GROWTH OF A COMPOSITE FUNCTION OF ENTIRE FUNCTIONS

By Kiyoshi Niino and Nobuyuki Suita

§ 1. Introduction.

Let f(z) and g(z) be entire functions. Then we have the well-known inequality

(1)
$$\log M(r, f(g)) \leq \log M(M(r, g), f).$$

And it follows from Clunie [2] that if g(0)=0, then for $r\geq 0$

(2)
$$\log M(r, f(g)) \ge \log M(c(\rho)M(\rho r, g), f),$$

where $0 < \rho < 1$ and $c(\rho) = (1-\rho)^2/4\rho$. Furthermore, these inequalities (1) and (2) are best possible. We next wish to have similar estimations of T(r, f(g)). As an immediate consequence of (1) and well-known inequalities $T(r, f) \leq \log^+ M(r, f) \leq 3T(2r, f)$, we have

(3)
$$T(r, f(g)) \leq 3T(2M(r, g), f)$$
.

The inequality (3), however, is not sharp.

The main purpose of this paper is to give an upper estimation of T(r, f(g)) and prove the following:

THEOREM 1. Let f(z) and g(z) be entire functions. If $M(r, g) > ((2+\varepsilon)/\varepsilon)|g(0)|$ for any $\varepsilon > 0$, then we have

(4)
$$T(r, f(g)) \leq (1+\varepsilon)T(M(r, g), f).$$

In particular, if g(0)=0, then

(5)
$$T(r, f(g)) \leq T(M(r, g), f)$$

for all r>0.

Since $T(r, f(z^n)) = T(r^n, f(z))$ for any meromorphic function f(z), Theorem 1 is best possible. In the above example g(z) is a polynomial. However, we shall

Received July 5, 1979

prove that

Theorem 2. Let f(z) be a transcendental entire function of order zero and g(z) a transcendental entire function of lower order zero. Suppose that for any $0 < \sigma < 1$ there are two numbers $\alpha > 1$ and $r_0 > 1$ such that

(6)
$$\frac{T(r^{\sigma}, f)}{T(r, f)} > \sigma^{\alpha}$$

holds for all $r>r_0$. Then we have

(7)
$$\limsup_{r \to \infty} \frac{T(r, f(g))}{T(M(r, g), f)} = 1.$$

It is clear that there exist entire functions satisfying (6). For instance, it follows from a result of Clunie [1] that there is an entire function f(z) satisfying $T(r, f) \sim (\log r)^{\beta}$ $(r \to \infty)$ with a constant $\beta > 1$ and so f(z) satisfies (6) with a suitable number $\alpha > 1$.

We shall now give some lower estimations of T(r, f(g)). Firstly, for certain classes of entire functions, we shall show the following theorem, which we can deduce from $\cos \pi \lambda$ -theorem (cf. Kjellberg [4], [5]) and the argument of the proof of Theorem 2:

THEOREM 3. Let f(z) be a transcendental entire function of order zero satisfying (6) and g(z) a transcendental entire function of lower order λ ($\lambda < 1/2$). Then we have

$$\limsup_{r\to\infty}\frac{T(r,\,f(g))}{T(M(r,\,g),\,f)}\!\ge\!(\cos\pi\lambda)^\alpha\,.$$

In general we shall prove

THEOREM 4. Let f(z) and g(z) be transcendental entire functions, K(>0) an arbitrary number and $\beta(r)$ unbounded, strictly increasing, continuous function of r(>0) satisfying

(8)
$$\beta(r) \ge r \quad and \quad \log \beta(r) = o(T(\xi'r, g)) \quad (r \to \infty),$$

where ξ' is a constant satisfying $0 < \xi' < 1$. Then there is an unbounded increasing sequence $\{r_{\nu}\}$ such that

$$T(r_{\nu}, f(g)) + O(1) \ge N(r_{\nu}, 0, f(g))$$

$${\geq} K\Big(\frac{N(\beta(r_{\nu}),\ 0,\ f)}{\log\ \beta(r_{\nu}) - O(1)} - O(1)\Big) \qquad (\nu{\rightarrow}\infty)$$

When g(z) is of finite order, from a result of Valiron [7] and Edrei-Fuchs [3] and the argument of the proof of Theorem 4 we can deduce

THEOREM 5. Let f(z) be a transcendental entire function, g(z) a transcendental entire function of finite order, c a constant satisfying 0 < c < 1 and α a positive number. Then we have for all $r \ge R_0$,

$$\begin{split} T(r,\,f(g)) + O(1) &\ge N(r,\,0,\,f(g)) \\ &\ge (\log{(1/c)}) \Big(\frac{N(M((cr)^{1/(1+\alpha)},\,g),\,0,\,f)}{\log{M((cr)^{1/(1+\alpha)},\,g)} - O(1)} - O(1) \Big) \qquad (r \to \infty) \,. \end{split}$$

§ 2. Proof of Theorem 1.

Let u(z) be the harmonic function in the disk $\{|z| < r\}$ which has the boundary values $\log^+|f(g(re^{i\theta}))|$ on the circumference $\{|z|=r\}$. We define $u^*(z)$ by

$$u^*(z) = u(z)$$
 in $\{|z| < r\}$
= $\log^+ |f(g(z))|$ in $\{r \le |z| < \infty\}$.

Then it is clear that $u^*(z)$ is a subharmonic function in $\{|z| < \infty\}$. Let v(w) be the harmonic function in the disk $\{|w| < M(r,g)\}$ with the boundary values $\log^+|f(M(r,g)e^{i\phi})|$ on $\{|w| = M(r,g)\}$. We denote by D_z the component of the set $\{z; g(z) = w, |w| < M(r,g)\}$, which contains the origin. Then we have $\{|z| < r\}$ $\subset D_z$. Further v(g(z)) is harmonic in D_z and $v(g(z)) = \log^+|f(g(z))| = u^*(z)$ on the boundary of D_z . Hence it follows from the maximum principle that $u^*(z) \le v(g(z))$ in D_z . In particular we have

$$(2.1) u^*(0) \le v(g(0)).$$

By Gauss' mean value theorem we have

(2.2)
$$u^*(0) = u(0) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(g(re^{i\theta}))| d\theta = T(r, f(g)),$$

(2.3)
$$v(0) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |(f(M(r, g)e^{i\phi})| d\phi = T(M(r, g), f).$$

Hence, if g(0)=0, (5) follows from (2.1), (2.2) and (2.3). If $g(0)\neq 0$ and $M(r,g)>((2+\varepsilon)/\varepsilon)|g(0)|$, then it follows from Harnack's inequality that

$$v(g(0)) \leq \frac{M(r, g) + |g(0)|}{M(r, g) - |g(0)|} v(0) < (1 + \varepsilon)v(0),$$

which, together with (2.1), proves (4).

Thus the proof of Theorem 1 is complete.

§ 3. Proof of Theorem 2.

In the first place we shall prove the following:

LEMMA 1. Let g(z) and f(z) be two entire functions. Suppose that |g(z)| > R > |g(0)| on the circumference $\{|z| = r\}$ for some r > 0. Then we have

$$T(r, f(g)) \ge \frac{R - |g(0)|}{R + |g(0)|} T(R, f)$$

Proof. Let u(z) be the harmonic function in the disk $\{|z| < r\}$ which has boundary values $\log^+|f(g(re^{i\theta}))|$ on the circumference $\{|z|=r\}$. Let v(w) be the harmonic function in the disk $\{|w| < R\}$ which has the boundary values $\log^+|f(Re^{i\phi})|$ on $\{|w|=R\}$. We define $v^*(w)$ by

$$v^*(w) = v(w)$$
 in $\{|w| < R\}$,
= $\log^+|f(w)|$ in $\{|w| \ge R\}$.

Then we deduce that $v^*(w)$ is subharmonic in $\{|w|<\infty\}$ and so $v^*(g(z))$ is subharmonic in $\{|z|<\infty\}$. Since |g(z)|>R for |z|=r, it follows from the definitions of u(z) and $v^*(w)$ that $v^*(g(z))=\log^+|f(g(z))|=u(z)$ on the circumference $\{|z|=r\}$. Hence by virtue of the maximum principle we have $u(z)\geq v^*(g(z))$ in $\{|z|\leq r\}$ and in paticular

(3.1)
$$u(0) \ge v^*(g(0))$$
.

Since R > |g(0)|, by Harnack's inequality we obtain

(3.2)
$$v^*(g(0)) = v(g(0)) \ge \frac{R - |g(0)|}{R + |g(0)|} v(0).$$

On the other hand by Gauss' mean value theorem we have

$$u(0) = T(r, f(g))$$
 and $v(0) = T(R, f)$,

which, together with (3.1) and (3.2), proves our Lemma.

We are now ready to prove our Theorem 2. We deduce from Theorem 1 that

(3.3)
$$\limsup_{r \to \infty} \frac{T(r, f(g))}{T(M(r, g), f)} \leq 1.$$

Since g(z) is of lower order zero, it follows from a result of Kjellberg [5] that there is an increasing, unbounded, positive sequence $\{r_n\}$ such that

$$\min_{|z|=r_n} \log |g(z)| \sim \log M(r_n, g) \qquad (n \to \infty).$$

Hence for any $\varepsilon > 0$ we have

$$|g(z)| > M(r_n, g)^{1-\varepsilon}$$
 for $|z| = r_n, r_n > r_0$.

We may assume that $M(r_n, g)^{1-\epsilon} > |g(0)|$ and (6) is valid for $r = M(r_n, g)$. Hence our Lemma 1 and (6) yield

$$\begin{split} T(r_n, f(g)) & \geq \frac{M(r_n, g)^{1-\varepsilon} - |g(0)|}{M(r_n, g)^{1-\varepsilon} + |g(0)|} T(M(r_n, g)^{1-\varepsilon}, f) \\ & \geq (1-\varepsilon)^{\alpha} \frac{M(r_n, g)^{1-\varepsilon} - |g(0)|}{M(r_n, g)^{1-\varepsilon} + |g(0)|} T(M(r_n, g), f) \end{split}$$

and consequently

$$\limsup_{r\to\infty}\frac{T(r,\,f(g))}{T(M(r,\,g),\,f)}\geqq \liminf_{n\to\infty}\frac{T(r_n,\,f(g))}{T(M(r_n,\,g),\,f)}\geqq (1-\varepsilon)^\alpha\,.$$

Since ε is arbitrary, (7) follows from this and (3.3).

Thus the proof of Theorem 2 is complete.

§ 4. Proof of Theorem 4.

We first need the following lemma, which we can deduce from the proof of Lemma 1 in Clunie [2] (cf. [4, Lemma 2]):

LEMMA 2. Let g(z) be a transcendental entire function, K a positive number and $\alpha(r)$ and $\beta(r)$ two unbounded, strictly increasing, continuous functions satisfying

$$\alpha(r){\geqq}r\;,\qquad \beta(r){\geqq}r\qquad and$$

$$(4.1)\qquad \qquad \log\,\beta(\eta\alpha(r)){=}o(T(\xi r,\,g))\qquad (r{\to}\infty)\;,$$

where η and ξ are constants satisfying $\eta > 1$ and $0 < \xi < 1$. Let c satisfy $\xi < c \le 1$. Then there are a positive number R_0 and an unbounded increasing sequence $\{r_\nu\}_{\nu=1}^\infty$ with $r_1 > R_0$ and $r_\nu \to \infty$ ($\nu \to \infty$) such that for $\nu \ge 1$ and for all r in $r_\nu \le r \le \alpha(r_\nu)$ and all w satisfying $\beta(R_0) \equiv R_1 \le |w| \le \beta(r)$ we have

$$n(cr, w, g) > K$$
.

We also need the following well-known inequalities:

LEMMA 3. Let f(z) be a meromorphic function and c a constant satisfying 0 < c < 1. Then there are two positive constants r_0 and R_0 such that for all $r \ge R_0$

$$n(cr, 0, f) \log (1/c) \le N(r, 0, f) \le n(r, 0, f) (\log r - \log r_0)$$

Now we shall prove Theorem 4. Choose two constants η and ξ such that

 $\eta > 1$, $0 < \xi < 1$ and $\xi' = \xi/\eta$. Then (8) yields

$$\log \beta(\eta r) = \log \beta(\xi r/\xi') = o(T(\xi r, g)) \qquad (r \to \infty),$$

which shows that (4.1) is true with $\alpha(r)=r$. Hence Lemma 2 implies that there is an unbounded increasing sequence $\{r_{\nu}\}$ such that for all w satisfying $R_1 < |w| \le \beta(r_{\nu})$ we have

(4.2)
$$n(cr_{\nu}, w, g) > K/\log(1/c)$$
.

Let $\{w_{\mu}\}$ be the zeros of f(z). Then taking Lemma 3 and (4.2) into account we have

$$\begin{split} N(r_{\nu}, \, 0, \, f(g)) & \geqq n(cr_{\nu}, \, 0, \, f(g)) \log \left(1/c \right) \\ & = \sum_{\mu} n(cr_{\nu}, \, w_{\mu}, \, g) \log \left(1/c \right) \\ & \geqq K(n(\beta(r_{\nu}), \, 0, \, f) - n(R_{1}, \, 0, \, f)) \\ & \geqq K \left(\frac{N(\beta(r_{\nu}), \, 0, \, f)}{\log \beta(r_{\nu}) - \log r_{0}} - n(R_{1}, \, 0, \, f) \right). \end{split}$$

Using this and Nevanlinna's first main theorem, we obtain Theorem 4.

REFERENCES

- [1] CLUNIE, J., On integral functions having prescribed asymptotic growth. Canadian J. Math. 17 (1965), 396-404.
- [2] CLUNIE, J., The composition of entire and meromorphic functions. Mathematical Essays dedicated to A.J. Macintyre (Ohio Univ. Press, 1970), 75-92.
- [3] EDREI, A. AND W.H.J. FUCHS, On the zeros of f(g(z)) where f and g are entire functions. J. Analyse Math. 12 (1964), 243-255.
- [4] KJELLBERG, B., On the minimum modulus of entire functions of lower order less than one. Math. Scand. 8 (1960), 189-197.
- [5] KJELLBERG, B., A theorem on the minimum modulus of entire functions. Math. Scand. 12 (1963), 5-11.
- [6] Mutō, H., On the family of analytic mappings among ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 26 (1974/75), 454-458.
- [7] VALIRON, G., Sur un théorème de M. Fatou. Bull. Sci. Math. 46 (1922), 200-208.

KIYOSHI NIINO FACULTY OF TECHNOLOGY KANAZAWA UNIVERSITY 2-40-20, KODATSUNO, KANAZAWA 920, JAPAN NOBUYUKI SUITA
DEPARTMENT OF MATHEMATICS
TOKYO INSTITUTE OF TECHNOLOGY
OH-OKAYAMA, MEGURO-KU, TOKYO 152,
JAPAN