden deduced his theorem from topological argument and a result of
Purzitsky [9] on the classification of two-generator Fuchsian groups. On the
other hand we give here an analytic proof of Theorem 1, which results from
elementary but tedious calculations depending on repeated applications of j0rgensen's
inequality [4]. Theorem 2 is obtained from straightforward applications of the
results of Purzitsky CIO] and Fricke-Klein [2J. For the convenience of the reader,
however, we include the proof.

1. Proof of Theorem 1.

1.1. For technical reasons, the proof will be divided into several cases accord-
ing to the types of elements of G (i.e. elliptic, parabolic and hyperbolic). We
begin by considering the parabolic case. The following identity will be useful:

sinh—d{z, z')— Λ-=7-, z=x+iy, z'=x'+iy'.

L E M M A 1. Let A<ΞI(Z, r) be parabolic and assume that r ^ l n V 2 ~ = 0.346 •••.

Then Gzr is a parabolic cyclic group.

Proof. It is no loss of generality to assume that A—( .) and that G^, the

stabilizer at oo, is generated by A. Then d(z, Az)<ln2 implies I m z > V 2 , so
that A(z, r)dU— {κ;;Imiί;>l}. But it is well-known that U is precisely invariant
under G^:

gU—U for every g in GTO, and

gUrλU=φ for every g in G\Gc*.

Consequently, Gz>r—GO0 as desired.

1.2. For AZΞG and β e G , set

D(A, B)=mί Max{sinh^-d<>, Az\ sinh—dfe Bz)\.

Our task is to find lower bounds of D(A, B) by using discreteness of G. Quantita-
tive information of discrete groups is given by
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Jφrgensen's inequality [4] : Let (A, B) be the group generated by two Mδbius
transformations A and B. If (A, B} is a non-elementary discrete group, then

| t r 2 ^ - 4 | + | t r [ Λ β ] - 2 | ^ l (1.2.1)

where [_A, B2=ZABA~1B~1, the commutator of A and B, and tr A denotes the trace
of a matrix in SL(2, C) representing A.

Let A, B<^G be hyperbolic with distinct axes. By conjugation we may as-
sume that the fixed points of A (resp. B) are 0 and oo (resp. 1 and aΦl). If
J0rgensen's inequality is applied to A and B, it follows easily that

tr [ Λ J B ] - 2 = 1 6 a sinh2-j-sinh2^ (1.2.2)

and

4sinh24(l+ /'"'-sinh'g-W , (1.2.3)
Z \ (a—I) I /

where / and m are the translation lengths of A and B respectively. Interchang-
ing A with By if necessary, we may assume that /gm in what follows.

1.2.1. Assume that the axes of A and B intersect simply. Then it is clear
that D(A, £)=sinh m/2. Since a is negative, (1.2.3) implies

Thus we obtain

LEMMA 2. // A, B^G are hyperbolic with their axes intersecting simply,
then we have

= 0 . 4 5 5 •

1.2.2. Assume that the axes of A and B do not intersect. In this case a is
positive, since aφO always by the fact that G is Fuchsian. By magnification
we can assume that 0 < α < l . An easy calculation shows that the (Euclidian) line
{w d(w, Aw)—m) intersects (or is tangent to) the axis of B iff

. um . 1 + a . , / ,1 α ΛN

smh — ^ — s m h — . (1.2.4)
2 1 — a 2

Now we divide the proof into two cases. If (1.2.4) is valid, then (1.2.3) gives

( W \ 2 771

4sinh2y) +(l-t f) 2 4sinh 2 y-( l-α) 2 ^0

and therefore D(A, B)>l/2 since D(A, £)=sinh m/2. On the other hand if (1.2.4)
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does not hold, one verifies that D(A, B) is given by D(A, B)—sinht/2 where t
(>m) is determined by requiring that the line {w d(w, Aw)~t} is tangent to the
circle {w d(w, Bw)=t}. After easy calculations we find

4αsinh2y-[(l+α)sinhy-(l-α:)sinh-|-]2

2(1 - α)(l+α) ~ (1 - α)2(sinh y/sinh ~+sinh y/sinh y )

Thus,

sinh-f sinh ~ , (1.2.5)
Δ Δ

τ sinhf sinh
1 Oί Δ Δ

while, by /gm, (1.2.3) implies

16a(— sinh-r-sinh-r-) +4(1—a)(— s inh—sinh—)^1.
\ 1 — Oί Z Δ ' \ 1 — at Δ Δ '

Hence it follows that D^l/2. Consequently, we have proved

LEMMA 3. Let A, B<=G be hyperbolic and assume that their axes do not
intersect. Then we have

B)^

1.3. Let A(ΞG be hyperbolic and let Bn<ΞG be elliptic of order n (n=2, 3, •••).
In the case of n—2, we assume that the fixed points of B2 do not lie on the axis
of A. J0rgensen's inequality is applicable to A and Bn (n=2, 3, •••), since 04, Bny
is non-elementary. By conjugation we can assume that A and Bn have the fol-
lowing forms:

cosh— e" csinh— \ /cos— —sin—^
2 2 in n

1 I Γ ^ ^
e csinh— cosh — / \ sin— cos—

2 2 / \ n n,
Since d(z, Bk

nz)^d(z, Bnz) (l^k<n), this is legitimate. From tr ^ = 2 cosh 1/2
and tr[\4, 5]—2=(tr2^4—4)cosh2<: sin2 π/n, j0rgensen's inequality yields

4 s i n h 2 — ( l + c o s h 2 c s i n 2 — ) ^ 1 . (1.3.1)
Δ \ ?2 /

It is easy to see that the circle {w d(iί;, Bnw)—l} intersects the axis of A iff
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sinh - r ̂  sinh c sin — . (1.3.2)
Δ n

Again, we devide the proof into two cases.

1.3.1. If (1.3.2) is satisfied, then it is clear that D(A, J3n)=sinh 1/2 and

cosh2 c sin2 — < 1+sinh2 lr.
n 2

From (1.3.1) we obtain

D(A, B n ) ^ ^ 5 - 2 =0.343-.

1.3.2. If (1.3.2) does not hold, then one verifies that

where sn is determined by requiring that the circle {w d(w, Aw)—sn) is tangent
to the circle {w d(w, Bnw)=sn}. We calculate sn and obtain

cosh2 c sinh2-9-

(sin— + ec s i n h y ) ( s i n ^ - e " c s inhy

From sin π/n^ύn π/2, it is easily seen that we need only to consider the case
n=2 under the condition that

/
4 sinh2 "2

Thus,

. U2s2 cosh 2 c
smh2— =2 sinh-2-2-+2sinhcsi

cosh2 c
= 3+4 cosh2 c + 4 V c o s h 4 c - l = " 9 " '

where in the last inequality the minimum 1/9 is attained when cosh2c=5/3.
Therefore we have proved

LEMMA 4. Let A<=G be hyperbolic and let B<ΞG be elliptic of order n (n=
2, 3, •••)> where, in the case of n=2, we assume that the fixed points of B do not
lie on the axis of A. Then we have D(A, 5)^1/3.

1.4. Lemma 4 gives us information about the distribution of fixed points of
elliptic transformations of order 2 in G as follows (c. f. Corollary 1 of [6]).
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LEMMA 5. // r<0.22, then all the fixed points of elliptic transformations of
order 2 belonging to I(z, r) are colinear.

Proof. Let A, B and Ce/Csr, r) be elliptic of order 2 with distinct fixed
points a, b and c in H respectively. Observe that AB is hyperbolic with the axis
connecting a with b. The inequality

d{z, ABz)^d{z, Az)+d(z, Bz)<4r

implies that AB^I(z, 2r). Similarly, AC(ΞI(Z, 2r). By Lemma 2 their axes must
be the same, so that a, b and c are colinear.

1.5. We now come to the last and most important case where A<ΞG and
B(ΞG are elliptic of order m and n, 2^m^n, n^>3, respectively. For the esti-
mate of D(A, B), it is no loss of generality to assume that A and B are primi-
tive, i.e. the angles of rotation are 2π/m, 2π/n resp.. Thus, we set

A=r°m, B=rc

n, c > 0 , (1.5.1)

where

π , . π
c o s — —e c s m —

n n

, . π π
ec sm — cos —

n n

rc

n is elliptic of order n with a fixed point at ie~c.
A constant t is determined uniquely by requiring that the circle {w d(w, Aw)

=t} is tangent to the circle {w d(w, Bw)=t}. Then it is seen that D(A, J5)=
sinhί/2 and calculations give

sinh 2csin 2—sin 2—
D(A,B) = -

sin2— + s in 2 —+2 cosh c sin — sin —

Observe that D(A, B) is an increasing function of c, the hyperbolic distance be-
tween the fixed points of A and B. To obtain a lower bound of D, we therefore
need an estimate of c in terms of the orders m and n. Matelski [7] has found
the lower bound of c valid for any orders, which, however, is useless for our
purpose. The desired bound can be obtained if we use the following Knapp's
theorem.

LEMMA 6 (Knapp [5]). Let A, B be as in (1.5.1) and assume that {A, By is
discrete. If
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1+cos^cosf
cosh c < — , (1.5.2)

s i n ^ s i n ^
m n

then (A, By is a triangle group of Schwarz and AB zs elliptic with tr (AB)=
—2cos;', where the pairs of T=(m, n, γ) and the signature S of {A, B} are
given by one of the following:

1) (Γ;S)=(m, n, π/k; m, n, k), l/m+l/n+l/k<l,

2) ( Γ ; S ) = ( n , n, 2π/k 2, n, k), l/n+l/k<l/2, 2)( k,

3) (T S)=(2, n, 2ττ/n 2, 3, n), n^7, 2 X n,

4) (T S)=(3, n, 3ττ/n 2, 3, n), n ^ 7 , 3 / n,

5) (T S)=(n, n, 4ττ/n 2, 3, n), n^7, 2 / n,

6) (T;S)=(3, 7, 2ττ/7; 2,3,7).

Note that, if the inequality (1.5.2) does not hold, we have

by monotonicity and n ^ 3 . On the other hand, using the identity

. . π . π π π
cosγ= cosh c s i n - s i n cos—cos—,

m n m n

we have

fcosr+cos—cos—V-sin2--sin2 —
V ' m nJ m n

Observe that D is monotone decreasing with respect to y, 1/m, 1/n. Hence, to find
the minimum of D(A, B), Lemma 6 shows that we are only left with the follow-
ing ten cases:

T=(2, 3, ττ/7), (2, 4, π/5), (2, 5, τr/4), (2, 7, τr/3), (3, 3, 2τr/7),

(3, 4, τr/3), (3, 7, τr/2), (4, 4, 2τr/5), (4, 5, π/2), (7, 7, 2τr/3).

By direct calculations, we have

LEMMA 7. Let A^G and B^G be elliptic of order m and n respectively with
distinct fixed points. Assume that 2^m^n and n^3. Then we have
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/4cos2f- 3
D(A, B)^\ =0.13184-

8C0Sy+7

with equality occunng precisely when (m, n)={2, 3) and {A, B} is the (2, 3, 7)
triangle group.

1.6. Now we are ready to prove Theorem 1. Set

4 cos2 ~ - 3
-

8 COSy+7

and consider I{z, μ) for z^H. By Lemma 1 we may assume that I(z, μ) does
not contain any parabolic transformation. If there is a hyperbolic element A<^
I(z, μ), then all the axes of hyperbolic elements I(z, μ) coincide by Lemma 2 and
Lemma 3. Moreover, by Lemma 4 we see that there is no elliptic element of
order ^ 3 in I(z, μ) and that all the fixed points of elliptic of order 2, if these
exist, lie on the axis of A. This implies that Gz>μ is either cyclic or infinite
dihedral. In fact, if P, Q<=I(z, μ) are elliptic elements of order 2, then PQ is
hyperbolic with the same axis as A.

There remains to consider the case where I(z, μ) consists only of elliptic
transformations. If I(z, μ) contains and elliptic element of order ^ 3 , then Lemma
7 shows that Gz>μ is cyclic. On the other hand, if I(z, μ) contains an elliptic
element of order 2, Lemma 5 shows that Gz-μ is either cyclic or dihedral by a
similar reasoning as above. From Lemma 7 it is seen that the constant μ is best
possible. Since the (2, 3, 7)-group is a maximal Fuchsian group (see [3]), G itself
is the (2, 3, 7)-grouρ if the subgroup (A, B} is. This completes the proof of
Theorem 1.

2. Proof of Theorem 2.

2.1. Let (A, By be a doubly generated non-elementary subgroup of a torsion-
free Fuchsian group G. Then Bers area theorem [1] gives

where g is the genus of H/(A, B} and b is the number of its boundary com-
ponents. Consequently, the possible signatures of {A, B) are the following:

(O oo, co, co), (O oo, oo l), (0 oo 2), (0 - 3), (1 oo), (1 - 1).

In [10] Purzitsky gave necessary and sufficient conditions for <̂ 4, B} to be a
Fuchsian group which is free. His results immediately yield inequalities which
enable us to estimate D(A, B) in torsion-free case.
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LEMMA 8. Assume that {A, B} is a torsion-free non-elementary Fuchsian
group. Then:

1) // A and B are hyperbolic with intersecting axes, we have

tr[Λ £]rg-2.

Equality occurs iff the signature of {A, B} is (1 oo).
2) Otherwise, we have

tr[Λ J3]^18.

Equality occurs iff (A, B) is the (oo, oo, oo) triangle group.

Proof. For the proof of Case 1, the reader is referred to Theorem 8 in [10]
of Purzitsky. We note that his proof remains valid under our hypothesis that
(A, B} is torsion-free. Also, Case 2 is proved from his Theorems 2, 4, and 7 in
[10] with the following additional observation. A Nielsen transformation is the
replacement of A and B by new generators AnB and A for some n^Z. In fact,
he showed that, if (A, By is torsion-free and Fuchsian, there is a pair of genera-
tors Af and B' obtained from repeated applications of Nielsen transformations to
A and B such that

trA'^2, trB'^2 and trA'B'^-2. (2.1.1)

By mathematical induction one verifies easily that [_Af, B'~] is conjugate to either
[_A, B~] or [_A, BT1, and so that

trD4,5]=trD4', B'l. (2.1.2)

By Fricke's formula (see [2], p. 338)

tr [_A, B]=tr2A+tτ2B+tr2AB—tr AtrBtr AB-2,

it is seen from (2.1.1) and (2.1.2) that

with equality occurring precisely when tr A'—tr B' ——tr AfBf—2. Hence tr \_A, JB]
=18 only if (A, By=(Af, Bfy has signature (0; oo, oo, oo). On the other hand,
the sufficiency follows from Nielsen's theorem on automorphisms of free groups
[8] and the reasoning above.

2.2. Let A and B be parabolic with distinct fixed points. By conjugation it
is no loss of generality to assume that

1\ /I 0\
B=[ ), λ>0.

We find easily that
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D(A, B)=VT/2 and t r [ Λ β ] = 2 + ^ 2 .

By Lemma 8 we have

LEMMA 9. Let A<BG and B^G be parabolic with distinct fixed points. Then
we have D(A, B)^l with equality occurring iff (A, B} is the (oo, oo, co) triangle
group,

2.3. Let A be parabolic and let B be hyperbolic. We may assume that A
and B have the forms

A
A=[

\o 1/
B=

cosh—

sinh —

s i n h {
coshj-

where / is the translation length of B. Since tr [A, Z2]=2+Λ2sinh2//2, Lemma
8 implies

^^4. (2.3.1)
Z

Now we shall treat separately the following two cases.

2.3.1. Assume that the line {w d(w, Aw)=ί} intersects the axis of B. Then
it is easy to see that

D(A, B)=sinh-jr and sinh4"^4

From (2.3.1) we obtain D{A, β)^V"2".

2.3.2. Contrarily, assume that the line does not intersect the axis of B. Then
an easy calculation gives

y λ

D{A, B) = 7— . -ψ > ΎJλ s inh4
2^1 sinhy - s i n h 2 y L v z

From (2.3.1) we obtain D(A, B)>1. Consequently, we have proved

LEMMA 10. Let A^G be parabolic and let B^G be hyperbolic. Then we
have D(A, B)>1.

2.4. Let i e G and J 5 G G be hyperbolic. As in section 1.2., we shall devide
the proof into two cases according to the location of the axes. The results and
notations in section 1.2 will be used freely in this section.
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2.4.1. Assume that the axes of A and B intersect simply. Set

x=tr A, y=tr B and z=tr AB.

Then we know from Lemma 8 that

x2+y2+z2-xyz-2=tr [Λ, £]g-2, (2.4.1)

where x=2cosh//2 and .y=2 cosh m/2. Now (2.4.1) gives

which implies

Max{x2, y2}^8.

Since D(A, £)=Max{sinh 1/2, sinhra/2}, we have

Ό\A, ^ ) = 4-[Max{x2, ;y 2}-4]^l

with equality occurring precisely when (A, B} has signature (1 oo) and l—m—
2sinh-1l.

2.4.2. Assume that the axes of A and B do not intersect. From Lemma 8
and (1.2.2) we find

a 4 ^ (2.4.2)
(1—α)2 2 2 =

If the inequality (1.2.4) holds, then we have D(A, B)=$'mh m/2, and therefore

a

On the other hand, if (1.2.4) does not hold, then (1.2.5) and (2.4.2) show

1
= a

Thus we have proved

LEMMA 11. Let A^G and B^G be hyperbolic with distinct axes. Then we
have D(A, B)^l. Equality occurs iff (A, B) has signature (1 oo) and l=m=
2sinh"1l. Here I and m are the translation lengths of A and B respectively.

2.5. Now we are ready to prove Theorem 2. In view of Lemmas 9-11, it is
clear that there remains only to prove the equality statement. For torsion-free
Fuchsian groups, groups of signatures (0 oo, oo, oo) and (1 oo) are maximal with
respect to inclusion relation. In fact, the area of a fundamental region of these
groups is 2π, which is the minimum among the family of torsion-free Fuchsian
groups. Thus the proof of Theorem 2 is completed.
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Remark. For surface groups (i. e. groups with compact quotient consisting

of hyperbolic transformations alone), we clearly have ^(G)>sinh"1l. Again, this

inequality is best possible, which is seen by applying Klein's combination theorem

to deform the groups with signature (0 oo, oo, oo) or (1 oo).
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