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Introduction. Minimal immersions of spheres into a sphere have been com-
pletely determined by do Carmo and Wallach [2]. Let Hr>n be the space of all
spherical harmonic polynomials of degree r on an n-dimensional sphere Sn, where
άimHr'n=(nJ

Γ2r'-l)(n+r-2)\/r\(n-l)\ = : N(r)+1. For an orthonormal basis
{fi, -•-> fNCr >+i} of Hr>n, we define an immersion cr of Sn into an C/V(r)+1)-
dimensional Euclidean space RN^+1 by cr(x)=(fi(x), - , /*cr)+i)/(N(r)+l)1/2,
which is called a standard immersion. Then the image by cr is contained in the
unit sphere S* ( r )(l) in RN^+\ and by means of a theorem of Takahashi [2] it
is seen that cr is a minimal isometric immersion and cr(Sn) is not contained in the
great sphere of 5^Cr)(l). With regard to the degree of the immersion in the
sense of Wallach [9], they showed that the degree of cr is equal to r and if
r ^ 3 , then cr is rigid.

On the other hand, Hong [3] introduced recently a notion of planar geodesic
immersions. Let M and M be complete connected Riemannian manifolds of
dimension n and n+p, respectively. An isometric immersion c of M into M is
called a planar geodesic immersion if each geodesic in M is mapped locally under
the immersion into a 2-dimensional totally geodesic submanifold of M. Planar
geodesic immersions of M into Sn+P(c) have been classified by Little [5] and
Sakamoto [8], independently, who stated that M i s a compact symmetric space
of rank one and the second fundamental form is parallel. The so-called Veronese
manifold can be considered as one of examples determined by the planar geodesic
immersion, while it can be regarded as the case of degree 2 in the ambient space.

When one pays attension to the rigidness of the standard immersion cr, it
seems to be important to study the structure of the immersion with lower degree.
As a matter of fact, the local version and the characterization of the Veronese
manifold which is essentially an easiest model in our situation are investigated
from variously different viewpoints. Furthermore, the local version concerning
the immersion c3 of Sn into 5^C3) has been treated by the author and Itoh [6].
In this paper, we shall be concerned with the characterization of the standard
immersion ez of Sn into SNW. So as to do so, the notion of planar geodesic
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immersions is generalized. The purpose of this paper is to prove Theorem 8.1.
The author would like to express his hearty thanks to Professor T. Itoh for

his suggestions and advise during the preparation of this paper.

1. Preliminaries. First of all, we recall the general theory of Riemannian
submanifolds immersed into a Riemannian manifold to fix our notation and state
several properties which are subsequently useful. We denote by Mn(c) an n(^3)-
dimensional connected Riemannian manifold of constant curvature c, which is
called a real space form of constant curvature c. Let M be an n(^3)-dimensional
connected and orientable Riemannian manifold with the Riemannian metric g and
let c be an isometric immersion of M into M=Mn+p(c). When the argument is
only considered in the local version, M need not be distinguished from c{M). So,
in order to simplify the discussion, we identify any point x in M with the point
c(x), and moreover any tangent vector u at x with the tangent vector dcx{u).

Now we choose an orthonormal local frame field {elt •••, en, en+1, •••, en+p}
of M in such a way that, restricted to M, the vectors elf •••, en are tangent to
M and hence the others are normal to M. Restricting the canonical forms and
the connection forms on M with respect to these frames to M, we denote them
by ωA, ωAB, where A, B=l, •••, n, n+1, •••, n + p. We then have

(1.1) ωa=0.

Here and in the sequel, we make use of the following convention on the range
of indices:

i, j , ••• — 1 , •••, n,

a, β, " = n + l, ••• , n + p .

The metric induced from the Riemannian metric in the ambient space M under
the immersion ι is given by g=2yΣιiωi'ωί. Then {elr •••, en} are also the ortho-
normal frame field with respect to the induced metric, and {ωlt •••, ωn} are the
dual field with respect to {elf •••, en}. It follows from (1.1) and Cartan's lemma
that we have

(1.2) α ι « = Σ « ^ , λ?,=λ?<.
3

The quadratic form Σι, jh^WiCOj is called the second fundamental form of the
immersion c on M in the direction of ea. At any point x of M, we denote by
X and Y (resp. ζ and η) vector fields on a neighborhood of x tangent (resp.
normal) to M. The second fundamental form σ of M can be written as

(1.3) σ{X, Y)= Σ Kjωi{X)ωJ{Y)ea
a,ι,j

for any vector fields X and Y. By means of the structure equations of the
ambient space, we have the following structure equations of the submanifold M :

(1.4) d
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(1.5) da

Ωχi~ W Σ Rtj
Δ k, L

where ωi3 (resp. ΩtJ) denotes the connection form (resp. the curvature form) on
M. Moreover, we have

(1.6) dωaβ + Σi(oarAωrβ=Ωaβ, Ωaβ = — — Σ RaβkίωkAωL,
T Li k, I

where <oaβ defines the connection induced in the normal bundle on M and Ωaβ

is called the normal curvature form on M. From (1.2) and (1.5) we have the
equation of Gauss

(1.7) Rxjk^ciδuδjk-δi.δ^+Έihΐth^-h^).
a

For the second fundamental form σ the vector σ(eτ, et) is called a normal
curvature vector in the direction of a unit vector e%. If every normal curvature
vector has the same length for any unit vector u at x, then the immersion c is
said to be isotropic at x. If i is isotropic at any point on M, namely, the length
of a normal curvature vector depends only on the initial point, then the immersion
is said to be isotropic. In particular, if the length is equal to λ, the immersion is
said to be Λ-isotropic, and the isotropy λ is a continuous function defined on M,
the square of which is smooth. The immersion c is λ -isotropic at a point x if
and only if the second fundamental form satisfies

(1.8) <53<ίτ(w1, w2), σ(u3, v)}—λ2<^>^u1, u2>(us, v},

where ux (x=l, 2, 3) and v are unit vectors at x and €>TO denotes the cyclic sum
with respect to vectors ulf •••, um. The condition is equivalent to

(1.9) <σ(u, u), σ(u, v)>=0

for any orthonormal vectors u and υ at x [7].

Now, we denote by 7 (resp. 7) the covariant differentiation on M (resp. M).
For any vector fields X and Y—Σ%yiet, we have

(1.10) 1xY=

(1.11) ΊxY=lxY+σ{X, Y)=1XY+ Σ Mj
a,ι,j

For any vector fields ξ and X on a neighborhood of x in M, we may express

(1.12) Vxξ=-HξX+V^,

where —HξX and Vj£ denote the components of Vxξ tangent and normal to M,
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respectively. Then 7> becomes the covariant differentiation with respect to the
induced connection in the normal bundle N(M). The tangent component HξX is
related to the second fundamental form σ as follows: (HξX, Y)=(σ(X, Y), ξ}
for any vector field Y. Then Hξ is a symmetric transformation of the tangent
space of M. In particular, we have

(1.13) β
k β

We define the covariant derivative hΐjk of ha

%3 by

(1.14)

Since M is of constant curvature, we get

h?Jk-h«kJ=0.

Now, suppose that K1...lτrι are defined for some m^2. Inductively we define the
covariant derivative h*v..lmJ of ha

Xγ...%Ίϊι by

From the equation above we have the following Ricci formula:

r = l β,l * r l r + 1 m r r

β, I

We define the covariant differentiation 7' on the Whitney sum T(M)Q)N(M)
as follows: For any 7V(M)-valued tensor field T of type (0, k), we define

k

(1.17) ( Ψ x T X Y l f •••, Y k ) = ^ x ( T ( Y l r •••, Y k ) ) - Σ T ( Y l f •••, 7 x F r , •••, Yk)

and 7 'T ia also defined by (ΨT)(YU ••• , Yk, X)=(ΨXT)(YU ••• Yk), which is an
iV(M)-valued tensor field of type (0, fe+1). We denote by 7 / 2 7 the covariant
derivative of ΨT. Furthermore, we can inductively define a covariant derivative
7 ' m T. Then, for the second fundamental form σ, it follows

(1.18) (7/m(7)(r, Z, Xlt ~ ,Xn)

Σ h%lv..lmωj(Y)ωk(Z)ωil(X1) - ωim(Xm)ea .
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2. Degrees of isometric immersions. In this section, let c be an isometric
immersion of M into M=Mn+p(c). We consider the decomposition of the normal
bundle of the immersion. For any point x in M the normal space of M is
simply denoted by Nx. Namely, we have Nx=(dcx(Mx))N, where (. )N means
taking the orthogonal complement into the tangent space Tc(x)(M) in the ambient
space. The second fundamental form σ of t at x is a bilinear map of MxxMx

into Nx defined by σ(X, Y)=(^χY)N, where X and Y are vector fields on a
neighborhood of x in M. For convenience' sake, we put σ2x—σXf and so σ2x

can be regarded as a linear map of a symmetric square S2(MX) of Mx into the
normal space Nx. We set Nx : = σ2x(S2(Mx)), which is called a first normal space
of c at x. This means that Nx is the linear subspace of Nx spanned by normal
vectors σ(u, v) for any vectors u and υ at i , sowe see that dim Nx^nH2=n(nJrl)/2.
In particular, if c is minimal, then dim Nx^n(n+l)/2—1. The point i of M is
said to be 2-regular if Nx is of maximal dimension with respect to basic points.
Let M2 be the set consisting of all 2-regular points of M. Then M2 is open in
M. For any point x in M2, we set 0% : = dtx(Mx)®Nx, which is called the second
osculating space of t at x. Now, for the 2-regular point x we define a trilinear
map σ3x of MxxMxxMx into (02)" by <78*(*, Y> Z): =(7 2 Γ(σ 2 a ;(r, Z)))^ for any
tangent vecor fields X, Y and Z, where (. )^2 denotes the orthogonal projection
into (OX)

N. σ3x is well defined and it is symmetric, because M is of constant
curvature, so it induces a linear map σ3x: S\Mx)->(0x)

N of the symmetric third
power of Mx into (Ol)N. We call σ3x the third fundamental form of c at x and
the linear subspace Nx : =σ8x(S\Mx)) is called the second normal space of ί at x.
The second normal space Nx at z is the orthogonal projection of the linear sub-
space spanned by l'σ(v, w, u) for any vectors u, v and w at x, so dimNx^nH3

= n(n+l)(n+2)/6. In particular, if ^ is minimal, then dim NxSn(nJrl)(nJr2)/6—n.
The point x in M2 is said to be 3-regular if Nx is of maximal dimension with
respect to basic points. Let M3 be the set consisting of all 3-regular points
of M2. Then M3 is also open in M2. We put 0% : = O | 0 Λ ^ | , which is called
the third osculating space of t at x.

We now proceed inductively and suppoese that the (j—l)-th osculating space
Oi"1 of c at the ( —l)-regular point x is defined. Then we see that it is possible
to define a linear map σJX of the symmetric -th power of Mx into (Oi"1)^ by

σJX(Xu - , * , ) : = ( 7 Z l ( ^ - l a ( Z 2 , ... , Xj)))N>-*

for any vector fields Xlf •••, X;, where (.)Λr^-1 denotes the orthogonal projection
into ( O Γ T We call σ^ the j-th fundamental form of t at x, iVΓ1: =σJX(SJ\Mx))
the {j—iyth normal space of c at x, and Ox : ^ O i " 1 © ^ " 1 the ;-//ι osculating
space of * at t. Clearly, the process must be eventually stopped, because of
dimOi^ dimM. Thus there exists a first integer q for which σ ; = 0 for j>q
and σqφ0. Then ^ is called the degree of * and the set Mq is open in M.

We shall be here concerned with the decomposition above of Riemannian
homogeneous spaces and then standard immersions of Riemannian symmetric
spaces into a sphere. Let M—G/K be a Riemannian homogeneous space, where
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G is a compact connected Lie group which acts effectively on M and K is a
closed subgroup of G, and let <, > be the G-invariant Riemannian metric on M.
The isometric immersion c of M into M is said to be equivalent, if there is a
continuous group homomorphism p : G^I(M) such that c{gx)=p(g)c(x) for any
element g in G and any point x in M, where I(M) denotes the group of iso-
metries of M. Assume that c is equivalent. It follows from the equvalence of
t that the dimension of the -th normal space NJ

X is independent of the basic
point x, so Mj coincides with M itself. We put N°x=dcx(Mx) for convenience'
sake. This gives a decomposition of the restriction TM(M) to t(M) of the tangent
bundle T(M) of M into the Whitney sum TM(M)=Σ,poNj®(Oq)N, where the
fiber of Nj at x is NJ

X and the fiber of (Oq)N at x is (0%)N. Let o be the origin
of M=G/K. The linear isotropy representation is the homomorphism of K into
the group of linear transformations of T0(M) which assign to each k^K the
differential of k at o. We denote by K* the image of K by the linear isotropy
representation, which is called the linear isotropy group at o. Then we remark
that the action of K* on M0=T0(M) may be extended to Sj(M0) by the usual
tensor action. Consequently, we have σ d{ku)—kσ j(u) for any element u in
Sj(M0), k in K, and ; = 2 , ••• , q, by means of the equivalence of t. This shows
that we have \σ%{u, u)\ — \σ^ku, ku)\ for any vector win Mo. Thus the immer-
sion c is constant isotropic, because of the equivalence of c.

In particular, let M=G/K be a compact symmetric space where the isotropy
aciton of K is irreducible, and let Δ be the Laplace operator for (M, <,», where
<, > is some G-invariant Riemannian structure up to scalar multilple. For any
λ^R, let Vλ be the eigenspace with the eigenvalue λ of Δ, and for any real

valued functions fx and f2 on M, let (flf f 2 ) : =\ fλf2dM. Then Vλ is a vector

space over R endowed with the inner product (,). Let pχ + l: —ά\m Vλ. For

each non-zero eigenvalue λ, let flt --fPλ+i be an orthonormal basis of Vλ. We

define cλ : M—Rpλ+1 by

Then it is seen in [9] that cχ is a minimal isometric immersion of (M, <, >) into
a ^-dimensional sphere Spλ(l) of constant curvature 1. We call such cλ the
standard immersion of M. By a theorem of Wallach [9], if the degree of the
standard immersion cχ is less than or equal to 3, then cχ is rigid. Evidently, a
rigid immersion of a homogeneous space is equivalent.

3. Cubic geodesic immersions. Let t be an isotropic immersion of an n~
-dimensional Riemannian manifold M into an (n + ί)-dimensional real space form
M=Mn+p(c) of constant curvature c, where p^2. For a regular curve C: (α, b)
—•M, if there exist an open interval It of each t in (a, b) and a 3-dimensionaI
totally geodesic submanifold Mt in M such that Itd(a, b) and c(C(It))dMt, then
the curve is said to be locally cubic. The immersion ί is called a cz/fo'c geodesic
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immersion, if any geodesic in M is locally cubic. This can be regarded as the
generalization of the concept of planar geodesic immersions, though it seems to
be quite probable that isotropicness is the superfluous condition. In particular,
a cubic geodesic immersion which is not planar geodesic is said to be proper.

Now, we replace isotropicness in the condition of cubic geodesic immersions
with another one related much more to cubic curves themselves. From now on,
we assume that the isometric immersion of M into M—Mn+P{c) satisfies only the
condition that each geodesic on M is locally a cubic curve. For any point x and
any unit vector u at x, let γu be a geodesic in M passing through x~γu{0) with
the initial vector fu(Q)=u and parametrized by arc length s, which is called a
normal geodesic. Let X(s)=Tu(s). Then (1.11) is reduced to

(3.1) lxY=l
a, 1,1

It follows from (1.12) and (1.17) that we have

(3.2) lχ{σ(.Y, Z))={l'σ){Y, Z, X)+σ{ΊxY, Z)+σ{Y, ΊXY)

-Έ<σ(Y, Z), σ(X, eι)yei

for any vector fields Y and Z along j u tangent to M. Since yu is locally con-

tained in a 3-dimensional totally geodesic submanifold Mo in M, local vector fields

X, σ{X, X) and lx(σ(X, X)) are tangent to Mo at γu(s) for a sufficiently small s.

LEMMA 3.1. The immersion c is cubic geodesic if and only if the orthogonal
complement of the vector γ'Jfi) in the tangent space TXMO is a subspace of the
normal space Nx for any point x and any unit vector u at x.

Proof. We suppose that the orthogonal complement of TXMO is contained in
Nx and then it suffices to show that c is isotropic. We may suppose that
σ(u, u)Φθ for a unit vector u. For a normal geodesic yu\ (—a, a)->M, there is
a sufficiently small interval / of 0 in (— a, a) such that c°γu\I is contained in a
3-dimensional totally geodesic submanifold Mo and moreover we have σ(X, X)Φ0,
where X(s)=γf

u(s). Accordingly, there exists a unit vector fx along γu\I such
that σ(X, X)=kξly where k(s)=\\σ(X, X)\\ is a positive smooth function. Since
lx(σ(X, X)) is tangent to Mo, it is spanned by three mutually orthogonal vector
fields X, ξi and ξ along γu \ I. Namely,

(3.3) lχ{σ{X, X))=fX+gξ1+ξ,

where / and g are smooth functions. It follows from (3.2), (3.3) and the as-
sumption that we have (σ(X, X), σ(X, 7)>+/<Z, F>=0 along γu\I, which yields
<(j(zz, u), σ(u, v)>—0 for any orthonormal vectors u and v at x. Thus t is isotropic,
because of (1.9).
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Conversely, since c is Λ-isotropic, it follows from (3.2) that (3.3) is reduced
to Ψσ(X, X, X)-λ2X=fX+gξ1+ξ, which implies <£, F>=0 for any vector field
Y orthogonal to X. Therefore ξ is normal to M. Q. E. D.

We shall here give an important example of a proper cubic geodesic immer-
sion. We are concerned with the standard immersion c3 of Sn(l) into SNC3)(c)
mentioned in the introduction, where Λ Γ (3)+l=(n+5)(n+l)! / 3 ! (n—1)! and
c=n/3(n+2). Then it is seen in [2, 9] that the degree of cs is equal to 3. For
orthonormal elements u and υ of Sn(l) in Rn+1, we identify v with a unit tangent
vector at u. Then y\ t-*u cos t+vs'm Ms a geodesic in Sn(l) with the initial
vector v and moreover, by the construction of the immersion, we have

where u% and v% (ι=l, 3) are fixed elements in RNC3)+1. This means that the
curve cz°γ is contained in the 4-dimensional linear subspace spanned by the
vectors u% and vx in RNC3:>+1, and therefore every geodesic in Sn(l) is mapped
in a 3-dimensional totally geodesic submanifold of SNCB\c) under the immersion
c3. It implies that cs is properly cubic geodesic.

4. Properties of cubic geodesic immersions. In this section, let c be a
cubic geodesic immersion of M into M=Mn+p(c). By using notations in the
previous section, general properties of cubic geodesic immersions are studied. We
denote by κ(s) the isotropy at the point Tu(s). Namely, k(s)=\\σ(X, X)\\, the square
of which is a smooth function along γu. We suppose that k is positive. Then k
is also smooth and there exists a unit vector field ξλ along γu normal to M such
that

(4.1) σ(XfX)=kζ1.

Since Vxξi is also tangent to Mo, there is a vector field ξ normal to M and
mutually orthogonal to X and ξλ such that

(4.2) ixξ^-kX+ξ.

By means of (3.2), (4.1) and (4.2) we have

(4.3) (Xk)ξ!+ kξ=Ψσ(X, X, X),

because c is ^-isotropic. By virtue of (1.12) and (1.17), we get

(4.4) 7x(7V(r, Z, W))=Ψ*σ(Y, Z, W, X)+!'σ{lxY, Z, W)

+Ψσ(Y, 1XZ, W)+Ψσ(Y, Z, 1XW)

, Z, W), σ(X, eι))eι.

Differentiating (4.3) in the direction of X and using (4.4), we have
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(4.5) -k{Xk)X+{Xίk)ξ1+2{Xk)ξ+klxξ

=Ψ*σ{X, X, X, X)-Έ<Ψσ(X, X, X), σ(X, e,)>β,.

Since X, ξx and ξ are mutually orthogonal, Ίxξ is orthogonal to X, and therefore

it is only spanned by ξ± and ξ, because Ίxξ is also tangent to Mo. It implies

together with (4.5) that we have

(4.6) 2<V'σ(Z, X, X), σ{X, Y)>=(Xk2KX, Y> .

Making use of this equation, we have

LEMMA 4.1. c is constant isotropic.

Proof. We may suppose that there is a point x such that the isotropy k at
the point is positive. Then we can choose a normal coordinate neighborhood U
of x in M such that k>0 on U. For any unit vectors u and v at x, let γu and
γΌ be normal geodesies in U passing through χ=γu(Q)=γv(0). Let X=γ'u and
7=r£. Differentiating <σ(X, X), σ(X, Z)> = k\X, Z> obtained by (1.8) in the
direction of X and using (3.2), we have <Ψσ(X, X, X), σ(X, Z)> + <σ(X, X),
l'σ(X, X, Z)>=(Xk2)<X, Z> for any vector field Z along γu, because W is
symmetric. On the other hand, differentiating \\σ(W, W)\\2=k2 in the direction
of F, we have 2<σ(W, W), Ψσ(W, W, Y)> = Yk2 for any vector field W along γυ.
Combining these two equations with (4.6), we have Yk2=(Xk2)(u, v} at the point
x. This means that k2 is constant along any geodesic γυ> and therefore it is
constant on U. Consequently, if there exists a point x such that k(x)>0, then
k is constant on M. Q. E. D.

By means of this lemma, we may assume that the isotropy k is positive.
Now, taking account of (4.2), we see that c is the planar geodesic immersion,
provided that ξ vanishes identically. Therefore, we may suppose that there exist
a point x and a unit vector u at x so that the normal vector field ξ defined by
(4.2) is not a zero vector at x. It follows from the continuity of ξ that we may
locally suppose that ξ has no zero points along the geodesic passing through x
with the direction of u. We put l=\\ξ\\ and ξz—ξ/l Then the function / is
smooth along γu, and it is easily seen that X, f2 and ξ2 are the Frenet frames
for γu which satisfy the Frenet formulas. Making use of (4.3), (4.5) and (4.6),
we have

(4.7) klξ2=Ψσ(X, X, X),

(4.8) <7V(Z, X, X), σ(X, F)>=0,

(4.9) l*σ(X, X)-{Xl)lfσ(X, X, X)+lΨ2σ(X, X, X, * ) = 0

for any vector field Y along γu. Moreover, since c is constant isotropic, we have

(4.10) <σ(Z, X), Ψσ(X, X, 7 ) > = 0 .
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For any fixed point x we can regard / as the function on the tangent unit sphere
Sx at x. Concerning this function, we find

LEMMA 4.2. / is independent of any unit vector at x.

Proof. We suppose that there exists a unit vector u in Sx such that /(w)>0.
We take a normal coordinate neighborhood U of x. Differentiating (4.8) in the
direction of X and making use of (4.4), (4.8) and (4.9), we get

(4.11) <Ψσ(X, X, X), Ψσ(X, X, Y)>=(kl)\X, Y>

for any vector field Y.
In spite of the value of the function /, as a direct consequence of (4.3) and

the equation above, we have (lfσ(v, v, v), l'σ{v, v, w)}=0 for any orthonormal
vectors v and w. We put v1=av+bw, w^—by — aw and y2=by + aw, w2=av—bw,
where a and b are real numbers such that a2+b2=l. Then pairs (yu wλ) and
(v2, w2) are both orthonormal, and so we have <Ψσ(ylf vlf vτ), Ψσ(yιt vlf wι))=0
( ί=l , 2). Summing up these equations, we obtain

{v, v, v)\\2-\\Ψσ(w, w, w)\\2)-ab(aA-4a2b2+b4)

'{3(\\Ψσ(v, v, w)\\2-\\l'σ(v, w, wψ)+2((Ψσ(v, υ, v), l'σ(v, w, w)>

-<Ψσ(w, w, w), Ψσ(w, v, v)})}=0.

If we put fl2r=(3+VI)/β and 62=(3-V"3")/6, then this yields \\Ψσ(v, v, v)\\2=
\\lfσ(w, w, w)\\2 By means of (4.3) and (4.7), we have {kl{υ))2=(kl{w))\ which
means that

(4.12) Kv)=l(w).

For any vector v in Sx, let V(v) be a subset in Sx consisting of vectors w such
that l(y)=ί(w), and let L be a subspace of Mx spanned by e2, ••• , en for any
orthonormal basis {elf e2, ••• , en} in Mx such that e1=y. Then (4.12) shows that
the intersection of L and Sx is contained in V(v). For any vector w in Sx which
does not belong to L, there exist two orthonormal vectors vx and v2 in L such
that ιv=avx+bv2, because of d imM^3. Since w is also orthogonal to v2, l(w)
=l(y2), and therefore I(y2)=l(y). Thus we see that w belongs to V(v), which
means that the subset V(v) coincides with Sx itself. Accordingly, the function
/ is constant on 5^. Q. E. D.

Now, let φ be an m-form on a vector space V. For any vectors vίf ••• , vm

and any permutation τ in a symmetric group Sm of order m, we put τφ(vly •••,
^m)r=^(^rci),...,^r(m))and we define the symmetrizer Sm by Smφ—Έr<Ξsmτφ' By
means of Lemma 4.2, (4.7) is true for any unit vector at a fixed point x, and
therefore it follows from (4.7), (4.8), (4.10) and the linearity of the forms σ and
Ψσ that we have the following equations at x

(4.7/ S6(Ψσ(uu u2, us), Ψσ(ut, u5, u6)y
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(4.8/ SAζΨσ{ulf u2f u3), σ(ut, v)>=0,

(4.10/ SA{σ{uly u2), Ψσ(u3, u4, v)>=0.

Since 1'σ is symmetric with respect to all elements, (4.8)' is reduced to

(4.8)" &,(lfσ{ul} M2, w3), σ(uA, v)>=0.

Combining (4.10)' with (4.8)", we have

(4.13) (σ(v, w), Ψσ(ulf u2, uz)}=(Bs<C7/σ(v, w, uλ), σ(u2, w3)> .

We define here a helix in an m-dimensional Riemannian manifold N. Let
C: c=c(s) be a regular curve in N, where s is the arc length. The curve C is
said to be of order r (^m), if it has the Frenet frames {c(s), ξ0, ••• , ξr} along C
and the following Frenet formulas along C are satisfied:

dc

(4.14)

for j—0} ••• , r, where 7 denotes the covariant differentiation in TV and ko{s)=kJ^.1

(s)=0 and ^ ;(s) (j=l, ••• , r) is positive along C. Then &/s) (resp. ξj) is called the
7-ί/ι curvature (resp. the 7-ί/ι normal vector) of C. For example, a geodesic is a
curve of order 0 and, a circle is a curve of order 1 and moreover the first
curvature kλ is constant. A curve C is called a helix if C is of order 2 and &x

and k2 are both constant along C. In particular, ?! is called a principal vector
and ?2 is called a binormal vector. Let C : c=c(s) be a helix. Then the components
satisfy a system of differential equations, because of the Frenet formulas for C.
According to the fundamental theory of differential equations, we see that there
exists a unique solution satisfying the given initial condition in a sufficiently
small interval of s=0. Namely, for any point p in N and any orthonormal
vectors u, v and w at p, there exists locally a helix passing through p with a
tangent vector u, which satisfies certain conditions.

Now, coming back to our situation, it follows from (4.1) and the Frenet
formulas that any geodesic γu in M is at most of order 2, and k and / are the
first and second curvature of γu, respectively. Moreover, k is constant along yu%

Concerning with geodesies in M, we have

PROPOSITION 4.3. // a cubic geodesic immersion c of M into M=Mn+p(c) is
proper, then any geodesic in M is a helix in the ambient space M.

Proof. In order to prove this property, it suffices to show that the second
curvature / along any geodesic in M is positive constant. Since c is not planar
geodesic, we may suppose that there exists a point x such that l(x)>0. For any
unit vectors u and v at x, let γu and γυ be normal geodesies passing through
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x=Tu(ff)=7υ(Q) with the tangent vector u=γ'u(0), v=γ'υ(Q), respectively. Then we
take a normal coordinate neighborhood U of x in M, on which / is positive.
Differentiating (4.11) in the direction of X=fu, we have

<Ψ2σ(Xy X, X, X), Ψσ(X, X, F)> + <7/σ(Z, X, X), Ψ2σ(X, X, Y, X)}

Again, differentiating (4.7/ with uι~W (ι=l, ••• , 6) in the direction of Z=γ/

Vf

we get

2<Ψσ(W, W, W), Ψ2σ(W, W, W, Z)> = k\Zl2).

Since the Ricci formula (1.16)2 shows Ψ2σ(W, W, W, Z)-Ψ2σ(W, W, Z, W) can
be expressed as a linear combination of vectors σ(W, ), the above equations
and (4.8) give

2(Ψ2σ(u, u, u, u), lfσ{u, u, v))=^k\2Xl2<u, v}-Zί2)

at x.
On the other hand, combining with (4.9), (4.10) and (4.11), we have

I2(ψ2σ(u, u, u, u), Ψσ(u, u, v)>=(kl)2Xl\u, v}/2 at x. Thus we see

(kl)%Xl\u} v>-Zl2)=0,

which implies / is constant along γΌ. This means that we can prove the fact
that the second curvature is constant on U. The assertion is thereby proved.

Q. E. D.

Remark. Helices in a Riemannian manifold are studied by Ikawa [4].

5. Degrees of cubic geodesic immersions. As is stated in §3, it is seen
that the degree of the standard immersion cz of Sn(l) into Sn+P(c) is equal to 3.
In this section, we shall be concerned with degrees of cubic geodesic immersions
of M into M=Mn+p(c). First of all, let c be only an isometric immersion of M
into My and we assume that every normal goedesic γ: c=c(s) in M is a helix in
the ambient space. Then the Frenet formulas for γ are given by

dc
: A ,

(5.1)

ds

where (c(s), X, ξlf ξ2) is the Frenet frames for γ and k and / are positive constant
along γ. It follows from (1.11) and the second equation of (5.1) that we have
σ(X, X)=kξι. Furthermore, by means of (3.2), this equation and the third



CERTAIN MINIMAL IMMERSION 333

equation of (5.1), we get

(5.2) -k'X+klξ^ΨσiX, X, X)-Έ<σ(X, X), σ(X, eι)>eι.

LEMMA 5.1. The immersion c is isotropic if and only if the binormal vector
ξ2 is normal to M.

Proof. If the immersion c is isotropic, then the property of σ(X, X) implies
that the isotropy of i is equal to k. Then it follows from (1.8) that we have
k2X=Σ,i<cr(X, X), σ(X, eι)}eι, because X is a unit vector field along γ, from
which implies, together with (5.2), that we have l'σ(X, X, X)—klξ2. Consequently,
ξ2 is normal to M.

Conversely, if ξ2 is normal to M, then (5.2) yields <σ(w, u), σ(u, v)}=0 for
any orthonormal vectors u and v at any point x, which asserts that the immer-
sion c is isotropic. Q. E. D.

We suppose that c is a ^-isotropic immersion. For a normal geodesic γu

passing through χ=γu(0) we can make use of many equations obtained in the
preceding section, where k and / are positive constant along γu. Thus, (4.9)
means

(5.3) Ψ2σ(X, X, X, X) + l2σ(X, X)=0

along γu. This means that we have lnσ(u> u, u, u)+l2σ(u, u)—0 for any unit
vector u at x, so we see Si{Ψ2σ(ulf u2, u3, z/4)+Z2<Wi, u2}σ(u3f w4)}=0, because
the forms 7/ 2σ and a are both linear. By taking account of the fact that the
form 7 / 2 is symmetric with respect to the first three elements, the equation is
reduced to

2σ(uu u2, u3, w4)+(2!)2/2©3{<w4, Wi>σ(M2, us)+<ulf u2>σ(u3, u4)}=0,

which gives, together with the property of isotropic immersions and the Ricci
formula (1.16)2,

(5.4) 6V'2<7(wi, u2, uz, v)=(BA(ScJr3k2-l2Ku1> u2>σ(u3, v)

I2)(v, u1}σ(u2, uB)—§Σ1(σ(eι, v), σ(ult u2)}σ(eι, u3

This shows that the 4-th fundamental form vanishes identically on M. In other
words, the third normal space N% is trivial. Thus, by the definition of the
degree of the immersion, (5.4) says the degree of c is not greater than 3. On
the other hand, by (5.2), Ψσ(u, u, u) is proportional to the binormal vector ξ2

which is orthogonal to σ(u, u)—kξλ. Consequently, the second normal space N%
is not empty, which proves the following

PROPOSITION 5.2. Let c be anjsotropic immersion of M into M=Mn+p(c). If
any geodesic in M is a helix on M, then the degree of c is equal to 3.
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THEOREM 5.3. The degree of a cubic geodesic immersion of M into M—
Mn+P(c) is equal to 3, provided that it is proper.

Remark. We denote by PmC an m-dimensional complex projective space,
and by S™ the unit sphere in Cm + 1. PmC is considered as the quotient space of
S%=S2m+1(l) obtained by identifying x in Sg1 with xa, where U G C such that
| α | = l . The canonical Riemannian structure on PmC is the invariant metric
such that the Hopf fibration π : S™—>PmC is a Riemannian submersion. According-
ly, for an eigenfunction / on PmC with respect to the Laplacian, so is f°π on
S™ [9]. If f°π is a polynomial of degree r with its corresponding eigenvalue
λ(r), we have Λ(r)=r(2m+r), and the standard immersion cr: PmC-+SNin(l) is

m+2r j (m+r —1)!
m I r !(m—1)!

consisting of all hermitian harmonic polynomials of degree (r, r) on PmC [1, 2].
Moreover, it is seen in [2, 8] that the degree of cλ is equal to 2. As for the
standard immersion c2 of PmC into 5^C2)(1), the degree is greater than 3. In
fact, the first normal space Nl at any point x has the dimension not greater
than 2m2—m—1, because of the characterization of complex projective spaces,
and it implies N(2)>n+ά\mNl+6\mNl.

given, where N(r)+1 = \-—-. rτ-ι~ f is the dimension of the space
m l r Km—1)1 J

Remark. Let c0 be a totally umbilical immersion of SNCΌ(c) into an (N
dimensional real space form M=MNCΌ+Q(c), where c<c. For the standard
immersion cr of Sn(c) or PmC it is easily seen that the degree of the composition
Co°cr of M into M is equal to that of cr, and the immersion co°cr has non-zero
mean curvature.

6. Compact cases. In the rest of this paper, let c be a cubic geodesic
immersion of an n-dimensional Riemannian manifold M into an (n + ί)-dimensional
real space form M=Mn+p(c) of constant curvature c. Accordingly, any geodesic
j in M is a helix in M and the first curvature k and the second curvature / are
positive constant. The present section is devoted to the case where the sub-
manifold M is compact.

Now, for any point x in M and any orthonormal vectors u and w at x, let
γu (resp. γw) be a normal geodesic passing through χ=γu(0) (resp. γw(0)) and let
X=fu and W=r'w Then, by virtue of (1.17), it satisfies

lx(Ψ2σ(Y, Z, U, V))=Ψ*σ(Y, Z, U, V, Z ) + 7 / 2 σ ( 7 z F , Z, U, V)+ -
(β.l)

+Ψ2σ(Y, Z, U} ^xV)-TAΨ2σ(Y, Z, U, V), (X, eι)>eι

for any vector fields Y, Z, U, and V along γu tangent to M. Next, we put
Uι—u (z=l, 2, 3) and w4=2; in (5.4). Then, differentiating it (resp. (5.3)) in the
direction of X (resp. W), and making use of (β.l), (4.8)// and the equation obtained
by putting u1=eι and ux—u (z=2, 3, 4) in (4.10)', we have
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Ψ*σ(u, u, u, v, u)=-(3cJ

r3k2jrl2)lf σ(u, u, v)/2

<tf(w, v), σ(u, eτy>l'σ{u, u, eι)+2<y/σ(u, u, v), σ(u, eι)>σ(eι, u)}

where u and v are orthonormal, and

Ψ3σ(u, u, u, u, w)+l2Ψσ(u, u, w)=0

at x. It follows from these equations and the Ricci formula (1.16)3 that we have

(6.2) (9c+9k2-l2)Ψσ(u, u, z;)-30Σ {<σ(u, v), σ(u, eι)>Ψσ(u, u, e%)

(w, u, v), σ(u, eι)}σ(eι, u)}=0.

Making use of (6.2), we can prove

L E M M A 6.1 . // the sectional curvature has a minimal value δ, then I2^

Proof. We suppose that there exist a point x and orthonormal vectors u
and v at x so that the sectional curvature K(u, v) attains the minimal value.
When we define the curvature transformation Ku by Kuw—R(w, u)u for any
vector w at x, v becomes an eigenvector of Ku with its eigenvalue δ. Therefore
we have

(c— δ)(v, wy-\-(σ(u, u), σ(v, w)} — (σ(u, v), σ(u, w)) = 0

by the Gauss equation, from which it follows

(6.3) (σ{u, v), σ(u, w)>=(c-\-k2-δKv, w>/3.

Combining (6.3) together with (6.2), we have

(10δ-c-k2-l2)\\Ψσ(u, u, ?;)||2=30Σ<V/

ίτ(w, u, v), σ(u, eτ)
i

Since the right hand side is non-negative, so is the left hand side.
We suppose that /2>9d. By means of this condition and (6.3), we have

c+&2+/2—10<5>0. This and the above equation imply Ψσ(u, u, v)=0. Even
though we change a part of u for that of v in the course of this proof, we can
assert the same property and we obtain l'σ(u, v, v)=0. Now, we put ut—u
( i=l , ••• , 4) and ut=v (ι=5, 6) in (4.7)/. Then it is reduced to

2<Ψσ(u, u, u), Ψσ(u, v, v)>+3\\Ψσ(u} u, v)\\2=(kl)2,

which contradicts to the fact that k and / are positive. Consequently, we can
prove the conclusion. Q. E. D.

By this lemma, the following property is verified.

PROPOSITION 6.2. For a proper cubic geodesic immersion of M into M=
Mn+P(c), if M is compact, then it is of positive curvature.
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7. Minimal immersions. In this section, we prove the following

THEOREM 7.1. For a cubic geodesic immersion of M into M=Mn+p(c), if it
is minimal, then M is locally symmetric.

Since c is minimal, the mean curvature vector τ]—J]ισ(eι, eι)/n vanishes.
By means of the definition of the multi-linear maps Ψσ and l/2σ, we see also
'Σiιl'σ{eι, eιy u)=0 and ΣιrJ/2σ(eι> exy u, v)=0 for any unit vectors u and v at
any point x. The last equation and (5.4) give

(7.1) 12Σ<<T(M, ej), σ{v, eι)}σ(eι> e3)

2-/2)}ί7(w, v).

We define a symmetric matrix Ha of order n by Ha=(h?j) for a fixed
number a, and then another symmetric matrix A—iAf) of order p by Aa

β—Tr (HaHβ).
Ha can be regarded as a symmetric linear transformation on the tangent space
defined by Ha=Hea, and A as a positive semi-definite symmetric linear trans-
formation on the normal space.

LEMMA 7.2. Matrices Ha and A satisfy

(7.2) Σ^?^={3nc-3nife 2 +(n+4)/ 2 }i7 α /6 for any a.
β

Proof. By the terminology of these matrices, (7.1) can be rewritten as
ΣβHβHaH'3={-3nc+(n+4)(3k2-l2)}Ha/12 for any index a. On the other hand,
the condition of isotropic immersion yields

β

which, together with the above equation, implies (7.2). Q. E. D.

Lemma 7.2 means that A2—LA and the matrix A has at most two distinct
constant eigenvalues 0 and L, where L={3nc—3nk2Jr(n+A)l2}/6. Since A is
positive semi-definite, the constant L is non-negative. If L=0, then A is a zero
matrix on M, which implies that c is totally geodesic. Thus, without loss of
generality, we may assume that it is positive.

Proof of Theorem 7.1. For any point x, we consider a sufficiently small
neighborhood U and a normal geodesic j passing through ^=^(0). Let X=γ'.
Then (7.2) is equivalent to Σt.j<σ(Y, Z), σ(el9 ej)}σ(eι, ej)=Lσ(Y, Z), where Y
and Z are parallel vector fields along y. Differentiating this equation in the
direction of X and taking account of (3.2), we see that the normal component
satisfies

Σ ι, eJf X), σ(Y, Z)> + <σ(et, ej), Ψσ(Y, Z, X)»σ(eτ, e3)

, σ(Y, Z)yi'σ{eu e}, X)}=Ll'σ{X, Y, Z).
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Since this property holds true for any unit vectors at x, we have the following
relation by virtue of the above equation at x and (4.13):

(7.3) © 3 Σ<σ(e t , ej), σ(uu u2)>Ψσ(eτ, e3, us)
ι3ι>3

=3LΨσ(uu u2, M3)-4Σ<σ(^, βj), Ψσ(ulf u2, u3)}σ(eι, e3).

Combining this equation together with (7.2), we have

&3Tl<σ(eι, ej), σ(ulf u2y><Ψσ(elf e3, u3), σ{u, v)>
Ί3

(u, v), Ψσ(ulf u2, us)>=0,

from which it follows that we have

3\\Έ<σ(u, v), Tσ{el} e3, w)>σ(el} *,)| |2+LΣ<σ(κ, v), Ψσ(et, e3, w)}2=0.

Since two terms of the left hand side in this equation are both of non-negative
and the coefficient of the second term is positive, we have <τ7'σ(elf eJf w), σ(u, v)}
=0. Because a and 7'cτ are linear forms, it implies that

(7.4) <Ψσ(uly ut, M8), σ(u4, u5)}=0

for any unit vectors u% ( ι = l , •••, 5) at x, from which we can obtain the conclusion.
Q. E. D.

By the well known properties about symmetric spaces, we have the following
theorem as a direct consequence of Proposition 6.2, Theorem 7.1 and a theorem
due to Sakamoto [8].

THEOREM 7.3. Let t be a cubic geodesic immersion of M into an (n+p)-
dimensional sphere Sn+P. If M is compact and simply connected and c is minimal,
then M is a symmetric space of rank one.

8. Main theorem. We shall be concerned with the following Main theorem
in this paper.

THEOREM 8.1 Let M be an n(^3)-dimensιonal compact simply connected
Riemannian manifold and let c be a proper cubic geodesic immersion of M into an
(n+p)--dimensional sphere Sn+P(c), where p^2. If c is minimal, then the immer-
sion is rigid to the immersion <r0

o:3 of Sn into Sn+P, where c0 is a totally geodesic
immersion of SΛΓ(3) (c) into Sn+P(c) and c3 is the standard immersion of Sn into

First of all, we study about the dimension of the first normal space of the
submanifold. Let r be the rank of the matrix A=(A%). Then it is clear that r
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is the dimension of the first normal space, because of the definition of the matrix.
We use here the same notation as that in the course of the proof of Theorem

7.1. Differentiating (5.4) in the direction of X, and taking its normal components,
we have

(8.1) 6Ψ3σ(uu u2, uZi v, u)=^>3{(-^c+3k2-l2Kuu u2>Ψσ(u3, u, v)

2 - / 2 ) O , Ul}Ψσ(u2, u8, u)

(tti, u2), σ(v, eιy>l'σ(eτ, uz, u)}

because M is locally symmetric and it satisfies (7.4). Moreover, since M is
minimal and consequently we have Yj^fZσ{e%, eτ, u, v, w)=0, it follows from
(8.1) that

(u, et), σ(v, ej)>Ψσ(w, et, ej= {-3nc+(n+4)(3^2-/2)}7V(H, v, w).

Therefore we have

12 Σ <Ψσ(et, eJ9 ek), Ψσ(eh em, ek)>(σ(eτ, ei), σ(eJt em)>
ι,j, k , l , m

(8.2)
{

where || || denotes the length of the form. When we note that the left hand
side in the above equation is non-negative, we can prove the following

LEMMA 8.2. The rank of the matrix A satisfies

n(n+2) ^ ^ (n+2)(ft-l)

Proof. Since c is β-isotropic and minimal, the square of the length of the
second fundamental form is equal to n(n+2)&2/2. On the other hand, by the
definition of A, we have Tr A=rL=\\σ\\2, where L is the positive eigenvalue of
A, so we have

(8.3) r=3ft(n+2)£7{3nc-3ft&2+(n+4)/2} .

Furthermore it is seen in [6] that there is the following relation between
Tr A2 and |M| : Tr ^. 2 ^2| |σ | | 4 /(^+2)(n~l), and the equality is true if and only if
M is of constant curvature. Because of Tr A2=rL2=L\\σ\\2, we get

(8.4) 3n(tt-l)c-3ft(ft + l)£ 2 +(ft-l)(ft+4)/ 2 ^0.

Combining the non-negativeness of the left hand side in (8.2) with (8.3) and (8.4),
we obtain the inequalities. Q. E. D.

Now, due to Theorem 7.3, we may consider the submanifold M as an n-
dimensional Riemannian symmetric space of rank one. These spaces contain only
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a sphere Sn, a complex projective space PC71 (n=2m^A), a quaternion projective
space PQn (n—Am^S) and a Cayley projective space PCan (n = 16). Let M* be
an n-dimensional compact simply connected Riemannian symmetric space of rank
one. We normalize the Riemannian metric of M* in such a way that the sectional
curvature K(u, v) satisfies l/A^K(u, v)^l. We denote by Kl the curvature
transformation with respect to u. Then we can regard K% as the transformation
of the orthogonal complement to the vector u in M% at any point x. As is well
known, distinct eigenvalues of Kt are 1 and 1/4. M* is said to be of type s if
the maximal eigenvalue of the linear transformation has multiplicity s. For each
projective space, s is equal to 1, 3, 7 or n—1, according as M* is a complex
projective space, a quaternion projective space, a Cayley projective space or a
sphere.

On the other hand, since M has the same situation as that of M*, we can
define the concept of the type of M. Concerning the type of M, we have

LEMMA 8.3. The type s of M satisfies

if M is not of constant curvature.

Proof By the definition of the type, the linear transformation Ku on Mx

has exactly two distinct eigenvalues and the multiplicity of the maximal one
is equal to s. Since M is not of constant curvature, the rank of A is less than
{n+2)(n—l)/2. When we denote by HtJ a normal vector with component
*(Λ?/S "m , hϊfp) for any indices i and j , it follows from Lemma 7.2 that we have
AHιj=LHιr Then there exist an index i such that Ha is a zero vector or
distinct indices ί and j such that HtJ is a zero vector, because r=rank A
^n(n+l)/2—l if it is not provided. Since the equation (6.3) holds for the
maximal value of the sectional curvatures, we may consider the Riemann metric
of M so that eigenvalues of the linear transformation Ku are AK and K, where
AK— c+k2. Thus we can choose a suitable orthonormal basis {eu •••, en} in such
a way that u=βi and eτ (x—2, •••, s+1) are contained in the eigenspace cor-
responding to AK and the others belong to another eigenspace. Thus we have

K(e1} et)=4K (ι=2, - , s+1),

K(elf ej)=K for ^ s + 2 .

Accordingly, (1.7) and (1.8) imply σ(eu eτ)=0 and \\σ(e1} e3)Y—K. Using these
results and ΣiO(w, et), σ{v, eι)}=(n+2)k2<u, v}/2, we have

Έ<σ(elf et), σ(elt eτ)} = — n — k 2 = k 2 J ι

from which the necessary equality is given. Q. E. D.
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We suppose that M is not of constant curvature. It follows from (8.3) that
we have r<(n+2)k2/(c—k2), because k and / are positive, which together with
Lemma 8.3 implies r<(n-\-2)(n — s—l)/2(s+l). This contradicts to Lemma 8.2.
Consequently, M must be a real space form. Namely, M is an n-dimensional
sphere and the degree of the immersion c is 3. Thus, we can apply Theorem
4.5 in [6] to our case, and the assertion in Theorem 8.1 is thereby proved.

Remark. We note here that the proof of Lemma 3.1 in [6] contains an
error and Theornm 4.5 in the paper is true under the additional condition that
the mean curvature vector f) is parallel in the normal bundle.
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