GROWTH OF A COMPOSITE FUNCTION OF ENTIRE FUNCTIONS

By Kiyoshi Niino and Nobuyuki Suita

§ 1. Introduction.

Let $f(z)$ and $g(z)$ be entire functions. Then we have the well-known inequality

$$
\begin{equation*}
\log M(r, f(g)) \leqq \log M(M(r, g), f) . \tag{1}
\end{equation*}
$$

And it follows from Clunie [2] that if $g(0)=0$, then for $r \geqq 0$

$$
\begin{equation*}
\log M(r, f(g)) \geqq \log M(c(\rho) M(\rho r, g), f), \tag{2}
\end{equation*}
$$

where $0<\rho<1$ and $c(\rho)=(1-\rho)^{2} / 4 \rho$. Furthermore, these inequalities (1) and (2) are best possible. We next wish to have similar estimations of $T(r, f(g))$. As an immediate consequence of (1) and well-known inequalities $T(r, f) \leqq \log ^{+} M(r, f)$ $\leqq 3 T(2 r, f)$, we have

$$
\begin{equation*}
T(r, f(g)) \leqq 3 T(2 M(r, g), f) . \tag{3}
\end{equation*}
$$

The inequality (3), however, is not sharp.
The main purpose of this paper is to give an upper estimation of $T(r, f(g))$ and prove the following:

Theorem 1. Let $f(z)$ and $g(z)$ be entıre functions. If $M(r, g)>((2+\varepsilon) / \varepsilon)|g(0)|$ for any $\varepsilon>0$, then we have

$$
\begin{equation*}
T(r, f(g)) \leqq(1+\varepsilon) T(M(r, g), f) . \tag{4}
\end{equation*}
$$

In partıcular, if $g(0)=0$, then

$$
\begin{equation*}
T(r, f(g)) \leqq T(M(r, g), f) \tag{5}
\end{equation*}
$$

for all $r>0$.
Since $T\left(r, f\left(z^{n}\right)\right)=T\left(r^{n}, f(z)\right)$ for any meromorphic function $f(z)$, Theorem 1 is best possible. In the above example $g(z)$ is a polynomial. However, we shall

[^0]prove that
THEOREM 2. Let $f(z)$ be a transcendental entire function of order zero and $g(z)$ a transcendental entire function of lower order zero. Suppose that for any $0<\sigma<1$ there are two numbers $\alpha>1$ and $r_{0}>1$ such that
\[

$$
\begin{equation*}
\frac{T\left(r^{\sigma}, f\right)}{T(r, f)}>\sigma^{\alpha} \tag{6}
\end{equation*}
$$

\]

holds for all $r>r_{0}$. Then we have

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f(g))}{T(M(r, g), f)}=1 \tag{7}
\end{equation*}
$$

It is clear that there exist entire functions satisfying (6). For instance, it follows from a result of Clunie [1] that there is an entire function $f(z)$ satisfying $T(r, f) \sim(\log r)^{\beta}(r \rightarrow \infty)$ with a constant $\beta>1$ and so $f(z)$ satisfies (6) with a suitable number $\alpha>1$.

We shall now give some lower estimations of $T(r, f(g))$. Firstly, for certain classes of entire functions, we shall show the following theorem, which we can deduce from $\cos \pi \lambda$-theorem (cf. Kjellberg [4], [5]) and the argument of the proof of Theorem 2:

THEOREM 3. Let $f(z)$ be a transcendental entire function of order zero satisfying (6) and $g(z)$ a transcendental entire function of lower order $\lambda(\lambda<1 / 2)$. Then we have

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f(g))}{T(M(r, g), f)} \geqq(\cos \pi \lambda)^{\alpha}
$$

In general we shall prove
THEOREM 4. Let $f(z)$ and $g(z)$ be transcendental entire functions, $K(>0)$ an arbitrary number and $\beta(r)$ unbounded, strictly increasing, continuous function of $r(>0)$ satısfying

$$
\begin{equation*}
\beta(r) \geqq r \quad \text { and } \quad \log \beta(r)=o\left(T\left(\xi^{\prime} r, g\right)\right) \quad(r \rightarrow \infty), \tag{8}
\end{equation*}
$$

where ξ^{\prime} is a constant satisfying $0<\xi^{\prime}<1$. Then there is an unbounded increasing sequence $\left\{r_{\nu}\right\}$ such that

$$
\begin{aligned}
& T\left(r_{\nu}, f(g)\right)+O(1) \geqq N\left(r_{\nu}, 0, f(g)\right) \\
\geqq & K\left(\frac{N\left(\beta\left(r_{\nu}\right), 0, f\right)}{\log \beta\left(r_{\nu}\right)-O(1)}-O(1)\right) \quad(\nu \rightarrow \infty)
\end{aligned}
$$

When $g(z)$ is of finite order, from a result of Valiron [7] and Edrei-Fuchs [3] and the argument of the proof of Theorem 4 we can deduce

Theorem 5. Let $f(z)$ be a transcendental entıre function, $g(z)$ a transcendental entıre function of flnıte order, c a constant satısfying $0<c<1$ and α a positive number. Then we have for all $r \geqq R_{0}$,

$$
\begin{aligned}
T(r, f(g))+O(1) & \geqq N(r, 0, f(g)) \\
& \geqq(\log (1 / c))\left(\frac{N\left(M\left((c r)^{1 /(1+\alpha)}, g\right), 0, f\right)}{\log M\left((c r)^{1 /(1+\alpha)}, g\right)-O(1)}-O(1)\right) \quad(r \rightarrow \infty) .
\end{aligned}
$$

§ 2. Proof of Theorem 1.

Let $u(z)$ be the harmonic function in the disk $\{|z|<r\}$ which has the boundary values $\log ^{+}\left|f\left(g\left(r e^{i \theta}\right)\right)\right|$ on the circumference $\{|z|=r\}$. We define $u^{*}(z)$ by

$$
\begin{aligned}
u^{*}(z) & =u(z) & & \text { in }\{|z|<r\} \\
& =\log ^{+}|f(g(z))| & & \text { in }\{r \leqq|z|<\infty\} .
\end{aligned}
$$

Then it is clear that $u^{*}(z)$ is a subharmonic function in $\{|z|<\infty\}$. Let $v(w)$ be the harmonic function in the disk $\{|w|<M(r, g)\}$ with the boundary values $\log ^{+}\left|f\left(M(r, g) e^{\imath \phi}\right)\right|$ on $\{|w|=M(r, g)\}$. We denote by D_{z} the component of the set $\{z ; g(z)=w,|w|<M(r, g)\}$, which contains the origin. Then we have $\{|z|<r\}$ $\subset D_{z}$. Further $v(g(z))$ is harmonic in D_{z} and $v(g(z))=\log ^{+}|f(g(z))|=u^{*}(z)$ on the boundary of D_{z}. Hence it follows from the maximum principle that $u^{*}(z) \leqq v(g(z))$ in D_{z}. In particular we have

$$
\begin{equation*}
u^{*}(0) \leqq v(g(0)) . \tag{2.1}
\end{equation*}
$$

By Gauss' mean value theorem we have

$$
\begin{align*}
& u^{*}(0)=u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(g\left(r e^{i \theta}\right)\right)\right| d \theta=T(r, f(g)), \tag{2.2}\\
& \left.v(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \right\rvert\,\left(f\left(M(r, g) e^{\imath \phi}\right) \mid d \phi=T(M(r, g), f) .\right. \tag{2.3}
\end{align*}
$$

Hence, if $g(0)=0$, (5) follows from (2.1), (2.2) and (2.3). If $g(0) \neq 0$ and $M(r, g)>$ $((2+\varepsilon) / \varepsilon)|g(0)|$, then it follows from Harnack's inequality that

$$
v(g(0)) \leqq \frac{M(r, g)+|g(0)|}{M(r, g)-|g(0)|} v(0)<(1+\varepsilon) v(0)
$$

which, together with (2.1), proves (4).
Thus the proof of Theorem 1 is complete.

§ 3. Proof of Theorem 2.

In the first place we shall prove the following:
Lemma 1. Let $g(z)$ and $f(z)$ be two entire functions. Suppose that $|g(z)|$ $>R>|g(0)|$ on the circumference $\{|z|=r\}$ for some $r>0$. Then we have

$$
T(r, f(g)) \geqq \frac{R-|g(0)|}{R+|g(0)|} T(R, f)
$$

Proof. Let $u(z)$ be the harmonic function in the disk $\{|z|<r\}$ which has boundary values $\log ^{+}\left|f\left(g\left(r e^{i \theta}\right)\right)\right|$ on the circumference $\{|z|=r\}$. Let $v(w)$ be the harmonic function in the disk $\{|w|<R\}$ which has the boundary values $\log ^{+}\left|f\left(R e^{\imath \phi}\right)\right|$ on $\{|w|=R\}$. We define $v^{*}(w)$ by

$$
\begin{aligned}
v^{*}(w) & =v(w) & & \text { in }\{|w|<R\}, \\
& =\log ^{+}|f(w)| & & \text { in }\{|w| \geqq R\} .
\end{aligned}
$$

Then we deduce that $v^{*}(w)$ is subharmonic in $\{|w|<\infty\}$ and so $v^{*}(g(z))$ is subharmonic in $\{|z|<\infty\}$. Since $|g(z)|>R$ for $|z|=r$, it follows from the definitions of $u(z)$ and $v^{*}(w)$ that $v^{*}(g(z))=\log ^{+}|f(g(z))|=u(z)$ on the circumference $\{|z|=r\}$. Hence by virtue of the maximum principle we have $u(z) \geqq v^{*}(g(z))$ in $\{|z| \leqq r\}$ and in paticular

$$
\begin{equation*}
u(0) \geqq v^{*}(g(0)) . \tag{3.1}
\end{equation*}
$$

Since $R>|g(0)|$, by Harnack's inequality we obtain

$$
\begin{equation*}
v^{*}(g(0))=v(g(0)) \geqq \frac{R-|g(0)|}{R+|g(0)|} v(0) \tag{3.2}
\end{equation*}
$$

On the other hand by Gauss' mean value theorem we have

$$
u(0)=T(r, f(g)) \quad \text { and } \quad v(0)=T(R, f)
$$

which, together with (3.1) and (3.2), proves our Lemma.
We are now ready to prove our Theorem 2. We deduce from Theorem 1 that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f(g))}{T(M(r, g), f)} \leqq 1 \tag{3.3}
\end{equation*}
$$

Since $g(z)$ is of lower order zero, it follows from a result of Kjellberg [5] that there is an increasing, unbounded, positive sequence $\left\{r_{n}\right\}$ such that

$$
\min _{|2|=r_{n}} \log |g(z)| \sim \log M\left(r_{n}, g\right) \quad(n \rightarrow \infty)
$$

Hence for any $\varepsilon>0$ we have

$$
|g(z)|>M\left(r_{n}, g\right)^{1-\varepsilon} \quad \text { for }|z|=r_{n}, r_{n}>r_{0} .
$$

We may assume that $M\left(r_{n}, g\right)^{1-\varepsilon}>|g(0)|$ and (6) is valid for $r=M\left(r_{n}, g\right)$. Hence our Lemma 1 and (6) yield

$$
\begin{aligned}
\left.T\left(r_{n}, f(g)\right)\right) & \geqq \frac{M\left(r_{n}, g\right)^{1-\varepsilon}-|g(0)|}{M\left(r_{n}, g\right)^{1-\varepsilon}+|g(0)|} T\left(M\left(r_{n}, g\right)^{1-\varepsilon}, f\right) \\
& \geqq(1-\varepsilon)^{\alpha} \frac{M\left(r_{n}, g\right)^{1-\varepsilon}-|g(0)|}{M\left(r_{n}, g\right)^{1-\varepsilon}+|g(0)|} T\left(M\left(r_{n}, g\right), f\right)
\end{aligned}
$$

and consequently

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f(g))}{T(M(r, g), f)} \geqq \liminf _{n \rightarrow \infty} \frac{T\left(r_{n}, f(g)\right)}{T\left(M\left(r_{n}, g\right), f\right)} \geqq(1-\varepsilon)^{\alpha} .
$$

Since ε is arbitrary, (7) follows from this and (3.3).
Thus the proof of Theorem 2 is complete.

§4. Proof of Theorem 4.

We first need the following lemma, which we can deduce from the proof of Lemma 1 in Clunie [2] (cf. [4, Lemma 2]):

Lemma 2. Let $g(z)$ be a transcendental entire function, K a positive number and $\alpha(r)$ and $\beta(r)$ two unbounded, strictly increasing, continuous functions satisfying

$$
\begin{align*}
\alpha(r) \geqq r, \quad \beta(r) \geqq r & \text { and } \tag{4.1}\\
\log \beta(\eta \alpha(r))=o(T(\xi r, g)) & (r \rightarrow \infty),
\end{align*}
$$

where η and ξ are constants satisfying $\eta>1$ and $0<\xi<1$. Let c satisfy $\xi<c \leqq 1$. Then there are a positive number R_{0} and an unbounded increasing sequence $\left\{r_{\nu}\right\}_{\nu=1}^{\infty}$ with $r_{1}>R_{0}$ and $r_{\nu} \rightarrow \infty(\nu \rightarrow \infty)$ such that for $\nu \geqq 1$ and for all r in $r_{\nu} \leqq r \leqq \alpha\left(r_{\nu}\right)$ and all w satzsfying $\beta\left(R_{0}\right) \equiv R_{1} \leqq|w| \leqq \beta(r)$ we have

$$
n(c r, w, g)>K
$$

We also need the following well-known inequalities:
Lemma 3. Let $f(z)$ be a meromorphic functıon and c a constant satısfying $0<c<1$. Then there are two positve constants r_{0} and R_{0} such that for all $r \geqq R_{0}$

$$
n(c r, 0, f) \log (1 / c) \leqq N(r, 0, f) \leqq n(r, 0, f)\left(\log r-\log r_{0}\right)
$$

Now we shall prove Theorem 4. Choose two constants η and ξ such that
$\eta>1,0<\xi<1$ and $\xi^{\prime}=\xi / \eta$. Then (8) yields

$$
\log \beta(\eta r)=\log \beta\left(\xi r / \xi^{\prime}\right)=o(T(\xi r, g)) \quad(r \rightarrow \infty),
$$

which shows that (4.1) is true with $\alpha(r)=r$. Hence Lemma 2 implies that there is an unbounded increasing sequence $\left\{r_{\nu}\right\}$ such that for all w satisfying $R_{1}<|w|$ $\leqq \beta\left(r_{\nu}\right)$ we have

$$
\begin{equation*}
n\left(c r_{\nu}, w, g\right)>K / \log (1 / c) \tag{4.2}
\end{equation*}
$$

Let $\left\{w_{\mu}\right\}$ be the zeros of $f(z)$. Then taking Lemma 3 and (4.2) into account we have

$$
\begin{aligned}
N\left(r_{\nu}, 0, f(g)\right) & \geqq n\left(c r_{\nu}, 0, f(g)\right) \log (1 / c) \\
& =\sum_{\mu} n\left(c r_{\nu}, w_{\mu}, g\right) \log (1 / c) \\
& \geqq K\left(n\left(\beta\left(r_{\nu}\right), 0, f\right)-n\left(R_{1}, 0, f\right)\right) \\
& \geqq K\left(\frac{N\left(\beta\left(r_{\nu}\right), 0, f\right)}{\log \beta\left(r_{\nu}\right)-\log r_{0}}-n\left(R_{1}, 0, f\right)\right) .
\end{aligned}
$$

Using this and Nevanlinna's first main theorem, we obtain Theorem 4.

References

[1] Clunie, J., On integral functions having prescribed asymptotic growth. Canadian J. Math. 17 (1965), 396-404.
[2] Clunie, J., The composition of entire and meromorphic functions. Mathematical Essays dedicated to A. J. Macintyre (Ohio Univ. Press, 1970), 75-92.
[3] Edrei, A. and W.H.J. Fuchs, On the zeros of $f(g(z))$ where f and g are entire functions. J. Analyse Math. 12 (1964), 243-255.
[4] Kjellberg, B., On the minimum modulus of entire functions of lower order less than one. Math. Scand. 8 (1960), 189-197.
[5] Kjellberg, B., A theorem on the minimum modulus of entire functions. Math. Scand. 12 (1963), 5-11.
[6] Mutō, H., On the family of analytic mappings among ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 26 (1974/75), 454-458.
[7] Valiron, G., Sur un théorème de M. Fatou. Bull. Sci. Math. 46 (1922), 200-208.

Kiyoshi Niino
Faculty of Technology
Kanazawa University 2-40-20, Kodatsuno, Kanazawa 920, Japan

Nobuyuki Suita
Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo 152, JAPAN

[^0]: Received July 5, 1979

