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ON OPEN SYSTEM DYNAMICS
- A N OPERATOR ALGEBRAIC STUDY-
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Abstract

The open system dynamics is rigorously studied within the C*-algebraic
framework in terms of the approach to equilibrium. It is pointed out that
every combined state of every state of a finite system and an equilibrium
state describing an infinite reservoir relaxes to equilibrium through an in-
teraction between both systems when the total Hamiltonian of the combined
system satisfies some spectral properties.

Sec. I : Introduction.

The approach to equilibrium of a dynamical system is one of the most
important problems to be solved in quantum statistical mechanics [1, 2, 3, 4].
The principle aim of this paper is to study the problem of this type for a finite
system interacting with an infinite reservoir in equilibrium.

The motivation of this work is as follows: Some physicists think that the
system to be measured or in which some experiments are performed should be
finite even if it is large compared with the radius of an atom. However, if a
system is finite and isolated, any time dependent state of the system will not
relax to equilibrium because the basic Schrodinger equation of motion is rever-
sible under time reflection. From evidence accumulated by experiments, most
of physical systems relax to some equilibrium after long time. This fact tells
that we had better treat such finite system as open system, namely, interactions
between the finite system and the outside of the system (the so-called reservoir)
should be taken into account. We then expect that physically interesting com-
bined states of the system and the reservoir will relax to equilibrium through
an interaction between them.

In this paper, we obtain conditions under which such relaxation occurs. We
here take the Kubo-Martin-Schwinger (K. M. S.) condition [5, 6, 7] as that of
equilibrium of our systems considered since any Gibbs state satisfies this condi-
tion and the K. M. S. condition seems most appropriate [8, 9] to discuss thermal
equilibrium in quantum statistical mechanics.
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Sec. II: Formulation of the Problems.

Let Ms be a Hubert space of a system S and Hs denote a self-adjoint lower
bounded Hamiltonian of S. We often call the system 5 finite when the volume
of 5 is finite or the degrees of freedom of 5 is finite. Our system 5 is assumed
to have finite volume, so the spectrum of Hs becomes discrete. Let our finite
system 5 be described by a triple (Jίs, <5S, af), where Jls is the C*-algebra
B(MS) of all bounded linear operators on the Hubert space Ms, Ss is the set of
all normal states on <Jίs (i. e., the set of all linear functionals φs on ^Λs such
that φs(A*A)^0 for any A^Jίs, φs(Is)=l for unity Is of Jls and φs(Aa) ] φ{A)
for Aa I A, filtering upwards, in <Jls)y and af ( ίei2) is the time evolution auto-
morphism of t-Άs generated by the Hamiltonian Hs.

On the other hand, an infinite reservoir R is described by another triple
(JlR, SR, af), where JίR is a C*-algebra with unity IR, SR is the set of all states
on cAR and af (t^R) is a strongly continuous one-parameter automorphism of
JlR' We assume that the infinite reservoir is initially in equilibrium described
by a faithful K. M. S. state ψR at the inverse temperature β with respect to af.
It is said that the state ψR satisfies the K. M. S. condition at β w. r. t. the auto-
morphism af if for any pair A, B in <JίR, there exists a bounded function FΛ,B{z)
of the complex number z holomorphic in and continuous on the strip — β^lmz
^ 0 such that FA,B(t)=φR(af(A)B) and FA>B(t-ϊ)=φR{Baf(A)) for any t^R. By
the Gelfand-Naimark-Segal (G. N. S.) construction theorem, to the state φR there
correspond a Hubert space MR, a cyclic vector ΦR, a representation πR being a
*-homomorphism from the C*-algebra JίR to the set B(MR) of all bounded linear
operators on the Hubert space SίR and a strongly continuous one-parameter
unitary group Uf such that πR(af(A))=UfπR(A)Uf* for any A*ΞJIR and UfΦR

— ΦR.

Let us take any faithful state φs^Ss of 5 and consider its time develop-
ment. When the system S is isolated and the state φs is not af -invariant (i. e.
φs(af(A))Φφs(A) for some i e J 5 ) , the expectation value φs(af(A)) is periodic
or at least almost periodic function in t because the system 5 is finite. Thus
φs(af(A)) does not relax to equilibrium for all A^^ΛS when time t tends to
infinite. That is, the infinite time limit of φs°af in the weak*-topology does
not exist. We hence need to take account of the effect of an infinite reservoir
on the finite system 5 in order to explain such relaxation behavior.

The initial (non-interacting) combined system of the system S and the
reservoir R is described by the following:
(1-1) Algebra: Jl=
(1-2) State: φ-=
(1-3) Time evolution : α?—as

t

(1-4) Hubert space:
(1-5) Representation : π—is®πR (is is the identity map onto

Let us introduce an interaction between the systems S and R. The inter-
action will be a bounded self-adjoint element F=F*eΞcX By Stone's theorem,
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there exists a self-adjoint operator HR which generates the unitary one param-
eter group Uf, i.e., Uf^exp(iHRt). We may call H=Hs+HR+π(V) the total
Hamiltonian of the combined system, which generates the so-called perturbed
time evolution automorphism at of d [10] :

(1-6)

for ί^O (the case t^O is due to exchange of 0 and t in the above integral
domain).

Considering the combined system and any faithful state on Jί denoted by
R} it is natural for us to ask the following question:

" Under what conditions on the dynamical system does the limit w/*— Yιmφ°at
l f | - > ° o Γ

exist and is it identical to a proper eqilibrium (K. M. S.) state at the inverse
temperature β with respect to the automorphism at

 ?"

This problem concerns the relaxation process of the combined system. In
conventional discussions of physics, one does not worry about such question but
takes it for granted. By answering this question, we expect that the restriction
of the limiting state to the algebra Js of the system 5 might be close, in some
sense, to the K. M. S. state of 5 with the same temperature of the reservoir R, and
we can also explain some physical phenomena of the so-called relaxation pro-
cesses for example, if the temperature of the system is initially different from
that of the reservoir, our experience tells that if the system is in contact with
the reservoir, then the temperature of the system goes to that of the reservoir.
We finally note that our investigation here is concerned with the time develop-
ment of the combined system but not of the system itself. It is really important
to study directly the time development of a state of the system under the effect
of some interaction with an infinite reservoir. For this purpose, the technique
of conditional expectation invented by H. Umegaki [11] will be essential. This
aspect will be discussed elsewhere [12].

Sec. Il l : Relaxation Process.

In this section, we study the problem presented in the previous section.
As mentioned before, the initial temperature of the system S might be

different from that of the reservoir R, or the initial state φs of 5 might not be
αf-invariant. In any case, there exists a trace class operator ps=exp(~βHs)/
Tr exp(-βHs) so that the state ψs defined by <ps(A)~Tr psA for any A(ΞJS

satisfies the K. M. S. condition at the inverse temperature β of the reservoir
with respect to the automorphism αf of the system. Thus the state φs(S)φR on
J satisfies this condition at β w. r. t. a°t=αf®αf. Let us denote this state by
φ in the sequel discussions. Moreover, for a faithful normal state φs on Js

which may not be αf-invariant, we denote the combined state with the equilib-
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rium state φR of the reservoir by φ~φs®φR as in (1-2).
Let us start by proving several lemmas.

LEMMA 1. Let ω be a state on Jl and X be another state on Jl dominated by
ω, i.e., J^λω for some λ>0. Then for any ε>0, there exists an element W in J
such that

\X(A)-ω(AW)\<ε\\Λ\\
for any A^ΞJI.

Proof. It is well-known that for any state % dominated by ω, there exists
a positive operator B in πOJ(JY such as

X(A)=(Ω, Bπω{A)BΩ),

where Ω is the G. N. S. cyclic vector induced by the state ω. The cyclicity
of Ω implies that for any ε>0, there exists an element W in Jl such that
\\B2Ω-πω(W)Ω\\<ε holds. We hence have \X(Λ)-ω(AW)\ <ε\\A\\ for any A^J.

(q.e.d.)

LEMMA. 2. For the state φ^=φs®φR introduced above, there exists an element
K in J such that for any ε>0,

\φ(A)-φ(AK)\<ε\\A\\
for any A^Jl.

Proof. Let us consider two following subsets CVS and Ws of Ss :

ci7s={ψs^Ss: ψs(A)={Ψs, AΨS) for any AELJS and
and

3)s={ψs<=Ss: φs^λφs for some λ^R+).

As is known [13, 14], the set Q/5 is dense in Ss and the set £)s is dense in cys

because φs is a K. M. S. state. Hence for the state φs and any ε>0, there
exists a state ω in <=VS such that \φs(A)—ω(A)\<(ε/3)\\A\\ holds for any A^JS.
Moreover, for the above state ω, there exists a state X in £)s such that
\ω(A)-X(A)\<(ε/3)\\A\\ for any A^JS. As X is dominated by <ps, according to
Lemma 1, there exists an element W in Js such as \X(A)—φs(AW)\<(ε/3)\\A\\.
We therefore obtain \φ{A)—φ{AK)\<ε\\A\\ for any A&Jl, where K is taken as
K=W®IR. (q.e.d.)

LEMMA 3. For the state φ=φs®φR, there exist a state ψ on Jl and an
element R in Jl such that
(i) the state ψ satisfies the K.M.S. condition at β iv.r.t. at, and
(ii) for any ε>0, \φ(A)-ψ(AR)\ <ε\\A\\ holds for any

Proof. Let us introduce a vector as

Ψ=DVΦ/\\DVΦ\\ ,
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where Φ is the cyclic vector associated with ψ such that Φ—ΦS®ΦR and
<ps(A)=(Φs, AΦS) for any A^Jls, and Dv is given by

(2-1) Dv= Σ (-l

where α° is the canonical extension of α° to the von Neumann algebra π(Jt)"'.
The above vector Ψ is always in the Hubert space JC, although Dv is not in
the C*-algebra π(<Jί) except when 7 is a α°-analytic element of Jl. Define a
state ψ by ψ(A)=(Ψ, π(A)Ψ) for any A^JL. This state ψ satisfies the K. M. S.
condition at β w. r. t. at [10]. The state ψ and the time evolution automorphism
,at are constructed by ψ and α? through (2-1) and (1-6) respectively. Conversely,
it is easily seen that ψ and a\ can be constructed back from ψ and at with the
interaction—V. Namely, putting Φ'=QVΨ/\\QVΨ\\ with

We can then readily show that Φ'=Φ. Moreover, by the simple but rather
tedious computations using the boundary properties of the K. M. S. state, we
obtain

ψ(A)=(QvΨ, π(A)QvΨ)/\\QvΨ\\s=(¥, π(A)SζΨ),

where SI' is given by Sr/\(Ψ, SVΨ)\ and

Sv= Σ \dt1---\dtnάUl(π(V)y--άUn(π(V)).

If the interaction V is a α°-analytic (hence α-analytic) element of Jl, the above
S% is given by π(Sl), where S%=Sv/\ψ(Sv)\ and

Since the set of all α-analytic element of Jl is dense in Jl in the norm topology,
for any V—V*<^Jl and any ε>0, there exists a α-analytic element y o = V
such that || V— Vo\\ <ε. According to Theorem 3.1 of [10], we easily obtain

Hence for any ε>0, \\QvΨ/\\QvΨ\\-Qv°Ψ/\\QvΨ\\\\<ε holds. It is thus a easy

exercise to show that for any ε>0, the inequality \ψ{A)—φ{ASl°)\<—e\\A\\ is

satisfied for any i e J . Now, by Lemma 2, there exists an element K in Jl

such that \φ(A)-ψ(AK)\<~ε\\A\\ holds for any At=Jl. Taking KS%°=R, this

R is an element of Jl and the inequality \φ(A)—φ(AR)\<ε\\A\\ holds for any
ACΞJI. (q. e. d.)
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Let us find conditions under which every state φ—φs®φR (φs^Ss) relaxes,
under the time evolution at, to an equilibrium (K. M. S.) state at β w. r. t. at, as
physically expected.

The spectrum of a Hamiltonian is one of the most important quantities of
physics, and most of physicists are interested in the property of it for example,
how dense it is in R. In our case, the system considered is finite, so the
spectrum of the Hamiltonian Hs is discrete, which forbids the approach to
equilibrium. Therefore we needed some interaction with suitable reservoir. The
Hamiltonian to be studied was the so-called total one H=HSjrHR+π(V). What
we ask is the following: Which conditions do we have to impose on the total
Hamiltonian H? In other words, which interaction V do we have to choose ?

THEOREM 4. // the rank of the projection E to the null space of H is one
and the spectrum of H consists of {0} and absolutely continuous one, then the
time evolution automorphism at admits unique K. M. S. state φ in the representa-
tion space M and the limit w*-lim φ°at is equal to ψ.

Proof. In Lemma 3, we constructed the state ψ satisfying the K. M. S. con-
dition w. r. t. at. For any A, B^Jί, let us consider ψ{Aat(B)), which is equal
to (Ψ, π(A)exp(+itH)π(B)Ψ) because the K. M. S. state ψ is αj-invariant. Accord-
ing to the spectral decomposition of H, we have

ψiAat(B))=(π(A)*Ψ,

When t tends to infinite, the above expression becomes

(π(A)*Ψ, Eπ(B)Ψ)

because of the spectrum properties of H. Since the rank of E is one, Eπ(B)Ψ
=(Ψ, π{B)Ψ)Ψ for any B^Jl. We thus obtain

lim φ(Aat(B))=φ(A)φ(B)

for any A, B^Jί. Namely the state ψ is clustering for at. This fact tells [13]
that φ is the unique K. M. S. state of M. Let us now consider

\φ{at{A))-φ{A)\,
which is less than

I φ{at{A))-φ{at{A)R) \ + | φ(at(A)R)-φ(A) |,

where R is an element in Jl obtained in Lemma 3. The first term of the above
expression is again less than e\A\ because of Lemma 3. We now estimate the
second term:

I(t)=\φ(at(A)R)-ψ(A)\.

As shown that the state ψ is clustering for at and R is in Jl,
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lim/(ί)=0

|ί|-eβ

because of ψ(R)=l. We hence have

w*-\im φ°at—ψ . (q. e. d.)
11 |-*oo

We finally see what happens to the state ψ when the strength of the interaction
V becomes very weak but the interaction still has the properties of Theorem 4.

THEOREM 5. Under the conditions of Theorem 4, we have

w/*-lim lim φ°at=φs on ^Λs.
llFll-oo | ί | ->co Γ Γ

Proof. From Theorem 4, we have only to show

w/*-lim ώ=φs on <Jls .

As discussed in the proof of Lemma 3, the unique K. M. S. state ψ is given
through ψ(A)=(TvΦ, π{A)TvΦ) for any At=Jl, where Tv is given by

TV=DV/\\DVΦ\\ with Dv defined in the proof of Lemma 3.

Therefore the following inequality holds:

\φ{A)~ψ{A)\S2\\{I-Tv)Φ\\\\Λ\\ .

As mentioned in Lemma 3, for any V—V*^Jl and any ε>0, there exists a
α°-analytic element V^V^^Jί such that \\TvΦ-Tv<>Φ\\<ε. We hence have

\ψ{A)-Ψ{A)\^2\\{I-T^)Φ\\\\A\\.

The above inequality together with the facts that T F o = o = / implies that w*-lim ψ
IIFU-+0

z=ψ on Jί. As the restriction of the state ψ to J s is φs, we have the conclusion.
(q. e. d.)

This theorem shows that if we can choose the interaction so that its strength
is sufficiently weak but the total Hamiltonian H=Hs-{-HRjrπ(V) still satisfies
the condition of Theorem 4, then the limiting state of ψ under ||F||—>0 is enough
close to the equilibrium state φ, that is, any state φs on Jίs approaches to the
equilibrium state ψs in the above sense.

The theorem 4 will be somewhat related to the derivation of equilibrium
state [15, 16], about which we will discuss elsewhere. The conditions of Theo-
rems 4 and 5 might be realized in some physical models.
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