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Introduction. Minimal immersions of spheres into a sphere have been com-
pletely determined by do Carmo and Wallach [2]. Let H™™ be the space of all
spherical harmonic polynomials of degree » on an n-dimensional sphere S™, where
dim H""=(n+2r—1)n+r—2)/r'(n—1)! =: N(r)+1. For an orthonormal basis
{f1, -, fynw+: of H™™ we define an immersion ¢, of S™ into an (N(r)+1)-
dimensional Euclidean space RY¥™*! by (. (x)=(fi (%), -, fym+1)/(N(r)+1)M2,
which is called a standard immersion. Then the image by ¢, is contained in the
unit sphere SY¥(1) in R¥™*! and by means of a theorem of Takahashi [2] it
is seen that ¢, is a minimal isometric immersion and ¢(S™) is not contained in the
great sphere of SY™(1). With regard to the degree of the immersion in the
sense of Wallach [9], they showed that the degree of ¢, is equal to » and if
r=3, then ¢, is rigid.

On the other hand, Hong [3] introduced recently a notion of planar geodesic
immersions. Let M and M be complete connected Riemannian manifolds of
dimension n and n+p, respectively. An isometric immersion ¢ of M into M is
called a planar geodesic immersion if each geodesic in M is mapped locally under
the immersion into a 2-dimensional totally geodesic submanifold of M. Planar
geodesic immersions of M into S"*?(c) have been classified by Little [5] and
Sakamoto [8], independently, who stated that M is a compact symmetric space
of rank one and the second fundamental form is parallel. The so-called Veronese
manifold can be considered as one of examples determined by the planar geodesic
immersion, while it can be regarded as the case of degree 2 in the ambient space.

When one pays attension to the rigidness of the standard immersion ¢,, it
seems to be important to study the structure of the immersion with lower degree.
As a matter of fact, the local version and the characterization of the Veronese
manifold which is essentially an easiest model in our situation are investigated
from variously different viewpoints. Furthermore, the local version concerning
the immersion ¢; of S™ into S¥ has been treated by the author and Itoh [6].
In this paper, we shall be concerned with the characterization of the standard
immersion ¢; of S™ into S¥®, So as to do so, the notion of planar geodesic

Received May 12, 1979
321



322 HISAO NAKAGAWA

immersions is generalized. The purpose of this paper is to prove Theorem 8.1.
The author would like to express his hearty thanks to Professor T. Itoh for
his suggestions and advise during the preparation of this paper.

1. Preliminaries. First of all, we recall the general theory of Riemannian
submanifolds immersed into a Riemannian manifold to fix our notation and state
several properties which are subsequently useful. We denote by M™(¢) an n(=3)-
dimensional connected Riemannian manifold of constant curvature ¢, which is
called a real space form of constant curvature c. Let M be an n(=3)-dimensional
connected and orientable Riemannian manifold with the Riemannian metric g and
let ¢ be an isometric immersion of M into M=M"*?(¢). When the argument is
only considered in the local version, M need not be distinguished from «(M). So,
in order to simplify the discussion, we identify any point x in M with the point
«(x), and moreover any tangent vector u at x with the tangent vector dc,(u).

l\Iow we choose an orthonormal local frame field {es, -**, @n, @ns1, =5 €nip}
of M in such a way that, restricted to M, the vectors ey, ---, ¢, are tangent to
M and hence the others are normal to M. Restricting the canonical forms and
the connection forms on M with respect to these frames to M, we denote them
by wy4, ®wsg, where A, B=1, -, n, n+1, .-, n+p. We then have

(LD 0,=0.

Here and in the sequel, we make use of the following convention on the range
of indices:

3, 7, =1, n,
a, B, - =n+l, -, ntp.

The metric induced from the Riemannian metric in the ambient space M under
the immersion ¢ is given by g=23;w;-w;. Then {e,, ---, e¢,} are also the ortho-
normal frame field with respect to the induced metric, and {w,, -, w,} are the
dual field with respect to {ey, ---, e,}. It follows from (1.1) and Cartan’s lemma
that we have

1.2) W=2] h$w;,  hE=h%.
J

The quadratic form X, jA%,w,w; is called the second fundamental form of the
immersion ¢ on M in the direction of e¢,. At any point x of M, we denote by
X and Y (resp. £ and %) vector fields on a neighborhood of x tangent (resp.
normal) to M. The second fundamental form ¢ of M can be written as

(1.3) o(X, V)= 3 hio(X)o,(Y)eq

for any vector fields X and Y. By means of the structure equations of the
ambient space, we have the following structure equations of the submanifold M :

(14) d(Uq;’I‘ZCUi]/\(Uj:O, w”—l—w,i:O,
J
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(15) dwi}"“%wik/\wk]:[gz])

1
Q j:_§ %R”klwk/\wl ’

where w;, (resp. £,,) denotes the connection form (resp. the curvature form) on
M. Moreover, we have

1
2 Ragrwr Aoy,

(1.6) dwaﬁ”}';war/\wrﬁ“:gaﬂ: ‘Qaﬂ:—fk z

where w,.; defines the connection induced in the normal bundle on M and Rap
is called the normal curvature form on M. From (1.2) and (1.5) we have the
equation of Gauss

(1.7) Rijri=c(0:0;4 *‘51‘;;5;0'*‘;(}1?1 Se— h%h$) .

For the second fundamental form ¢ the vector o(e,, ¢,) is called a normal
curvature vector in the direction of a unit vector e¢,. If every normal curvature
vector has the same length for any unit vector u at x, then the immersion ¢ is
said to be isotropic at x. If ¢ is isotropic at any point on M, namely, the length
of a normal curvature vector depends only on the initial point, then the immersion
is said to be isotropic. In particular, if the length is equal to 2, the immersion is
said to be A-isotropic, and the isotropy A is a continuous function defined on M,
the square of which is smooth. The immersion ¢ is A -isotropic at a point x if
and only if the second fundamental form satisfies

(1.8) Sela Uy, Ug), 0(Us V=S Uy, Up{Uls, V),

where u, 1=1, 2, 3) and v are unit vectors at x and &,, denotes the cyclic sum
with respect to vectors uy, -+, u,. The condition is equivalent to
(1.9) olu, u), o(u, v)>=0

for any orthonormal vectors u and v at x [7].
Now, we denote by V (resp. ﬁ) the covariant differentiation on M (resp. M).
For any vector fields X and Y=2),v;¢,, we have

(1.10) VeV =30~ S ywu(Dler,
(1.11) VY =YxY+0o(X, Y):VXY—'r-aEl] 50 (X)w Y )e, .

For any vector fields &€ and X on a neighborhood of x in M, we may express

(1.12) Vyb=—HX+ViE,

where —H,X and Vi€ denote the components of V& tangent and normal to M,
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respectively. Then Vi becomes the covariant differentiation with respect to the
induced connection in the normal bundle N(A). The tangent component H.X is
related to the second fundamental form ¢ as follows: (H.X, Y>=<o(X, V), &
for any vector field Y. Then H, is a symmetric transformation of the tangent
space of M. In particular, we have

(1.13) ﬁxeaz—;wak(X)ek—pzwaﬁ<X)eﬁ .
We define the covariant derivative A, of h{, by
(1.14) %‘, hi‘}hwk:dhiz—; h?jw”—; h‘,-’lwlj——fj_‘ heiwga .
Since M is of constant curvature, we get
hf‘jk—h'{‘M:O.

Now, suppose that A7,..,, are defined for some m=2. Inductively we define the
covariant derivative hf,., , of Af .., by

m
LI D= R 1= B DAty sty @ty = 3 W@

r=1
From the equation above we have the following Ricci formula:
h?;-ulmjk_h?l-uzmk]

m
— @ o
fc,r;l (h’-l"'lr—lﬁr+1‘"17n57'rk—_hll"'lr—lk’r+1"'1m57'rj)

Ms

(116)m + E h{:ynzrﬂl@T+1»»»1m(hgrkh§9j—higrjh'ygk)

1 8.1

r

+ F lh‘gr..lm(hfkh;&j_ ?]/'L;Bk) .

We define the covariant differentiation ¥V’ on the Whitney sum T (M) N(M)
as follows: For any N(M)-valued tensor field T of type (0, k), we define

k
Q17 (VT)Y o, YO=VHT(Yy, o, Ya))= BTV, oo, UaVyy oo, Vi)

and VT ia also defined by (VWT)Y,, ---, Y, X)=N%T)Y,, --- Y,), which is an
N(M)-valued tensor field of type (0, k+1). We denote by V2T the covariant
derivative of V7. Furthermore, we can inductively define a covariant derivative
V'™T. Then, for the second fundamental form o, it follows

(1.18) N'™eXY, Z, X,, -+, Xn)
= 2 hl])'lklln-zmwj(y)wk(z>wi1(Xl) Wi (Xmea .

a,3, k11,1
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2. Degrees of isometric immersions. In this section, let ¢ be an isometric
immersion of M into M=M"*?(c). We consider the decomposition of the normal
bundle of the immersion. For any point x in M the normal space of M is
simply denoted by N,. Namely, we have N,=(d¢,(M,))", whgre (.)¥ means
taking the orthogonal complement into the tangent space T, ,,(M) in the ambient
space. The second fundamental form ¢ of ¢ at x is a bilinear map of M, XM,

into N, defined by o(X, V)=(xY)¥, where X and Y are vector fields on a
neighborhood of x in M. For convenience’ sake, we put g,,=0,, and s0 0y,
can be regarded as a linear map of a symmetric square S*(M,) of M, into the
normal space N,. We set Ni:=0,,(S¥M,)), which is called a first normal space
of ¢ at x. This means that Ni is the linear subspace of N, spanned by normal
vectors o(u, v)for any vectors # and v at x, so we see that dim Vi<, H,=n(n-+1)/2.
In particular, if ¢ is minimal, then dim N!=<n(n-+1)/2—1. The point x of M is
said to be 2-regular if N} is of maximal dimension with respect to basic points.
Let M, be the set consisting of all 2-regular points of M. Then M, is open in
M. For any point x in M, we set O%: =d¢,(M,)PB NL, which is called the second
osculating space of ¢ at x. Now, for the 2-regular point x we define a trilinear
map sz of MyXMyXM, into (0¥ by 0,.(X, Y, Z): =(Vx(0,5(Y, Z))"2 for any
tangent vecor fields X, Y and Z, where (.)"z denotes the orthogonal projection
into (O2)¥. o,, is well defined and it is symmetric, because M is of constant
curvature, so it induces a linear map o,;: S}*(M,)—(02)" of the symmetric third
power of M, into (O2)¥. We call o, the third fundamental form of ¢ at x and
the linear subspace N2: =0,,(S*(M,)) is called the second normal space of ¢ at x.
The second normal space N2 at x is the orthogonal projection of the linear sub-
space spanned by V'o(v, w, u) for any vectors u, v and w at x, so dim N3=,H,
=n(n+1)(n+2)/6. In particular, if ¢ is minimal, then dim N:=<n(n+1)(n+2)/6—n.
The point x in M, is said to be 3-regular if N} is of maximal dimension with
respect to basic points. Let M; be the set consisting of all 3-regular points
of M,. Then M, is also open in M,. We put O%:=02 N2, which is called
the third osculating space of ¢ at x.

We now proceed inductively and suppoese that the (;—1)-th osculating space
057t of ¢ at the (y—1)-regular point x is defined. Then we see that it is possible
to define a linear map o,, of the symmetric j-th power of M, into (O )Y by

0,2 Xy, oy X3t = (Vg (0,-10( Xy, -+, X))V

for any vector fields X, ---, X,, where (.)¥s-t denotes the orthogonal projection
into (O5™)Y. We call g,, the j-th fundamental form of ¢ at x, Ny ': =¢,,(S/(M,))
the (j—1)-th normal space of ¢ at x, and O} : =05'@ N, the j-th osculating
space of ¢ at x. Clearly, the process must be eventually stopped, because of
dim O%= dim M. Thus there exists a first integer ¢ for which ¢,=0 for ;>¢
and 0,#0. Then ¢ is called the degree of ¢ and the set M, is open in M.

We shall be here concerned with the decomposition above of Riemannian
homogeneous spaces and then standard immersions of Riemannian symmetric
spaces into a sphere. Let M=G/K be a Riemannian homogeneous space, where
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G is a compact connected Lie group which acts effectively on M and K is a
closed subgroup of G, and let ¢,) be the G-invariant Riemannian metric on M.
The isometric immersion ¢ of M into M is said to be equwalent, if there is a
continuous group homomorphism p: G—I(M) such that ¢«(gx)=p(g)(x) for any
element g in G and any point x in M, where [(]l7[ ) denotes the group of iso-
metries of M. Assume that ¢ is equivalent. It follows from the equvalence of
¢ that the dimension of the j-th normal space NN is independent of the basic
point x, so M, coincides with M itself. We put N‘;:dix(Mx) for convenience’
sake. ThisN gives a decomposition of the restriction 7'y (M) to ¢«(M) of the tangent
bundle T(M) of M into the Whitney sum 7T y(M)=2%ZIN'P(0Y)?, where the
fiber of N’ at x is N’ and the fiber of (09" at x is (O%2)". Let o be the origin
of M=G/K. The linear isotropy representation is the homomorphism of K into
the group of linear transformations of 7T,(M) which assign to each k=K the
differential of 2 at 0. We denote by K* the image of K by the linear isotropy
representation, which is called the linear isotropy group at o. Then we remark
that the action of K* on M,=T,M) may be extended to S’(M,) by the usual
tensor action. Consequently, we have o,(ku)=Fko,(u) for any element u in
Si(M,), k in K, and )=2, ---, ¢, by means of the equivalence of ¢. This shows
that we have |oy(u, u)|=|lo(ku, ku)| for any vector u in M,. Thus the immer-
sion ¢ is constant isotropic, because of the equivalence of ¢.

In particular, let M=G/K be a compact symmetric space where the isotropy
aciton of K is irreducible, and let A be the Laplace operator for (M, <, ), where
{,> is some G-invariant Riemannian structure up to scalar multilple. For any
AR, let V, be the eigenspace with the eigenvalue A of A, and for any real

valued functions f; and f, on M, let (fy, f2): =SMf,f2dM. Then V; is a vector

space over R endowed with the inner product (,). Let p;+1:=dim V,. For
each non-zero eigenvalue 2, let f;, --- f”»rl be an orthonormal basis of V,. We

define ¢; : M—R?i*! by
a(x)=(f1(x), =+, [p+1(x))/(Ppa+1)"2.

Then it is seen in [9] that ¢; is a minimal isometric immersion of (M, {,>) into
a p;-dimensional sphere S?i(1) of constant curvature 1. We call such ¢; the
standard wmmersion of M. By a theorem of Wallach [9], if the degree of the
standard immersion ¢; is less than or equal to 3, then ¢; is rigid. Evidently, a
rigid immersion of a homogeneous space is equivalent.

3. Cubic geodesic immersions. Let ¢ be an isotropic immersion of an n-
-dimensional Riemannian manifold M into an (n+ p)-dimensional real space form
M=M"*?(¢) of constant curvature ¢, where p=2. For a regular curve C: (qa, b)
—M, if there exist an open interval I, of each ¢ in (a, b)) and a 3-dimensional
totally geodesic submanifold M, in M such that [ «C(a, b) and «(C(,))CM,, then
the curve is said to be locally cubic. The immersion ¢ is called a cubic geodesic
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mmmersion, if any geodesic in M is locally cubic. This can be regarded as the
generalization of the concept of planar geodesic immersions, though it seems to
be quite probable that isotropicness is the superfluous condition. In particular,
a cubic geodesic immersion which is not planar geodesic is said to be proper.

Now, we replace isotropicness in the condition of cubic geodesic immersions
with another one related much more to cubic curves themselves. From now on,
we assume that the isometric immersion of M into MzM""p(c) satisfies only the
condition that each geodesic on M is locally a cubic curve. For any point x and
any unit vector u at x, let 7, be a geodesic in M passing through x=7,(0) with
the initial vector 7,(0)=wu and parametrized by arc length s, which is called a
normal geodesic. Let X(s)=7u.(s). Then (1.11) is reduced to

3.1 Ve V=VyV+o(X, V)=VyV+ X hi0,(X)w (Y e, .
a,t1,]
It follows from (1.12) and (1.17) that we have

(3.2) Vx(a(Y, Z)=(V'a)¥, Z, X)+o(VyY, Z)+0(Y, UxY)
—2Ko(Y, Z), (X, e)e,

for any vector fields Y and Z along 7, tangent to M. Since Tu is locally con-
tained in a 3-dimensional totally geodesic submanifold M, in M, local vector fields

X, o(X, X) and Vy(o(X, X)) are tangent to M, at 7.(s) for a sufficiently small s.

LEMMA 3.1. The ummersion ¢ 1s cubic geodesic i1f and only 1f the orthogonal
complement of the vector 7,(0) in the tangent space T M, 1s a subspace of the
normal space N, for any pownt x and any unit vector u at x.

Proof. We suppose that the orthogonal complement of 7°,M, is contained in
N, and then it suffices to show that ¢ is isotropic. We may suppose that
o(u, u)#0 for a unit vector u. For a normal geodesic 7,:(—a, a)—M, there is
a sufficiently small interval I of 0 in (—a, a) such that ¢-7,|/ is contained in a
3-dimensional totally geodesic submanifold M, and moreover we have o(X, X)+0,
where X(s)=7.,(s). Accordingly, there exists a unit vector &; along 7,|I such
that o(X, X)=Fk&,, where k(s)=|o(X, X)|| is a positive smooth function. Since
ﬁX(G(X, X)) is tangent to M,, it is spanned by three mutually orthogonal vector
fields X, &, and & along 7,|/. Namely,

(3.3) Vx(a(X, X)=FfX+g&+€,

where f and g are smooth functions. It follows from (3.2), (3.3) and the as-
sumption that we have <o(X, X), (X, Y))+ /<X, Y>=0 along 7,|/, which yields
Ko(u, u), o(u, v))=0 for any orthonormal vectors u and v at x. Thus ¢ is isotropic,
because of (1.9).
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Conversely, since ¢ is A-isotropic, it follows from (3.2) that (3.3) is reduced
to Vo(X, X, X)—22X=fX+gé& +¢& which implies <&, Y)=0 for any vector field
Y orthogonal to X. Therefore § is normal to M. Q.E.D.

We shall here give an important example of a proper cubic geodesic immer-
sion. We are concerned with the standard immersion ¢; of S™1) into SY(c)
mentioned in the introduction, where N@3)+1=(n-+5)(n+1)!/3!(n—1)! and
c¢=n/3(n+2). Then it is seen in [2, 9] that the degree of ¢; is equal to 3. For
orthonormal elements » and v of S™(1) in R™*!, we identify v with a unit tangent
vector at u. Then y: t—ucos t+vsint is a geodesic in S™1) with the initial
vector v and moreover, by the construction of the immersion, we have

¢s(7(t))=u, cos t+ v, sin t+u, cos 3t+ v, sin 3¢,

where u, and v, (1=1, 3) are fixed elements in R¥®*!, This means that the
curve ;o7 is contained in the 4-dimensional linear subspace spanned by the
vectors u, and v, in R¥®*1 and therefore every geodesic in S™(1) is mapped
in a 3-dimensional totally geodesic submanifold of S¥(¢) under the immersion
ts. It implies that ¢; is properly cubic geodesic.

4. Properties of cubic geodesic Nimmersions. In this section, let ¢ be a
cubic geodesic immersion of M into M=M"*?(¢). By using notations in the
previous section, general properties of cubic geodesic immersions are studied. We
denote by x(s) the isotropy at the point 7,(s). Namely, 2(s)=]| (X, X)|, the square
of which is a smooth function along 7,. We suppose that % is positive. Then &
is also smooth and there exists a unit vector field &, along 7, normal to M such
that

4.1 a(X, X)=Fk¢,.

Since V&, is also tangent to M,, there is a vector field & normal to M and
mutually orthogonal to X and &, such that

(4.2) Vxbi=—kX+E.
By means of (3.2), (4.1) and (4.2) we have
(4.3) (XR)E,+RE=V0(X, X, X),

because ¢ is k-isotropic. By virtue of (1.12) and (1.17), we get

(4.4) Vx(Va(Y, Z, W)="2a(Y, Z, W, X)+Va(VyY, Z, W)
+Vo(Y, NxZ W)+Va(Y, Z, Vx W)
—ZZ)<V'O‘(Y, Z, W), o(X, e.)e,.

Differentiating (4.3) in the direction of X and using (4.4), we have
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(4.5) — R(XE)XA-(X2R)E,+2 X R)E+ kY x&
:vIZU(X, X, X, X)_2<V/U(X) X} -X)) O-(X’ el)>e1, .

Since X, &, and & are mutually orthogonal, V& is orthogonal to X, and therefore
it is only spanned by &; and &, because V& is also tangent to M, It implies
together with (4.5) that we have

(4.6) 2V'ao(X, X, X), o(X, Y))=(XE*KX, Y>.
Making use of this equation, we have
LEMMA 4.1. ¢ 1s constant 1sotropic.

Proof. We may suppose that there is a point x such that the isotropy % at
the point is positive. Then we can choose a normal coordinate neighborhood U
of x in M such that >0 on U. For any unit vectors » and v at x, let 7, and
7» be normal geodesics in U passing through x=7,0)=7,0). Let X=7. and
Y=y,. Differentiating <o(X, X), 0(X, Z))=Fk* X, Z> obtained by (1.8) in the
direction of X and using (3.2), we have <V'o(X, X, X), 0(X, Z2))+<o(X, X),
Vo(X, X, Z))=(Xk*<X, Z> for any vector field Z along 7, because Vo is
symmetric. On the other hand, differentiating |a(W, W)|?2=£k? in the direction
of Y, we have 2<a(W, W), Va(W, W, Y))=Yk? for any vector field W along 7.
Combining these two equations with (4.6), we have Y k*=(Xk?*<u, v) at the point
x. This means that k? is constant along any geodesic 7, and therefore it is
constant on U. Consequently, if there exists a point x such that k(x)>0, then
k is constant on M. Q.E.D.

By means of this lemma, we may assume that the isotropy % is positive.
Now, taking account of (4.2), we see that ¢ is the planar geodesic immersion,
provided that & vanishes identically. Therefore, we may suppose that there exist
a point x and a unit vector u at x so that the normal vector field & defined by
(4.2) is not a zero vector at x. It follows from the continuity of & that we may
locally suppose that & has no zero points along the geodesic passing through x
with the direction of u. We put [=||&| and &,=&/l. Then the function [ is
smooth along 7., and it is easily seen that X, & and &, are the Frenet frames
for 7, which satisfy the Frenet formilas. Making use of (4.3), (4.5) and (4.6),
we have

“.7 klE,=V'a(X, X, X),
4.8) Vo(X, X, X), o(X, Y)>=0,
4.9) Po(X, X)—(XDV'e(X, X, X)+IV"?e(X, X, X, X)=0

for any vector field Y along 7,. Moreover, since ¢ is constant isotropic, we have

(4.10) Co(X, X), Vo(X, X, Y))=0.
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For any fixed point x we can regard [ as the function on the tangent unit sphere
S: at x. Concerning this function, we find

LEMMA 4.2. [ 1s independent of any unit vector at x.

Proof. We suppose that there exists a unit vector u in S, such that /(u)>0.
We take a normal coordinate neighborhood U of x. Differentiating (4.8) in the
direction of X and making use of (4.4), (4.8) and (4.9), we get

(4.11) No(X, X, X), Vao(X, X, Yo =(RDXX, Y>

for any vector field Y.

In spite of the value of the function /, as a direct consequence of (4.3) and
the equation above, we have <V'o(v, v, v), Va(v, v, w))=0 for any orthonormal
vectors v and w. We put v,;=av-+bw, w,=bv—aw and v,=bv+aw, w,=av—bw,
where a and b are real numbers such that a®4b*=1. Then pairs (v;, w;) and
(vs, wy) are both orthonormal, and so we have <V'a(v,, v,, v.), Vo(v,, v,, w,)>=0
(i=1, 2). Summing up these equations, we obtain

ab(a*+b)(IV' a(v, v, VI*—=|Vo(w, w, w)|*>)—abla*—4a®h*+b*)
BUVa(v, v, W=V o(v, w, WIH+2(KV (v, v, v), Vo(v, w, w)
—~Volw, w, w), Vealw, v, v)))}=0.

If we put a®=(3++/3)/6 and b*=(3—+/3)/6, then this yields |V o(v, v, v)|*=
IV'o(w, w, w)|* By means of (4.3) and (4.7), we have (k{(v))?=(kl(w))? which
means that

(4.12) (v)y=lw).

For any vector v in S,, let V(v) be a subset in S, consisting of vectors w such
that [(v)=I(w), and let L be a subspace of M, spanned by e,, -, ¢, for any
orthonormal basis {e;, e, -, ¢,} in M, such that ¢,;=v. Then (4.12) shows that
the intersection of L and S, is contained in V(v). For any vector w in S, which
does not belong to L, there exist two orthonormal vectors v; and v, in L such
that w=av,+bv,, because of dim M=3. Since w is also orthogonal to v,, [((w)
=[(v,), and therefore [(v,)=I(v). Thus we see that w belongs to V(v), which
means that the subset V(v) coincides with S, itself. Accordingly, the function
[ is constant on S;. Q.E.D.

Now, let ¢ be an m-form on a vector space V. For any vectors v;, -*, Un
and any permutation z in a symmetric group S, of order m, we put (v, -,
Vm)=@(V:(n), .., Veemr)and we define the symmetrizer S, by Sn¢p=>:es,7¢. By
means of Lemma 4.2, (4.7) is true for any unit vector at a fixed point x, and
therefore it follows from (4.7), (4.8), (4.10) and the linearity of the forms ¢ and
Vo that we have the following equations at x;

4.7y SelV' o (s, Usy Ug), V' o(thy, Us, 1e)>=(R1)*Setty, Uiy, UUs, Us) ,
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4.8) SNV a(uy, us, us), o(uy, v)>=0,
(4.10) Sio(uy, ug), Vo(us, uy v))=0.
Since V¢ is symmetric with respect to all elements, (4.8) is reduced to
(4.8)" SV a(uy, Uy, Uy), o(us, v)>=0.
Combining (4.10)" with (4.8)”, we have
(4.13) Lo(v, w), Vo(uy, us, us)) =, Va(v, w, uy), o(us, us)) .

We define here a helix in an m-dimensional Riemannian manifold N. Let
C:c=c(s) be a regular curve in N, where s is the arc length. The curve C is
said to be of order » (<m), if it has the Frenet frames {c(s), &, ---, &} along C
and the following Frenet formulas along C are satisfied :

de .y
(4.14) ds = 7

Vx&,=—k{8)5;-1F kj11(8)E 41

for j=0, ---, r, where V denotes the covariant differentiation in N and k.(s)=#%,.;
(s)=0 and k,s) (=1, ---, r) is positive along C. Then £,(s) (resp. §,) is called the
j-th curvature (resp. the j-th normal vector) of C. For example, a geodesic is a
curve of order 0 and, a circle is a curve of order 1 and moreover the first
curvature k, is constant. A curve C is called a helix if C is of order 2 and &k,
and %, are both constant along C. In particular, &, is called a principal vector
and &, is called a binormal vector. Let C: c=c(s) be a helix. Then the components
satisfy a system of differential equations, because of the Frenet formulas for C.
According to the fundamental theory of differential equations, we see that there
exists a unique solution satisfying the given initial condition in a sufficiently
small interval of s=0. Namely, for any point p in N and any orthonormal
vectors u, v and w at p, there exists locally a helix passing through p with a
tangent vector u, which satisfies certain conditions.

Now, coming back to our situation, it follows from (4.1) and the Frenet
formulas that any geodesic 7, in M is at most of order 2, and % and [ are the
first and second curvature of 7,, respectively. Moreover, % is constant along 7,.
Concerning with geodesics in M, we have

PROPOSITION 4.3. If a cubic geodesic immersion ¢ of M wnto ]\7[:]\/1”“’(0) 18
proper, then any geodesic in M 1s a helix in the ambient space M.

Proof. In order to prove this property, it suffices to show that the second
curvature [ along any geodesic in M is positive constant. Since ¢ is not planar
geodesic, we may suppose that there exists a point x such that [(x)>0. For any
unit vectors u and v at x, let r, and 7, be normal geodesics passing through
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x=7,0)=7,0) with the tangent vector u=7,(0), v=74(0), respectively. Then we
take a normal coordinate neighborhood U of x in M, on which [ is positive.
Differentiating (4.11) in the direction of X=7’, we have

N2(X, X, X, X), Vao(X, X, Y p+Vao(X, X, X), VX, X, Y, X))
=RY XX, Y.

Again, differentiating (4.7)’ with u,=W (=1, ---, 6) in the direction of Z=y,,
we get

2N oe(W, W, W), N2a(W, W, W, Z2),=Fk*Z[*).

Since the Ricci formula (1.16), shows V'2a(W, W, W, Z)—N"?¢(W, W, Z, W) can
be expressed as a linear combination of vectors (W, ), the above equations
and (4.8) give

2N %0(u, u, u, u), Volu, u, v)>=~r*Q2XI*u, v>—27I%

at x.
On the other hand, combining with (4.9), (4.10) and (4.11), we have
BN %0 (u, u, u, u), Valu, u, v)y=~krl)?*X[*u, v)/2 at x. Thus we see

(DX X1*u, v>—Z1)=0,

which implies [ is constant along 7,. This means that we can prove the fact
that the second curvature is constant on UU. The assertion is thereby proved.
Q.E.D.

Remark. Helices in a Riemannian manifold are studied by Ikawa [4].

5. Degrees of cubic geodesic immersions. As is stated in §3, it is seen
that the degree of the standard immersion ¢; of S™(1) into S™*?(c¢) is equal to 3.
In this section, we shall be concerned with degrees of cubic geodesic immersions
of M Ninto 1\7[:M"“’(c). First of all, let ¢ be only an isometric immersion of M
into M, and we assume that every normal goedesic 7: c¢=c(s) in M is a helix in
the ambient space. Then the Frenet formulas for 7 are given by

%g— =:X,

(5.1) VxX=FE,,
Vibi=—kX+IE,,
Vxb=—I6,,

where (c(s), X, &, &,) is the Frenet frames for 7 and % and [ are positive constant
along 7. It follows from (1.11) and the second equation of (5.1) that we have
o(X, X)=Fk&,. Furthermore, by means of (3.2), this equation and the third
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equation of (5.1), we get

(5.2) — k2 X+kIE,=V0o(X, X, X)—3{(o(X, X), 0(X, e.)e,.

LEMMA 5.1. The wmmersion ¢ s wsotropic 1f and only 1f the binormal vector
&, is normal to M.

Proof. 1f the immersion ¢ is isotropic, then the property of ¢(X, X) implies
that the isotropy of ¢ is equal to .. Then it follows from (1.8) that we have
B2 X=>:<{0(X, X), 0(X, e,))e,, because X is a unit vector field along 7, from
which implies, together with (5.2), that we have V'o(X, X, X)=FkI&,. Consequently,
&, is normal to M.

Conversely, if &, is normal to M, then (5.2) yields <o(u, ), o(u, v)>=0 for
any orthonormal vectors u and v at any point x, which asserts that the immer-
sion ¢ is isotropic. Q.E.D.

We suppose that ¢ is a k-isotropic immersion. For a normal geodesic 7,
passing through x=7,(0) we can make use of many equations obtained in the
preceding section, where k and [ are positive constant along 7,. Thus, (4.9)
means

(5.3) V20(X, X, X, X)+[o(X, X)=0

along 7,. This means that we have V'%0(u, u, u, u)+(%c(u, u)=0 for any unit
vector u at x, so we see S, {V'%0(uy, Uy, Us, u)+1%u,, uspo(us, uy)}=0, because
the forms V’%2¢ and o are both linear. By taking account of the fact that the
form V’2 is symmetric with respect to the first three elements, the equation is
reduced to

318,V %0 (uy, g, Uy, u)+2DNPS, {Kuy, udo(uts, us)+<uy, usdolus, u)}=0,

which gives, together with the property of isotropic immersions and the Ricci
formula (1.16),,

(5.4)  6V%0(uUy, Uy, g, V)= {(=3c+3k*—1*)<uy, uo(u,, v)
F@Be+3R*—1Ev, uDo(u,, us)—6><o(e,, v), a(uy, us)>ole, Uy} .

This shows that the 4-th fundamental form vanishes identically on M. In other
words, the third normal space N2 is trivial. Thus, by the definition of the
degree of the immersion, (5.4) says the degree of ¢ is not greater than 3. On
the other hand, by (5.2), V'¢(u, u, u) is proportional to the binormal vector &,
which is orthogonal to o(u, u)=~k&,. Consequently, the second normal space N2
is not empty, which proves the following

PROPOSITION 5.2. Let ¢ be an isotropic vmmersion of M nto M=Mm7(c). If
any geodesic in M 1s a helix on M, then the degree of ¢ is equal to 3.
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THEOREM 5.3. The degree of a cubic geodesic wmmersion of M wnto M=
M™2(c) 1s equal to 3, provided that it 1s proper.

Remark. We denote by P,C an m-dimensional complex projective space,
and by SZ the unit sphere in C™*!. P, C is considered as the quotient space of
S&=S?m*1(]1) obtained by identifying x in S with xa, where a=C such that
|a|=1. The canonical Riemannian structure on P,C is the invariant metric
such that the Hopf fibration = : S¥— P,C is a Riemannian submersion. According-
ly, for an eigenfunction f on P,C with respect to the Laplacian, so is fex on
S& [9]. If fer is a polynomial of degree » with its corresponding eigenvalue
Ar), we have A(r)=r@2m-+r), and the standard immersion ¢,: P,,C—SY™(1) is
m—2r (m+r—1)L

{ rim—1)!
consisting of all hermitian harmonic polynomials of degree (r, ») on P,C [1, 2].
Moreover, it is seen in [2, 8] that the degree of ¢, is equal to 2. As for the
standard immersion ¢, of P,C into SY®(1), the degree is greater than 3. In
fact, the first normal space N! at any point x has the dimension not greater
than 2m®—m—1, because of the characterization of complex projective spaces,
and it implies N(2)>n-+dim Ni4dim N3.

2
} is the dimension of the space

given, where N(r)+1=

Remark. Let ¢, be a totally umbilical immersion of S¥(¢) into an (N(r)-+q)-
dimensional real space form M=M¥™*Y), where ¢<c. For the standard
immersion ¢, of S™(¢) or P,C it is easily seen that the degree of the composition
toot, of M into M is equal to that of ¢,, and the immersion ¢,-¢, has non-zero

mean curvature.

6. Compact cases. In the rest of this paper, let ¢ be a cubic geodesic
immersion of an n-dimensional Riemannian manifold M into an (n+ p)-dimensional
real space form 1\7I=M”“’(c) of constant curvature ¢. Accordingly, any geodesic
7 in M is a helix in M and the first curvature % and the second curvature [ are
positive constant. The present section is devoted to the case where the sub-

manifold M is compact.
Now, for any point x in M and any orthonormal vectors u and w at x, let

7. (resp. 7,) be a normal geodesic passing through x=7,(0) (resp. 7,(0)) and let
X=7., and W=y,,. Then, by virtue of (1.17), it satisfies

Vx(V2a(Y, Z, U, V)=V"a(Y, Z, U, V, X)+V26(VxY, Z, U, V)+ -

(6.1)
+V2e(Y, Z, U, VXV)—EJ<V/20'(Y; Z, U, V), (X, ees

for any vector fields Y, Z, U, and V along 7, tangent to M. Next, we put
u,=u (1=1, 2, 3) and u,=v in (5.4). Then, differentiating it (resp. (5.3)) in the
direction of X (resp. W), and making use of (6.1), (4.8)” and the equation obtained
by putting u,=e, and u,=u (=2, 3, 4) in (4.10)’, we have
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V3 (u, u, u, v, u)y=—Bc+3k*+1>V'o(u, u, v)/2
+62 {<a(u, v), o(u, e DV a(u, u, e.)+2{NVo(u, u, v), o(u, e.)>ole,, u)}

where » and v are orthonormal, and
V30(u, u, u, u, w)+05Vo(u, u, w)=0
at x. It follows from these equations and the Ricci formula (1.16), that we have

(6.2) Oc+9-2—=15V'a(u, u, v)—30> {Ko(u, v), o(u, e.)>Volu, u, e,)

+<Va(u, u, v), a(u, e,)yo(e,, u)}=0.

Making use of (6.2), we can prove
LEMMA 6.1. If the sectional curvature has a minumal value 6, then [2=90.

Proof. We suppose that there exist a point x and orthonormal vectors u
and v at x so that the sectional curvature K(u, v) attains the minimal value.
When we define the curvature transformation K, by K,w=R(w, u)u for any
vector w at x, v becomes an eigenvector of K, with its eigenvalue §. Therefore
we have

(c—=0)Xv, wy+<a(u, u), (v, w)y—<a(u, v), o(u, w)>=0
by the Gauss equation, from which it follows
(6.3) o(u, v), o(u, wH=(c+k*—0)}<v, w>/3.
Combining (6.3) together with (6.2), we have

(100 —c—Ek*—1®|V'o(u, u, v)HZZBOZiKV’o(u, u, v), olu, ).

Since the right hand side is non-negative, so is the left hand side.

We suppose that [2>95. By means of this condition and (6.3), we have
c+k2+12—106>0. This and the above equation imply V'o(u, u, v)=0. Even
though we change a part of u for that of v in the course of this proof, we can
assert the same property and we obtain V'o(u, v, v)=0. Now, we put u,=u
(i=1, ---, 4) and u,=v (=5, 6) in (4.7)’. Then it is reduced to

2NV a(u, u, u), Volu, v, v)>+3|Volu, u, v)|*=(kl)?,

which contradicts to the fact that 2 and [ are positive. Consequently, we can
prove the conclusion. Q.E.D.

By this lemma, the following property is verified.

PROPOSITION 6.2. For a proper cubic geodesic immersion of M nio M=
M™2(c), 1f M 1s compact, then 1t 1s of positive curvature.
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7. Minimal immersions. In this section, we prove the following

THEOREM 7.1. For a cubic geodesic immersion of M into M=M"?(c), 1f 1t
18 munwmal, then M s locally symmetric.

Since ¢ is minimal, the mean curvature vector 3=2>),0(e,, ¢,)/n vanishes.
By means of the definition of the multi-linear maps V'¢ and V'?¢, we see also
> Vole, e, w)=0 and >,V'%0(e,, ¢, u, v)=0 for any unit vectors u and v at
any point x. The last equation and (5.4) give

(7.1) 123<a(u, ey), a(v, e.)>ale, ey)

={=3nc+n+4H@BL*—1®} o(u, v).

We define a symmetric matrix H* of order n by H®=(h{) for a fixed
number «, and then another symmetric matrix A=(A¢%) of order p by A%=Tr (H*H?).
H* can be regarded as a symmetric linear transformation on the tangent space
defined by H*=H,,, and A as a positive semi-definite symmetric linear trans-

formation on the normal space.
LEMMA 7.2. Matrices H* and A satisfy
(7.2) %}A‘ﬁHﬂz{3nc—3nk2+(n+4)lz}H“/6 for any «.

Proof. By the terminology of these matrices, (7.1) can be rewritten as
EﬁHﬂH“Hﬁ:{—3nc+(n—I—4)(3k2—12)}H“/12 for any index a. On the other hand,
the condition of isotropic immersion yields

%}A%Hﬁ’%—Z%‘,HﬁH“Hﬂ:Zsz“ ,
which, together with the above equation, implies (7.2). Q.E.D.

Lemma 7.2 means that A*=LA and the matrix A has at most two distinct
constant eigenvalues 0 and L, where L={3nc—3nk?*+(n+4)?}/6. Since A is
positive semi-definite, the constant L is non-negative. If L=0, then A is a zero
matrix on M, which implies that ¢ is totally geodesic. Thus, without loss of
generality, we may assume that it is positive.

Proof of Theorvem 7.1. For any point x, we consider a sufficiently small
neighborhood U and a normal geodesic 7 passing through x=7(0). Let X=7".
Then (7.2) is equivalent to >, <o(Y, Z), a(e,, ¢;))>a(e,, ¢,)=Lo(Y, Z), where YV
and Z are parallel vector fields along 7. Differentiating this equation in the
direction of X and taking account of (3.2), we see that the normal component
satisfies

?] {(<v/0(el) e;) X)v O-(Yy Z)>+<U(e“ ej)) V,U(Y) Zy X)>)0-(ew ej)

+<ale, ey), oY, Z)»N'a(e,, ¢,, X)}=LV'o(X, Y, Z).
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Since this property holds true for any unit vectors at x, we have the following
relation by virtue of the above equation at x and (4.13):

(7.3) @3123(0(@@, e;), o(uy, u)>V'a(e,, e, us)
=3LV 0(uy, s, us)—4><{a(e,, ), Vo(us, us, us)ole, e,).
1,7

Combining this equation together with (7.2), we have

&3 Kale,, e)), a(uy, u)>{N'ale,, e, uy), olu, v

(2
+L<o(u, v), V'a(uy, us, us)>=0,
from which it follows that we have

3|I§<a(u, v), Vo(e, e, w)o(e, ej)||2+L§<0(u, v), Vo(e, e, w)»*=0.

Since two terms of the left hand side in this equation are both of non-negative
and the coefficient of the second term is positive, we have {V'o(e,, ¢,, w), o(u, v)>
=0. Because o and V¢ are linear forms, it implies that

(7.4) No(uy, Uy, Ug), 0(Uy, 1s)>=0

for any unit vectors u, (=1, ---, 5) at x, from which we can obtain the conclusion.
Q.E.D.

By the well known properties about symmetric spaces, we have the following
theorem as a direct consequence of Proposition 6.2, Theorem 7.1 and a theorem
due to Sakamoto [8].

THEOREM 7.3. Let ¢ be a cubic geodesic wmmersion of M into an (n-+p)-
dimensional spheve S™?. If M 1s compact and sumply connected and ¢ 1s minvmal,
then M is a symmetric space of rank one.

8. Main theorem. We shall be concerned with the following Main theorem
in this paper.

THEOREM 8.1 Let M be an n(=3)-dimensional compact simply connected
Riemannian manifold and let ¢ be a proper cubic geodesic tmmersion of M into an
(n+p)-dimensional sphere S™?(c), where p=2. If ¢ 1s minumal, then the vmmer-
swon 1s rigid to the immersion ¢oots of S™ into S™P, where ¢, 1s a totally geodesic
immerswon of S¥® (¢) into S™P(c) and ¢; 1s the standard immersion of S™ wnto
SH® (),

First of all, we study about the dimension of the first normal space of the
submanifold. Let r be the rank of the matrix A=(A%). Then it is clear that »



338 HISAO NAKAGAWA

is the dimension of the first normal space, because of the definition of the matrix.

We use here the same notation as that in the course of the proof of Theorem
7.1. Differentiating (5.4) in the direction of X, and taking its normal components,
we have

8.1) 6V %0 (uy, Us, Us, v, W)= {(—3c+3k°—1)us, udV o(us, u, v)
+Bc+3R2—15<v, ud>V o(uy, us, u)
——6§<0(u1, uy), o(v, e)>V'o(e,, us, w)}

because M is locally symmetric and it satisfies (7.4). Moreover, since M is

minimal and consequently we have >,V'30(e,, ¢, u, v, w)=0, it follows from
(8.1) that

1212]<a(u, e, o0(v, epV'o(w, e, e)={—3nc+(n+4B*—="}Va(u, v, w).

Therefore we have

12 3 (Vole, ey, er), Voley, e, e1)><a(e,, 1), ale,, en)>

wa ki lL,m

8.2)
={=3nc+(n+HBE*—I}V'a|?,

where | | denotes the length of the form. When we note that the left hand
side in the above equation is non-negative, we can prove the following
LEMMA 8.2. The rank of the matrix A satisfies

n(n—|—2)< - (n+2)(n—1)
1 =T= 5 .

Proof. Since ¢ is k-isotropic and minimal, the square of the length of the
second fundamental form is equal to n(n-+2)%k%/2. On the other hand, by the
definition of A, we have Tr A=rL=|¢||?, where L is the positive eigenvalue of
A, so we have

8.3) r=3n(n-+2)k*/{3nc—3nk*+(n-+4)0? .

Furthermore it is seen in [6] that there is the following relation between
Tr A% and |lo|: Tr A*=2|c¢||*/(n+2)(n—1), and the equality is true if and only if
M is of constant curvature. Because of Tr A’=rL*=L|c|?% we get

8.4) 3n(n—Dc—3n(n+1k*+(n—1)(n+4)I0*=0.

Combining the non-negativeness of the left hand side in (8.2) with (8.3) and (8.4),
we obtain the inequalities. Q.E.D.

Now, due to Theorem 7.3, we may consider the submanifold M as an n-
dimensional Riemannian symmetric space of rank one. These spaces contain only
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a sphere S™ a complex projective space PC™ (n=2m=4), a quaternion projective
space PQ™ (n=4m=8) and a Cayley projective space PCa™ (n=16). Let M* be
an n-dimensional compact simply connected Riemannian symmetric space of rank
one. We normalize the Riemannian metric of M* in such a way that the sectional
curvature K(u, v) satisfies 1/4<K(u, v)=1. We denote by K7 the curvature
transformation with respect to u. Then we can regard K} as the transformation
of the orthogonal complement to the vector » in M3 at any point x. Asis well
known, distinct eigenvalues of K3 are 1 and 1/4. M* is said to be of type s if
the maximal eigenvalue of the linear transformation has multiplicity s. For each
projective space, s is equal to 1, 3, 7 or n—1, according as M* is a complex
projective space, a quaternion projective space, a Cayley projective space or a
sphere.

On the other hand, since M has the same situation as that of M*, we can
define the concept of the type of M. Concerning the type of M, we have

LEMMA 8.3. The type s of M satisfies
(n+s+Dk*=(n—s—1)c,
1f M is not of constant curvature.

Proof By the definition of the type, the linear transformation K, on M,
has exactly two distinct eigenvalues and the multiplicity of the maximal one
is equal to s. Since M is not of constant curvature, the rank of A is less than
(n+2)(n—1)/2. When we denote by H,, a normal vector with component
Yy, -+, hrP) for any indices 7 and j, it follows from Lemma 7.2 that we have
AH,;=LH,,, Then there exist an index : such that H;; is a zero vector or
distinct indices ¢ and j such that H,, is a zero vector, because r=rank A
=n(n+1)/2—1 if it is not provided. Since the equation (6.3) holds for the
maximal value of the sectional curvatures, we may consider the Riemann metric
of M so that eigenvalues of the linear transformation K, are 4K and K, where
4K=c+k* Thus we can choose a suitable orthonormal basis {e,;, -:-, ¢,} in such
a way that u=e,; and e, (1=2, ---, s+1) are contained in the eigenspace cor-
responding to 4K and the others belong to another eigenspace. Thus we have

K(e,, e,)=4K =2, -, s+1),
K(ey, e)=K for j=s+2.

Accordingly, (1.7) and (1.8) imply o(e,, ¢,)=0 and |a(e,, ¢)|?>=K. Using these
results and X;<{c(u, ¢,), (v, e.)>=(n-+2)k¥u, v>/2, we have

2 u— —
oo €, aley, ey=-"4 0 =y TN ZTD)

from which the necessary equality is given. Q.E.D.
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We suppose that M is not of constant curvature. It follows from (8.3) that
we have r<(n+2)%k%/(c—k?), because k and [ are positive, which together with
Lemma 8.3 implies r<(n+2)(n—s—1)/2(s+1). This contradicts to Lemma 8.2.
Consequently, M must be a real space form. Namely, M is an n-dimensional
sphere and the degree of the immersion ¢ is 3. Thus, we can apply Theorem
4.5 in [6] to our case, and the assertion in Theorem 8.1 is thereby proved.

Remark. We note here that the proof of Lemma 3.1 in [6] contains an
error and Theornm 4.5 in the paper is true under the additional condition that
the mean curvature vector Y) is parallel in the normal bundle.
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