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Summary

Historically we have treated many multivariate discrete data which did not
have an unimodal probability density. We consider that we need to develope a
new method analyzing these data. It is not so easy to make convenient tables
of these multivariate discrete distributions. The treat of data is different every
underlying distributions. It is important that it is better to develop the structure
of discrete data and to use the personal computer which have recently been near
ourself than before to get the statistical utilizable levels and regions than to wait
the finish of general theory and its statistical tables. And under some hypothesis
of structure we can simulate the data by computer and may be able todecide
the hypotheses is true or not. It is a dynamic system of statistical decision
theory.

In this paper we attempt to generalize the multivariate Poisson distribution
and to investigate the detail of structure. Our purpose is to keep some of the
property of Poisson distribution and to enlarge the class of Poisson distribution
which we can treat.

Notations and Definitions

n positive integer, dimension.
N sample size.
X=(Xι, X2, •••, Xn) n dimensional random vector.

x=(xlf x2, •••, xn) observation of X.

z=(i'i, i2, •••, in) n dimensional vector with components of non-negative
integers. We also use j and k.

p(x, λ) usual univariate Poisson density with parameter λ.
s=(si, s2, •••, sn) n dimensional vector.
B(l, pi) multivariate Bernoulli distribution.

B(N, pi) multivariate binomial distribution.
P(λτ) multivariate Poisson distribution.
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Main Results

In this main results we attempt systematically to develop and represent a gen-
eralized multivariate Poisson distribution and to discuss the structure of the dis-
tribution.

1. GENERALIZED MULTIVARIATE BERNOULLI DISTRIBUTION GB(1, pt).
An usual multivariate Bernoulli distribution is defined by P(X=j)—pj where j

is a n dimensional vector with components 0 or 1 and p3 satisfies pj^O and
ΣJΛJ ^ I TO generalize this Bernoulli distribution we have to replace the vector
j with components 0 or 1 by the vector i with components of 0, 1,2, •••.
Generalized multivariate Bernoulli distribution will be defined by P(X—i)=pi
where pi^O and Σ ι ί t = l . We shall denote this distribution as GB(1, pi).

The moment generating function (m. g. f.) is given by

The mean vector E(X) is given by

^Σdjpi 0=1,2, ..., n),

or

We can denote this mean vector as ̂ Σaipί, then

The covariance matrix of GB(1, pt) is given by

Cov (Xj, Xk)=ΣtijikPi-(ΣiiJPi)(ΣiikPi),

Var ( ^ ) = Σ i i / ί i - ( Σ i i , ί O 2 .

The marginal distribution of this generalized multivariate Bernoulli distribution
is also a generalized degenerated multivariated Bernoulli distribution.

Note. Σt rneans the sum of all terms of varying i.

2. GENERALIZED MULTIVARIATE BINOMIAL DISTRIBUTION GB(iV, pi).
Generalized multivariate binomial distribution will be defined by convolution

of N independent observations of GB(1, px). The probability density is given by

integer>
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where k is a n dimensional vector with nonnegative components of integers and
the notation Σ means to sum up all terms very ing integer α ^ O with the condi-
tions denoted after at. The m. g. f. of this distribution is given by

The marginal distribution of this distribution is also a degenerated generalized
multivariate binomial distribution.

The mean values and the covariance of our GB(N, pt) will be given by

Cov(XJ9Xk)=
and

Var(Z,)=

3. GENERALIZED MULTIVARIATE POISSON DISTRIBUTION
In this section, a generalized multivariate Poisson distribution will be intro-

duced as a limiting distribution of our GB(N, pi). To get a limiting distribution
we have to assume that only a finite number of pt including p0 are positive such
that Npi=λι>0 (iΦO) and another pt equal to zero. In this assumption λ% (ίΦO)
are nonnegative fixed parameters. Exactly we have to denote pt(N) instead of
pi in our assumptions. So that our assumption about pt becomes

po(N)>O and Npi(N)=λi^0,

where λt are nonnegative fixed parameters and the number % of positive λ% will
be assumed as finite.

If a random variable XN has this generalized multivariate binomial distribution
GB(N, pi(N)) and we assume

po(N)>O and Npi(N)=λi^0

then we can derive that

Up(al} λt)
- , - - IΦO

Σίaίι2=k2

Σίaίtn=kn

ΣίH=N
j^O integer

where p(aιy λt) is an usual univariate Poisson probability density. The notation
Σ means the sum of the products with aτ varying nonnegative integer and satis-
fying the denoted n + 1 equalities. For the simplicity of notation we write the
restriction including n + 1 equalities as *.

THEOREM 1. // a sequence of random variables XN has a sequence of distri-
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buttons GB(N, pi(N)) (N=l, 2, •••) respectively and we assume that iV—»oo and
po(N)>0, Npi(N)=λi^0 and %{ι: λt>0} <°°, then weh ave a limiting distribution

l} λx).

Proof. From our assumption that XN has a distribution GB(7V, px(N)), we
can express

From each term of the sum we can pull the next limiting value

- lim , ^ ! , ( 1 - Σ />,(#))" Π ί.

_ i im

 Nl (ι Mλty-J*a* π i iϋ

= Πp(aι,λι).
IΦO

Therefore, under the assumptions of the theorem, we have

lim P{XIf=k)=Σlai* Π p{aιy λt).

This is our conclusion of this theorem and we shall call this limiting distribution
as generalized multivariate Poisson and we shall denote it as GP(Λ)

THEOREM 2. The moment generating function of the generalized multivariate
Poisson distribution is given by

Proof We shall derive the m. g. f. from g(s)N.

A(s)= Hm g(s)N= lim ί^
NWnλ NanX
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where we have denoted sι=s1

lίs2

%2 ••• sn

ln.

THEOREM 3. // a random vector X has the generalized multivariate Poisson
distribution then we have an unique decomposition of the random vector X as X3

=ΈiijYι 0 # =l, 2, •••, n) where Yτ (iΦO) are mutually independent univariate Poisson
variables with parameter λt.

Proof. If Y% (iΦO) are mutually independent univariate Poisson varia-
bles with parameter λτ then the random vector X with components Xj—ΣiijYi
has a generalized multivariate Poisson probability density

P ( Z = f t ) = Σ α < * Π ί ( α » , λt).

And if we assume X has the generalized multivariate Poisson density GP(Λ) then
X has a m. g. f. h(s) as described in the preceding theorem.

For simplicity of our proof we assume n = 2 and only two of λτ {^=(1, 2),
(2, 1)} are positive then h(s) becomes

h(s)=exp{—λί2—Λ1+^12s1

1

=exp{—λ12+λ12s1

1S22}exp{—λ2i+λ21s1

2s2

1}.

This means there exist two independent univariate Poisson random variables X12f

X21 with parameter λ12, λ21 respectively and X has a decomposition

X=(l, 2)Z1 2+(2, 1)Z2 1.

In another way of proof, if we put s 2 = l then

h(s)=exp{-λ12-λ21

J

Γλ12s1+λ21s1

2}

=exp{-λ12

Jrλ12s1}exp{-λ21

Jrλ21s1

2}.

The marginal distribution of Xx is given by X12-\-2X21 and in the same way, our
X2 is given by 2X12-\-X21. This means

J?=(l, 2)Z1 2+(2, l)X21 or IX^X12+2X21 and Z 2 = 2 Z

And in general case, we can prove our result of this theorem by the same
way.
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Note. In this proof we have denoted Z ( 1 , 2 ) , XU.Ώ as X12, X21 andΛα,2), ΛC2,D
as λ12, λ2i for our simplicity of notation. And we shall use this notations in the
following lines.

THEOREM 4. The mean vector and the covariance matrix of the generalized
multivariate Poisson distribution GP(Λ) is given by

j^Έiijλx, Cov {X,, Xk)=Σiιjikλι (jΦ k)

and

Proof. We assume that X has our distribution GP(Λ). First we shall cal-
culate the mean value of XΓ We shall use the m. g. f. h(s) of X. To differentiate
the h(s) by Sj we get

^ Γ λ(s){ Σ x^s**1 ••• v ^ " 1 ^ 1 W + 1 . . . sΛ

ι»}
as j IΦO

and if we put S ! = s 2 = ••• = s Λ = l then we have

L αs^ Js1=s2= . =sn=i

In the same way we shall use the equality

/ o£ il bj

where the differential is given by

d (dh(s)\_dh(s) f ^ , , _ t l . . .
V l Sj j+1 n }

To put Si=5 2= ••• = s n = l in this equality we can derive

And we can get our conclusion

Cov (Xp X^EiXjXo-

To derive Var(X,) we shall use the result of preceding Theorem 3. From
Theorem 3 if X has the distribution GP(Λ) then we have a Poisson decomposition
of X.

Xj=ΈiijYr, 0 = 1 , 2 , •-., n ) .
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Therefore we can conclude

Var (*,)=Var (Σi i^ .)=Σfi/ Var (Yt)=ΣiiJ

iλt.

In the following lines we shall consider the marginal distribution of our
generalized multivariate Poisson distribution

THEOREM 5. // a random vector X has a generalized multivariate Poisson
distribution GP(λτ) then the marginal distribution is also a degenerated generalized
multivariate Poisson distribution.

Proof. Since X has the m. g. f. h{s), it follows that a degenerated random
vector of X denoted as

X<»=(Xu - , Xj-u Xj+1, - , Xn) 0 = 1 , 2, .-., n)

has a m. g. f. h(s)\Sj=1.

λ(s)|,,=i=exp{- Σ λi+ Σ λts
J %Ψ0 iΦO

Where we have used a new notation zo ) which has been denoted likely as Xa\
This equality means that if X has the generalized multivariate Poisson distribu-
tion, it follows that Xφ has also a degenerated generalized multivariate Poisson
distribution GP(Σi/U And if we put similarly

where j \ , j 2 , •••, j \ are integers and J^J2^ ••• ^jk. This degenerated random
vector of X has a m. g. f.

h{s)\s ^s =...=, =i

where we used a new notation f^i ^. .^) as we had denoted Z01'-721"'--7^. There-
fore, the random vector X θ l > 72>'"' 7^) has a degenerated generalized multivariate
Poisson distribution

GP(Σljtl......tj λt)
h h 3k

as to be proved.

COROLLARY 1. The marginal distribution Xj of X is a iinivariate generalized
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Poisson with parameter Σiθ)Λ

COROLLARY 2. // Cov(Z ;, Xk)=0 (j=£k) then X3 and Xk are mutually inde-
pendent random variables.

Proof. From Theorem 3 we have decompositions of X3 and Xk

and from Theorem 4, we have

Cov(Z,, Xk)=Σliijikλι=O ϋ^k)

this means, for any fixed i if i3 and ik are simultaneously positive integers then λt

must be zero, that is, our 1^=0. From this property we can conclude that XJy

Xk are mutually independent random variables.

T H E O R E M 6. // Xlf X2, •••, XN oire mutually independent random vectors of
the generalized multivariate Poisson distributions GP(^ t l ), GP(Λt2), •••, GP{λ%N)
respectively then the sum vector ΣJ=IXJ has a generalized multivariate Poisson
distribution GP(Σι1=ι2=...=slN=iλlj).

Proof. If we assume all the parameters equals to a same λz

then "ΣiJίiXj has a generalized multivariate Poisson distribution with parameter
Nλlf because the m. g. f. of Σ A ^ j becomes

And, generally Σj=i^G h^ s a m g

Π

= e x p { - ΣΣ ΈxjλXj+ Σ Έxjλχjsι

Therefore h(s) is a m. g. f. of generalized multivariate Poisson distribution with
parameter

4. SOME RESTRICTIONS ON THE PARAMETERS.
In preceding section 1, we have defined a generalized multivariate Bernoulli
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distribution GB(1, pt). If we assume

pi^O for ie{0, l}n and pt=0 for i& {0, l } n

then GB(1, £*) means 5(1, pi) which is called a multivariate Bernoulli distribution.
Under the same assumption, our generalized multivariate binomial distribution
GB(iV, pi) defined in section 2 means B(N, pi), which is called a multivariate
binomial distribution, see Kawamura [4].

In section 3, we have defined GP(Λ). It is a generalized multivariate Poisson
distribution because if we assume that λ% is defined as nonnegative parameter
for iφQ and

λ^O f o r Z G Ξ { 0 , l}n a n d Xt=0 f o r ι$ {0, l } n .

then our GP(ΛJ means p(λτ) which is called a multivariate Poisson distribution,
see Kawamura [4].

THEOREM 7. Given a generalized multivariate Bernoulli distribution GB(1, pi),
if we restrict the parameter pt as

pi^O on ie{0, I}71 and pi^=0 on ι& {0, l}n .

77i£ft GB(1, ĵ i) means B(l, ί i) which is a multivariate Bernoulli distribution. And
given a generalized multivariate binomial distribution GB(iV, pi), if we restrict pi
as above then GBC/V, pi) meansB{N, pi) which is a multivariate binomial distribution.

THEOREM 8. Given a generalized multivariate Poisson distribution GP(^), if
we restrict the parameter λx (iΦΰ) as / ^ 0 on z'e {0, l}n and λi—0 on z€ {0, l}n

then GP(Λι) means P(λt) which is a multivariate Poisson distribution.

5. EXAMPLES.
We shall discuss some examples in this section. For our simplicity of discus-

sion, we treat only the bivariate case (n=2).
5-1. We assume X has a distribution GB(1, pi) and we restrict the space of

X to three points (0,0), (1,2) and (2,1), or in another words we restrict only
three pt on i=(0,0), (1,2) and (2,1) are positive and otherwise pi=0. Then our
GB(1, pi) becomes

(A) P(JΪ=(0, O))=ίco.o>, P(X=(1, 2 ) )=ί ( l l 8 ) and P(X=(2, l))=pC2,Ώ .

And we shall denote p^o^Poo, Pa,2ϊ = Pi2 and ί(2,D = ί2i.

Of cause we can select these three points without selecting (0, 0) but to con-
sider the limiting distribution to generalized Poisson we must remain (0,0) in the
space of X with large probability or more exactly near one. But in this GB(1, pi)
case if there does not include (0,0) in the space of X or P(X=(0,0))=0, there is
no trouble theoretically.
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The space of GP (I, Pi)

The mean value of X with this GB(1, pt) is given~by

And the covariance value is given by

We consider the n convolution of GB(1, pi) defined in (A) in the followings.
We shall rewrite again as X the convolution of n independent variables Xlt X2y

•••, XN. Then the sum vector X has a distribution GB(N, px) by the discussion
of section 2.

N\

(B)

AM

αoo+ & 12+ α 2 i = N
>αχ2 and 0^21 °̂ integer

We shall restrict in (B) only on ι=(l,2) and (2,1), A^iz(A^)=^z>0 and N—oo
where poo(N)+P12(N)+p2i(N)=l and another ^ = 0 then we can derive a gener-
alized multivariate Poisson distribution GP(Λ)

P(X=k)= Σ Γa12+2a2i=k1 -i
α i 2 . α 2 l 2αi2+α2i=*2

Lαi2> α2iδ0 lntegerJ
21, λzι)

where X is rewrited again and p(aιt λ) is an univariate Poisson probability den-
sity. From our decomposition theory our X will be expressed as

, 1)Y21
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where Y12 and Y2ί are mutually independent univariate Poisson random variables
with parameter λ12 and λ2ί respectively. The m. g. f. of this X is given by

)=exρ{—λ l 2 —λ 2 1 +λ 1 2 s 1

1 s 2

2 J rλ 2 1 s 1

2 s 2

1 } .

The mean value of X and the covariance matrix is given by

E(X)=(λ12+2λ21, 2λ12+λ21),

Cov(XuX2)=2(λ12+λ21),

Var (Z 1 )=^ 1 2 +4^ 2 1 and Var (X2)=U12+λ21.

So that our covariance matrix is represented as

λ12+U21 2U 1 2 +Λ

Poi

Poo

Pu

Pio

5-2(1)
The space of GB(l,pt)

5-2(2)

5-2. (1) If we assume X has a distribution GB(1, pi) and we restrict the
space of X to two points (0, 0) and (1,0) only, then GB(1, pi) becomes to an uni-
variate Bernoulli distribution and our GB(7V, pt) becomes to an usual univariate
binomial distribution. Under our restriction of limitation Np10(N)^=λί0>0 and
ΛΓ-+00 we can derive that GP(Λ) becomes to an usual Poisson distribution with
parameter p10.

(2) If we restrict the space of X with a distribution GB(1, pi) to four points
(0,0), (1,0), (0,1) and (1,1) only, then GB(1, pt) becomes to an usual bivariate
binomial distribution B(l, pi). From TV convolution of this GB(1, pi) we can derive
that GB(7V, pt) becomes to an usual bivariate binomial distribution B(N, pt). To
pull our limiting distribution of GBCN, pt) we have to restrict Npτ=λt (ιΦθ)
and N-^co. Our limiting distribution is an usual bivariate Poisson distribution
P(λt).

P((Xl9 X,)=(k, 0)=Σ f t ί-* λit\dfe'λl°'l01'λn

5-3. If we assume X has a distribution GB(1, pt) and we restrict the space
of X to three points (0,0), (1,0) and (2,0) only, then our GB(N, pt) becomes to a
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generalized (univariate) binomial distribution which is a degenerated case as we
treated in 5-2 (1). We rewrite again X which we assume to have GB(N, pτ)
distribution, then we can derive

PlO

The space of

N\
=o i π

0 mtegerJ

N\
^ aoo\alo\a2O\^ϋ "ι" " z υ *

Under our restriction of Nplo(N)=λ10f Np20(N)=λ20 and N^co we can derive a
limiting degenerated generalized distribution GP(Λ). We shall rewrite X again
the random variable of GP(Λ), then our decomposition theory states that

* = ( 1 , 0)F1 0+(2, 0)F2 0

where Y10 and Y20 are mutually independent univariate Poisson random variables,
and this I is a degenerated generalized bivariate Poisson random variable and
this X rolls as an univariate generalized Poisson distribution and as an univariate
compound Poisson distribution.
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