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SPECTRAL GEOMETRY OF CLOSED MINIMAL
SUBMANIFOLDS IN A SPACE FORM,
REAL OR COMPLEX

By TAKUICHI HASEGAWA

§0. Introduction.

Let N be a Riemannian space, M be a minimal submanifold of N, and D be
a compact domain of M. Thinking of D as an equilibrium state of a homogene-
ous membrane with its boundary fixed, and expressing a small motion of D by
normal vector fields through the normal exponential mapping, we derived in
[11] the equation of a vibrating general membrane D. By the separation of
variables, we obtain a generalization of the Helmholtz equation, JV=AV on D,
where V is a normal vector field on D vanishing on the boundary and / is the
Jacobi differential operator. Then we call the complete set of eigenvalues of [
simply the spectrum of the minimal submanifold D. Thus there arises eigen-
value problem of compact minimal submanifolds. In this paper we shall study
the inverse eigenvalue problem (i.e. spectral geometry), when the ambient space
N is a space of constant curvature or of constant holomorphic curvature. Every
minimal submanifold of N we consider in this paper is assumed to be without
boundary. Some studies along this line have already been done by H. Donnelly
[8], J. Simons [24] and others.

In §1 we make preliminaries. We give there definitions and notations, some
lemmas and some examples of compact minimal submanifolds. In §2 we esti-
mate the first eigenvalue of J/ by means of geometric quantities. In §3 we
review a Gikey’s paper. In §4, making use of his results, we clarify the
geometric meaning of the first three terms of the asymptotic expansion for ¢ |0
of the partition function 3 e~%i, and then obtain Riemannian and Kaehlerian
spectral invariants. In §5, using spectral invariants given in §4, we obtain some
properties which are derived from or reflected under the isospectral condition.
Then by these isospectral properties we characterize some concrete minimal
submanifolds in a sphere, particularly Veronese manifolds. In §6 we study the
Kaehlerian version of §5.

The author would like to express his hearty gratitude to Professor S. Ishi-
hara, Professor T. Otsuki and Dr. K. Sakamoto for their encouragements and
valuable suggestions.
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§1. Preliminaries.

Throughout this paper except in §6 and unless otherwise stated, N=N\(¢)
will denote an n-dimensional Riemannian manifold of constant section curvature
c¢. All minimal submanifolds of N, which appear in this paper, are assumed to
have no boundary and to be compact, connected, and of class C*. (We note that
some of definitions and notions stated below are still valid for an arbitrary
Riemannian manifold N and its arbitrary submanifold Af).

Let M be such an m-dimensional minimal submanifold of N and let g, R, p
and 7 be respectively the metric tensor, curvature tensor, Ricci tensor and scalar
curvature of M. We denote by R,,;; and so on the components of R and so on
with respect to a natural frame of a tangent space T,M. (.e. R,ju=
(VU N;—V.N,)3/0x,, 8/0x,>). Let C be the Weyl’s conformal curvature tensor of
M, which is given by

1
Cljkl:lekl—ﬁnhl——kzt(pjkg”—1011g1k+gjkfotl"‘gﬂpzk)
N 1
= Dm—2) 88T &7,
and let G be a 2-covariant tensor such that

T
G=p——g.

In general we denote by | | the norm of a tensor with respect to the appropriate
inner product <{,>. Then
4 2

m—2 l‘0lz—}h(fmml)(m:Z‘)

Cl*=IR|*~

72,

[ — 2 ]‘ 2%
|Gl *140‘ —_ni_f .
Thus G=0 holds if and only if M is Einstein. And thus C=0 and G=0 hold if
and only if M has a constant sectional curvature (m=4).

Let V and V be the canonical covariant derivations in N and M, respectively.
Let TM* be the normal bundle of M in N. TM* is a Riemannian vector bundle
and its canonical covariant derivation (i.e. the normal connection) is also denoted
by V. These are related as follows:

VY=V Y+BX, V), VpV=VeV—A"(X), <V, BX, Y)=CA"X), ¥>

for tangent vector fields X, Y on M and a normal vector field V. The tensor
field A is called the second fundamental tensor of M, and is a cross section of
the Riemannian vector bundle Hom(TM*, SM), where SM is the bundle of
symmetric transformations of the tangent bundle 7M. The composition of A
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and its transpose ‘A is denoted by 171 that is, A='4. c A= C*(Hom(T M*, TMH*)).
The trace of A i. e. square norm IAI2 of the second fundamental tensor A is
denoted by S. The trace of Ao A, i.e. square norm |A|2 of A is denoted by
Ly. When M is of codimension 1, Ly=S? holds (in a general case Ly=S*
holds, and the equality is attained if and only if m-index of M is equal to 0 or
1 at each point of M). We denote by K, the square norm of the curvature
tensor of the normal connections, which is called the normal scalar curvature of
the immersion. S, Ly and Ky are nonnegative C* functions on M. Let R be
the curvature tensor of N. And let B be a sort of partial Ricci transformation,
which is defined by ﬁ(v) ::2{’;1(1761,,,@)*, where v is a normal vector at p,
(ey, -+, en) an orthonormal frame of TM, and ( )* denotes the normal part of
a vector. In case N is a space of constant curvature ¢, R is a scalar transfor-
mation: R=—mcl. In general we denote by V? the laplace operator (which is
also called the restricted Laplacian) acting on cross sections of a Riemannian
vector bundle. Let us consider the differential operator / defined by

J=—V+R—A

which acts on normal vector field of M. In this paper we call this operator the
Jacobi differential operator. The J arose from the second variation formula of

M, namely, for a normal vector field V on M, JM< JV, V> gives just the second

variation of M with respect to the variation vector field V ([24]). [ is self-
adjoint, strongly elliptic of second order and has a discrete spectrum. We call
the complete set of eigenvalues of J simply the spectrum of the minimal sub-
manifold M and denote it by Spec(M, N)={,=2,=A;< .- —oco}, A geometric
quantity is called a “spectral invariant” when it is determined by the spectrum,
and a geometric property is called a “spectral property ” when it is reflected
under the isospectral condition. Then the fundamental problem of the inverse
eigenvalue problem is how far the spectrum determines geometric properties of
the minimal submanifold. The analogous problem for the case of the Laplace-
Beltrami operator of compact Riemannian manifolds has been variously studied
by many authors.

We denote by T the square norm of the covariant derivative of the second
fundamental tensor A; T=|VA|2

If M’ denotes another minimal submanifold of N, then R’, p’, ¢/, K} and so
on denote the corresponding quantities of M’.

An isometric immersion is said to be full if it is not contained in any totally
geodesic submanifold. For a unit tangent vector x, B(x, x) is called the normal
curvature vector determined by x. An immersion is said to be isotropic if at
each point every normal curvature vector has the same length.

Let p be a point of M. Then m-index at p of a minimal submanifold M is
defined by the rank of the second fundamental tensor A at p as a linear mapping
from TMy; to SM,,.

If f is a function on M, the integral JMf of f over M is also denoted by
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f(M), where the integration is of course carried out with respect to the canoni-
cal measure of the Riemannian manifold M.

Now we exhibit some examples of minimal submanifolds in a sphere and
state their characteristic properties. Let S™(r) be the m-dimensional sphere of
radius » in R™*1. S™(1) is simply written as S™. Any totally geodesic sub-
manifold of S™ is again a sphere of radius 1.

Let p be a positive integer (1=<p=<[m/2]). By considering SP(+/p/m)X
S™-?(vm—p/p) as a natural subspace of RP*HXR™ PH=R™: we obtain a
natural map from SP(+v/p/m)XS™ P(v'm—p/m) to S™*'. We denote by M, m-,
the manifold S?(v/ p/m)X S™ ?(v/m— p/m) together with this mapping. They are
called m-dimensional Clifford hypersurfaces of S™*! (or generalized Clifford
torus). In particular M, , is called the Clifford torus, which is flat. It is easy
to see that they are minimal submanifolds of S™*' with parallel second funda-
mental tensor and S=m. There are a number of properties which characterize
this class M, m-,. One of them is the following; a compact minimal hyper-
surface of S™*! with S=m is an m-dimensional Clifford hypersurface ([5], [19]).

Clifford hypersurfaces are generalized as follows. Let my, -+, m, be positive
integers and m=m,+ - +m,. Let x, be a point of S™«(~m,/m) i.e. a vector
of length /m,/m in R™*'. Then (x,, -+, x;) is a unit vector in R™** This
defines a mapping from S™(v/m;/m)X -+ XS™k(v/m,/m) to S™*-! which is
denoted by Mp,,..m,. It is easy to see that it is a minimal submanifold with
parallel second fundamental tensor, its normal bundle is globally parallelizable
and A is a scalar transformation.

Next example is a full minimal immersion of an m-dimensional sphere of
curvature m/2(m-+1) into a unit sphere of dimension {m-m(m-+1)/2—1}. Such
an immersion is rigid, isotropic, and has a parallel second fundamental tensor
([6], [15]). We denote by V™ the sphere S™(+/2(m—+1)/m) together with this
immersion and it is called the m-dimensional Veronese manifold. The mapping
is explicitly constructed in terms of an orthonormal basis of harmonic poly-
nomials of degree 2 and of (m-1)-variables. Since S=m(m—1)(m+2)/2(m-+1)
and mS—Ky—Ly=0, Ly=1/m)Ky=m*m—1)(m+2)/2(m+1)% The volume of
v™ is @m+1)/m)™"*w, where w, is the volume of the m-dimensional unit
sphere. V? is the so-called Veronese surface and its explicit mapping is given
by

S(3)2(x, ¥, 2=, -, uHES,

1 1
l'_‘—:c 2:*—--: 3:—: 4:——*,i~ 2— 2
ul=eyr, whs ek, wsaxy, u's=g B(x ¥,
u5:—613 (x4 y2—22%).

More generally, for each positive integer %, by an orthonormal basis of harmonic
polynomials of degree k£ and of three variables, we obtain a full minimal immer-
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sion of S+ k(k+1)/2) into S?*. And such an immersion is rigid and is called
the generalized Veronese surface of index (k—1) ([3]). We denote by Vi the

surface S+ k(k+1)/2) together with this immersion.
Now we state some lemmas which are needed in later sections. The follow-
ing well known equality ([5]) is usefull.

%VBS:WIC’S'—KN—LN—‘—T.
Thus, IM(mcS—KN—LN—FT):O, from which we have

LEMMA 1.1. jM(I{N+LN)Zj”mcS, where the equality holds 1f and only 1f the

second fundamental tensor is parallel.

From this Lemma we know that in a space of constant negative curvature
there exists no compact minimal submanifold with parallel second fundamental
tensor except a totally geodesic one. N

LEMMA 1.2. jMKNémJ Ly, where the equality holds 1f and only if the
M

immersion 1s isotropic and M has a constant curvature (m=3).
mcS Sé(m—i—l)g Ly,
M M

where the equality holds if and only if the second fundamental tensor is parallel,
the immersion 1s 1sotropic and M has a constant curvature (m=3).

proof. The former inequality is given in [13]. The latter can be obtained
by this inequality and Lemma 1.1. Q.E.D.

Now we make Kaehlerian preliminaries. Let N=N(c) denote a complex
n-dimensional Kaehler manifold of constant holomorphic curvature c. All complex
submanifolds of N, which we consider, are assumed to be compact, connected,
of class C*, and to have no boundary. They are Kaehler manifolds by the
induced metric and are minimal in N. Let M be such a complex m-dimensional
Kaehler submanifold of N. Let J be the almost complex structure of N. The
almost complex structure of M is also denoted by J. Let B be the Bochner
curvature tensor of M, which is given by

1 om
szkLZszkL*"ZZ,H_T{ijgu‘Pﬁglk‘l‘gjkpzz—gjzplk"‘ T; P;r]qu’P;rﬂf:k
+jjkpzrjlr_.[jlpzr];c_240kr]{]z]_zpzrj;]kl)}

1
+Al(_n%?l‘)(—ryl__;g)(gjkgil_gjlgzk+]zkal—j;l]zk_‘2]kl]u)f .
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Then | B|® is given by
8 2
Blt= e__ 2 2 1
| BIP= IR = Lol e
The Kaehler manifold M has a constant holomorphic curvature if and only if
|B|=0 and |G|=0 hold (m=2).
In the Kaehlerian case, R=—(mc/2)] holds, thus the Jacobi differential
operator becomes

e MC o
J==P— T

And the fundamental equality is ([21])
‘I—VZS:T—KN—LN'F@;Z“CS ,
2 2
where Ky is defined by Ky= ZA (Zk) (A} Af— AL AR and Al’s are components
wy A

of A. In the re;al case ~KN=kN holds, but in the Kaehlerian case Ky=
m(n—m)c®*+2¢S+Ky, and Ky is commonly called the normal scalar curvature
of the Kaehler submanifold.

LEMMA 1.3. -
Ky=(m+1)mc*—2(m~+1)cc+2|p|?,
Lsz(m—I—l)cz—Zcr—l——;—[Rlz.

P7’00f. Let {elr iy Cmy el*:.]ely Tty em*:]emy €m+1y *ty €ny e(m+l)*:]em+1: Tty

ess=Je,} be an orthonormal frame of N at a point such that e, and e.s
(1=a=m) are tangent to M. Let the ranges of indices i, j, &, /,; a, B and 2, g
be respectively such that i, j, &, =1, -+, m, 1%, -, m*; a, B=m+1, -+, n and
2, p=m+1, -, n, (m+1D* - n*. We write A% simply by A* and the com-
ponents of A? with respect to the above frame by Af#. First we note that
S A*ArA*Ar=0, which follows from the observation that 3 A?ArA*Ar=
S(AAPAABL A AP A AP L A APAC AR L A AP A AP and JA=—A%], A
=JA*. Thus
trace(X) A*ArA*Am=3 AL ALAGA%=0.

Let @ be the symmetric endomorphism of TM corresponding to p defined

by g(Qx, y)=p(x, y). Then ([21])

g(Qx, y)= mgl cg(x, y)—23 g(A%x, A%y).

Thus Q= ﬂ;_—lv =23 (A%)?,

asanyyr= I om0+ 2.
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Taking the trace, we have

ser(s(amyy= " o Deet .

On the other hand,
Ry=—tr 3 (A2 Ar— Ar A2 =8 tr (D(A*)),

Thus Ky=m(m-+1)* 2—2(m+l)cz-+[p|2

From the definition, LNwtr(A A) ZA;,,A;/L S ALAB AL A, Let R be
the curvature tensor of N. Then from the Gauss equation R, =R, ju—
> ALAL+S ALAY, we obtain

> Ru'szzjkz:Z ﬁtjklﬁljkl+z 4 A}, _/}lﬁt]kl_}"ZLN .

Since Ew p=C/4(—0,10, 050, ,—J 3 i+ JI+2] T, 2 AflkAjlajkazz:S, > Akaj't(Sﬂ
0:,=0, X ALAYJITi=S, X ALALT.]1=0, and X AL AL JE=—S, we obtain
3 ARALR, ;. =—cS. On the other hand 3 R,;,,R,;. is equal to the value of
the square norm of the curvature tensor of an m-dimensional complex space
form with holomorphic curvature ¢. Then it is equal to 2m(m--1)c2. Thus

| R|2=2m(m~+1)c*—4c¢S+2L

LN:m(m—Fl)cZ—ZCT-‘r%IRIZ. Q.E.D.

Next we exhibit some of concrete Kaehler submanifolds in a complex pro-
jective space and state their characteristic properties.

Let CP"(c) denote the n-dimensional complex projective space of constant
holomorphic sectional curvature ¢ (>0). CP™(1) is simply written as CP™
Totally geodesic submanifolds of CP™ are again complex projective spaces with
the Fubini Study metric of holomorphic curvature 1.

Let Q™ be the so-called m-dimensional complex quadratic. It is known that
a compact hypersurface with constant scalar curvature immersed in CP™*! is
CP™ or Q™ ([18]).

Next example is a Kaehler imbedding of CP™(1/2) into CP™+m(m+1/2  yyhich
is a complex analogue of the Veronese manifold and has the same properties
with it. Namely its second fundamental tensor is parallel and the imbedding is
full and rigid ([21], Kaehler submanifolds of constant holomorphic curvature are
necessarily isotropic). This Kaehler submanifold is called the m-dimensional
complex Veronese manifold and we denote it by CV™. The explicit construction
of the imbedding is analogous to that of the real case ([23]).

CV! is identical with Q. When the dimension of the ambient space becomes
higher, we have another example of rigid complex curve. That is, using homo-
geneous monomials of degree n in homogeneous coordinates (z,, zi, *** , Zn), We
obtain an imbedding of CP'(1/%n) into CP™;

— ool
(20, 20> (N n 28721, -+, \/fd*,(;fdy,'*zg 2, e, 2.
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Moreover, compact full complex curves of constant curvature in CP" is essenti-
ally unique and identical with the above one ([21]). We denote by CV._, this
complex curve together with this imbedding.

§2. Estimates of the first eigenvalue by means of geometric quantities

In this section we present some propositions concerning the estimates of the
first eigenvalue of the Jacobi differential operator / by means of geometric
quantities.

For the first eigenvalue 2, of J, the minimum principle still holds. Namely,
for a nonzero C* normal vector field V on M,

J’JI<]V’ V >

2.1) ATV
j v

iIA

holds, and the equality is attained if and only if V 1s a first eigenvector field. In
other words, the first eigenvalue is the minimum value of the second variations
of M with respect to the normal variation vector fields of total norm 1. In
case N is a space of constant curvature ¢, the inequality becomes

JAvviE=1a7
(2.2) e —_
J v

First we treat such a case that M is a hypersurface and there exists a
global unit normal vector field ¥ on M. Since such a Y is parallel in the normal
bundle, every normal vector field ¥V on M has the form V=/Y, that is, there is
a unique function f on M corresponding to V. Thus the minimum principle (2.2)
becomes

2.3) L=< _____jM(WN_sz) 0 O]
. = —met , S0eCH(M).

|/

where the equality is attained if and only if /1 is a first eigenvector field of J.
In general a normal vector fleld V=/Y is a A-eigenvector field of J i.e. JV:=2V,
if and only if

2.4) Vif=—(S+mc+A)f on M.

PROPOSITION 2.1. S 1s constant i1f and only if a first eigenvector jield 1s
parallel (n-m=1).

Proof. 1f a first eigenvector field V=fY is parallel, then f is a nonzero
constant and 0=V?f=—(S+mc+2)f, thus S+mc+2,=0 on M. Then S is con-
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stant. The converse is also obvious. Q.E.D.
PROPOSITION 2.2. For a munumal hypersurface M of N

S
< p— M
W)
holds, and the equality 1s attawned if and only if S 1s constant. And L, =—mc
holds 1f and only 1+f M 1s totally geodesic.

Proof. Let f be a nonzero constant in (2.3), then we obtain the inequality.
Conversely if A,=—mc—S(M)/vol(M) holds, then any nonzero parallel normal
vector field is a first eigenvector field, thus from Proposition 2.1, S is constant.
The last statement of the Proposition is obvious. Q.E.D.

PROPOSITION 2.3. For a non-totally geodesic nunimal hypersurface M

[ (2ST—|9S|?)
LW=E—2me—r
2] Se
M

holds.

Proof. From the assumption, S#0. Putting f=S 1n (2.3), and using the
equality V2S=2mcS—2S5%+2T, we obtain the desired inequality Q. E.D.

The following result is a restatement of Lemma 6.1.7 given 1n [24].

PROPOSITION 2.4. For a non-totally geodesic mumimal hypersurface M, 2, =
—2m holds (in case N=S™).

In the case of an arbitrary codimension, we have the following results.

PROPOSITION 2.5. —mc—max S<A,. The equality 1s atlained 1f and only if
the first eigenvector fields are parallel, and M 1s totally geodesic or m-index of
M 1s everywhere equal to 1.

Proof. Let V be a A,-eigenvector field of /. Then
0Z |V X (M)=(A+me)| VIX(M)+<AV, VY(M).

2,
Thus —ll—mcgil—q-'-%]—z{(/—;}?jz §§l IIZL(%> §?£§S(x). If the equality holds in
these inequalities, then V is parallel, so that S is constant, Av=SVv holds, and
rank A=0 or 1. rank A=1 on M is equivalent to that its m-index is equal to 1.
Thus these conditions are summerized as in the statement of the Proposition.

Q.E.D.
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COROLLARY 2.6. Let M™ be a mwmmwmal submanifold of S™ If S=m and
A=—2m hold, then M is an m-dimensional Clifford hypersurface in an (m+1)-
dimensional totally geodesic submanifold S™*' of S™.

Proof. From the assumption, max S=m and —m—max S=A,;. Thus m-index
of M is everywhere equal to 1 and then by a theorem of Otsuki ([22]) there
exists an (m-+1)-dimensional totally geodesic submanifold S™*' of S™ in such a
way that M is contained and minimal in the S™*'. Thus from [5] the state-
ment follows. Q.E.D.

Here we introduce two continuous functions P,, P, on M. Let x be an
arbitrary point of M. Then P,(x) (resp. Py(x)) is defined by the minimum (resp.
maximum) value of sum of square principal curvature with respect to all normal
directions at x, or equivalently P,(x) (resp. Py(x)) is defined by the minimum
(resp. maximum) eigenvalue of the symmetric endomorphism fl(x) of the normal
space TM:. They satisfy the inequalityi P,=S/n—m=P,, and in either side
the equality is attained if and only if A is a global scalar transformation (for
example in case M is of codimension 1).

Let {(0=)A=AJ<--} denote the complete set of eigenvalues of —V? acting on
normal vector fields on M; —V?*V=AV. Note that A})=0 holds if and only if
there exists a nonzero parallel normal vector field. Note also that in case M is
of codimension 1, and M and N are both orientable, {2}, 23, 2}, ---} is an intrinsic
invariant of M while Spec(M, N) is in general an extrinsic invariant. By making
use of the Courant’s mini-max principle, we obtain a comparison relation between
Ax’s and AY's.

PROPOSITION 2.7. For each k=1

—mc—max P+AA= 2, < —mc—min P+ 4} .

If A s a scalar transformation,

S .S
—mec—max— — -+ =1, = —mc—min + A8
n—m n—m

holds. In particular 1f A 1s a scalar transformation and S 1s constant,

S
Ap=Ap—mc———-.
n—m

Proof. Take (k—1)-arbitrary C* normal vector fields V,, ---, V,-, and set
Mn(Vy, -, Vi) =inf {JW, WH>|W; C* normal field, |W|=1,
LW, V=0 I=1=k—1)},
Ma®(V,, - Vo) i=inf {<V2W, W))|W; C~ normal field, |[W|=1,
KW, Vird=0 (I=1=k—1)},
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where <{,>> and || | denote the global inner product and norm. Then
Ar=Max{Mn(Vy, -, Vie)| Vi, -+, Vi1; C normal fields},
y=Max {Mn"(Vy, -+, V)| Vy, =+, Vi_1; C normal fields}.
Since JW, WHy={(—V*W, W>S—me—<<AW, W>> for a W satisfying the above
condition,
—mc—max P,+{(—V2W, WH) S JW, W) <—mc—min Py+<—V*W, W,,
holds. Thus
—mc—max Pi+Mn"(Vy, -, Vi)SMn(Vy, -, V)< —mc
—min P,4+Mn*(Vy, <, Vi),

and —mc—max P,+A=2,<—mc—min P,+ 2. Q. E.D.

PROPOSITION 2.8.

(1). If 2;<—mc—min P, or —mc—max P,<2,, then no first eigenveclor fields
are parallel. .

(2). Let N be S™ If A 1s a scalar transformation, S constail, and
—m—m/2(n—m)—1+8=2A;, holds, then M 1s a Veronese surface in S*, or an
m-dimensional Ciifford hypersurface in S™*, or a totally geodesic S™ wn S™.

Pr0~0f. (1). Suppose that there exists a parallel first eigenvector field V.
Then AV=—U;+mc)V, thus PV, VO<—A+meXV, V>ZPKV, V). Since V
nowhere vanishes, max Py<—A,—mc<min P,, i.e.

—mc—min P,<A, =< —mc—max bP,.

(2). From Proposition 2.7, S<m/(2—1/n—m). Thus from [5] the conclusion
follows. Q. E.D.

In general the number of negative eigenvalues in Spec(M, N) is the so-called
index of the minimal submanifold A/, and the multiplicity of the zero eigenvalue
is the so-called nullity. And 0O-eigenvector fields are so-called Jacobi fields on
M. This is the reason why we call the operator J the Jacobi differential oper-
ator. Any totally geodesic submanifold of S™ is characterized by its index or
nullity. The following two theorems are due to J. Simons ([24]).

THEOREM 2.9 FEvery Spec(M™, S™) contains —m al least (n—m)-lumes and
Just (n—m)-tumes when and only when M 1s totally geodesic.

THEOREM 2.10 Ewvery Spec(M™, S™) contains 0 at least (m~+1)(n—mu)-tunes
and just (m+1)(n—m)-times when and only when M 1s totally geodesic.

In the Kaehlerian case we have following theorem due to Y. Kimura ([17]).

THEOREM 2.11. For a compact Kaehler submanifold M™ of CP", 2,=0 holds.
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And its multiplicity =Z2(m~+1)(n—m), wheve the equality holds when and only
when M 1s totally geodesic.

§3. Review of a Gilkey’s paper.

In this section we review the Gilkey’s paper [10]. Let M be a compact
connected Riemannian manifold of dimension m, g its Riemannian metric, v, 1its
canonical measure. Let V be a smooth vector bundle over M and 0D; C*(V)—
C*(V) a second order differential operator with leading symbol given by the
metric tensor. Locally D can be expressed as

2

w 0 0 |y
D=—(2 g orgx TE MG +N),

where (x,)a<,sm> 1S a local coordinate system and M, and N are square matrices
which depend on the choice of frame and local coordinates.

Let Vy denote the fibre of V at x. For t>0, exp(—tD) is a well defined
infinitely smoothing operator which is of trace class in L% V). Let K(¢, x, v, D)
be the kernel of exp(—¢D), which is a homomorphism from V, to V,. Then

exp(_tDm(x):gMK(l, %, v, Dyu(»)v,(y).
It is well-known that as ¢ | 0, Trace K(¢, x, x, D) has a uniform asymptotic ex-
pansion of the form
Tr K(i, x, x, D)~2%.0B(x, D)tk-m2,

The coefficients B,(x, D) are smooth functions of x which can be computed
functorially in terms of the derivatives of the total symbol of the differential
operator D. B,(x, D) is a local invariant of D and B,,,.(x, D)=0. Set ,D)

=[ Bu(x, DV,(X). Then
j Tr K(¢, x, x, D)~ B (D)t*~m2
M tio

If V has a smooth inner product ¢{,> on each fibre and if D is self-adjoint
with respect to the fibre metric, let {2,, 6,}5-, be a complete spectral decomposi-
tion of D into an orthonormal basis of eigensections &, and corresponding eigen-
values A,. For such a D, we can express

Tr K(t} X, X, D):ZTJO:I exp(—ﬁtzv)/\aw 6v><x);
S‘[Tr K(t, x, %, D)= exp(—t2,).
Thus the integrated invariants B,(D) depend only on the asymptotic behavior

of the partition functiorl > exp(—t2,) and therefore spectral invariants.
Let V be the Levi-Civita connection on TM and also let V be any connection
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on the vector bundle V. Let W be the curvature tensor of the connection V on
V. Let V* be the Laplace operator on V defined by V and g.

THEOREM 3.1 ([9]) Guwen a second order differential operator D; C=(V)—
C>(V) with leading symbol gwen by the metric tensor, there 1s a unique connection
YV oon V such that E:=—N*—D 1s a Oth order operator, i.e. an endomorphism

of V.

Then for a D we consider only such a connection V on V. Let r be the
fibre dimension of V and set A,(D)=4r)""?B,,(D). (We note here that the signs
of R, p and 7 used in [10] are different from ours). Then

2 exp(—tA)~(dnt) ™ (A(D)+ AD)t+ALD)1*+ ).

THEOREM 3.2 ([9], [10])
(1). A«D)=r-vol(M),

@. Al(D):%SMTJrSMTr(E),

®. ALDy= o] Grr=2lpl*+2I RID+

l J— 2 2
ok S {—30| W| 2+ Tr(60c E--180E2)} .

360 Ju

§4. Asymptotic expansion of the partition function.

In this section we apply the results stated in §3 to our case and clarify the
geometric meaning of the first three terms of the asymptotic expansion for
t | 0 of the partition function 32,e~*¢, and then obtain Riemannian and Kaehler-
ian spectral invariants. The vector bundle V considered in §3 is in our case
replaced by the normal bundle TM* of the minimal submanifold M, which has
the canonical inner product. Thus the fibre dimension of V is just the codimension
of M. The differential operator J consists of the Laplace operator V*> of the
normal bundle and its symmetric endomorphism (—RB+2). Thus to the endo-
morphism E considered in § 3 corresponds the endomorphism (—1?4—;1) and the
required unique connection on TAM* is just the normal connection induced from
the immersion. Then from the Gauss equation,

t=m(im—1c—S, Tr(E)=S+m(n—m)c,
Tr(EY)=L y+2mcS+m*(n—m)c?.

Let Spec(M, N) be {1, 2, ---}. Let us express the asymptotic expansion of
Se~?*it for ¢ | 0 in the way;
E e—1i5N(4nt)'m/2-(ao—l—a1t—I—agl‘z—i- ) .

Then each a, is an integration over M of a local invariant determined by the
total symbol of / which is expressed by the second fundamental tensor A and
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the metric tensor g. And derivatives of g are expressed via E. Cartan’s theo-
rem by covariant derivatives of the curvature tensor R, and R itself is expressed
through the Gauss equation in terms of A. Consequently each a, is an integra-
tion over M of a local invariant determined by the second fundamental tensor
and its higher order covariant derivatives.

From Theorem 3.2, we have

THEOREM 4.1. Let M™ be a minimal submanifold of N™(c). Then
a,=(n—m)-vol(M),

ay,=m(n—1)c-vol(M)+ — 4;(%1_‘_6_5 .

=" (m+5)(n—m)c-vol(M)— ”""”T@S S,
6 6 M

7
0= 550 S G =2[pI*+2I R+ 15 S 6Ly—Ky)

1
+ 5| =D t=e)4Colm, 1, ©)-vol(M),
where Cy(m, n, ¢) 1s a number determined by m, n and c.
COROLLARY 4.2. Let M be a mimwmal submanifold of a gwen space N of
constant curvature c. If the codimension of M 1s not equal to 6, then the spectrum

Spec(M, N) determines the following quantities (spectral mvariants);

(D). dimension of M, volume of M, S”T, S‘[S, SV(K‘VH}_L‘V_T%

@. ”lgglj_u<|1?|2—ip|2>+ TR gl 6La—K),
3). 18(“ (icr® + 5 1G1?)+Ciom, n)g o *—g 6L y—Ky),
@. " (e S |G|)+c1<m, w15, 6T —TK),

where C,(m, n)= —om’—53m’ +5dm+(m*— 7mr—§—76)n
w 360m(m—1)
We note that if 2<m and n=m-+13, then C,(m, n)>0, and if 4<m and

n=m-+12, then C,(m, n)<O0.

PROPOSITION 4.3. For an oriented 4-dimensional minimal submanifold M, let
X(M) and sign(M) denote the Euler number and signature of M, then the follow-
mg are its spectral wnvariants.
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2An—4) 4(n—4) T(n—4) .
——5“‘ Slgn(./\/[)—r‘“—zs—“ ? X(l‘/j) ( (4, 71)J|_ 2160 )S}[v

1
— 55 BLx—FKx),

2(n— 4) 4(71 ) M . 7(71—4) B
S mtsign(M)+ S -A(M)W(cl<4, D+ e )SMV

1
— I—ZSM(GT—H(N) .

Proof. From the generalized Gauss-Bonnet formula and the Hirzebruch
signature theorem, X(M) and sign(M) can be expressed in terms of |C|, |G|
and 7 as ([7])

) S
M=, (Ic, —2|Gr¢—f )(M) sign(M)= o, (|c. )( ).
Thus

1

IC| 2(A/1):32n2-xm//>+(2 |G |2— —6—‘:2)(1\[)

- %7‘1(1\1)—48%2' sign(M).

Substituting these into (3) of Corollary 4.2, we obtain two spectral invariants;

0D o gignan "] 1610 )] ] G R,

S8 e+ S G2 +(Cold, m)— 108§)SVL rlzx 6Ly—Ry)

Eliminating |G| from these, we obtain the desired first invariant. The second

invariant can be obtained in the same way, using (4) of Corollary 4.2.
Q E.D.

Now let N:==N(c) be an n-dimensional Kaehler manifold of constant holo-
morphic sectional curvature ¢, and M an m-dimensional Kaehler submanifold of
N. Then from the Gauss equation

r=m@n+1)c—S
and from E=(mn/2)c/-+A and Lemma 1.3
tr(E)=m(n—m)c+S=m(n+1)c—7,

(n—m)m?®

tr(E?)= 5 c*+meS+ Ly



SPECTRAL GEOMETRY OF CLOSED MINIMAL SUBMANIFOLDS 239

= 1;1'(mz-l—mn+4m—|—2)C2—(m+2)cz'—|~% |R|%.
THEOREM 44. Let M™ be a Kaehler submanifold of N*(c). Then
a,=2(n—m)-vol(M),

a,=(n+1)ymc-vol(M)+ —'njg?—fggﬁlr

<"”’">(”‘+ Y mevalan— "0 s,
3 M

eo={ A DR el (Mt )}

+Cy(m, n, c)g t+C,(m, n, ¢)-vol(M) ,
where Cy(m, n, ¢) and C,(m, n, ¢) are numbers determned by m, n and c.
COROLLARY 4.5. Let M be a Kaehler submanifold of a giwen complex space

form N. If the complex codimension of M 1s not equal to 3, then the following
are 1ts spectral wmvariants.

(). dimension of M, volume of M, SMT, SMS,

@. [ [+ PR g )tel (Mg ~ 2=

2(n—m)+45 (n—m)(6—m)—15m+150 , \
g { g0 B 90(m-+2) |G 1*+Cy(m, n)r},
1 2m-|—8 m+2 .
SM{ IBIZLW# by 1GIF +77;1‘(m+1) T}’
n—m , (I—=—m)n—m)+6m+21 , rn—m 1
S BT )|G| T e, T ~( a5 2>T}»
where Cy(m, n)= (5m?+4m+3)(n—m)—30m* —dbm 475
w 180m(m+1)

Proof (1) and (2) are obviously spectral invariants. Substituting |p|*=

PR 2 — 2= P
|G1? —1— Z' and |R|?=|B|*+ +2 |G |2+~ m(m+l) 7? mtor(nZ_){—zwe obtain (3).

Integratmg both sides of the equality ——Z—VZS T—Ky— L‘v+ﬂ‘2v~cS and using

(1) and Lemma 1.3, we obtain (4). Eliminating B from (3) and (4), we obtain
®). Q.E.D.
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Assumption. In the following we consider only such minimal submanifolds
that their (real) codimensions are not equal to 6.

§5. Geometry reflected by the spectrum.

In this section, making use of the spectral invariants given in §4, we obtain
some properties which are derived from or reflected under the isospectral condi-
tion. These properties consist mainly of three parts, i.e. constant curvature
property, Einstein property and the miscellaneous one, together with isotropic or
parallel second fundamental tensor property. Then using these isospectral prop-
erties we characterize some concrete minimal submanifolds of a sphere, particu-
larly Veronese manifolds.

First we state those which are related with constant curvature property.

PROPOSITION 5.1. For a mwnwmal surface M, its Fuler number X(M) and the
wntegral SM {(n+18)S*—20Ky} are spectral wmvarants. And lhe follouing are

spectral properties.
(1). The vmmersion 1s 1sotropic and M has a constant Gaussian curvature K.
(2). M has a positwe constant Gaussian curvature K.

Proof. For a surface M, |R|*=2|p|*=7* and 2L y=25*—Ky hold. Thus
from Corollary 4.2, {(n+18)S?—20Ky}(M) is a spectral invariant. By the Bauss-
Bonnett formula X(M) is also a spectral invariant. When M is of dimension 2,
SEM)=Ky(M) holds, and the equality is attained if and only if the immersion
is isotropic. Now let M and M’ be minimal surfaces of N with the same
spectrum. M is assumed to be isotropic and of constant Gaussian curvature K.
Then

(n4-18)S*—20K y)(M)=((n-+18)S"*—20K’, )(M"),

Ky(M)zZzKy(M"), S M)=S"*(M).
Since S is constant and area(M)=area(M’), by the Schwarz inequality
area(M)- S*(M)=(S(M))*=(S'(M"))*<area(M)-S"*(M’).

Thus S*M)<S'*(M"), S((M)=S"*(M’), and S=S"=constant, Ky(M)=Ky(M’) hold.
Then S*(M")=K4(M’) and (1) follows. (2) follows immediately from (1), because
a minimal surface with positive Gaussian curvature is isotropic ([12]). Q.E.D.

COROLLARY 5.2. If a full mwnwmal submanifold M of S** has the same
spectrum with the generalized Veronese surface V3_i, then M 1s itself Vi_.

Proof. From the assumption and Proposition 5.1, M is a surface of constant
Gaussian curvature 2/n(n-+1), and the area of which is equal to that of
S*v/n(n+1)/2). Thus if the immersion is full, it is the generalized Veronese
surface V3i_,. Q.E.D.
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COROLLARY 5.3. The Clifford torus M, 1s characterized by ils spectrum.

Proof. For a minimal surface M in S? 7% M) is a spectral invariant. Thus
the Gaussian curvature being a constant K is a spectral property. In particular,
if Spec(M, S*)=Spec(M,, ;, S®) holds, M is also flat and area(M)=area(}M, ), thus
M=M, ([4]. Q.E.D.

PROPOSITION 54. If 2=m=5 and n=m-+13, then the following 1s a spectral
property, The vmmersion 1s 1sotropic, the second fundamental tensor parallel and
the sectional curvature a constant k.

Proof. Suppose that Spec(M, N)=Spec(M’, N), 2=<m=<5, and n=m-+13.
Assume that M is isotropic and has a constant curvature . Suppose that VA
=0 holds. Then from Lemma 1.2 (in case m=3)

(m+1DLy(M)=mcS(M)=mcS'(M)=(m-+1)Ly(M'),
thus Ly(M)=LY¥(M’), and from Corollary 4.2

Cylm, mye¥(M)+35(6—m) Lu(M)

6—;77_1_ /|2 4 72 ’ i I I NCAS
o |G M) +Colm, (M) + 56 Liy— K)(M")
1
12

n—m

=" (lee+

=Ci(m, n)e" (M) +5(6Ly —Ky) (M)

=>Ci(m, n)r'2<M'>+fé<6—m>L;v<M'>

=Cim, WM+ 256 —m) Lu(M)

From C,(m, n)>0, < (M)=<z'*(M’) follows. And *(M)=<'*(M’) and z=7’ hold
because 7 is constant and t(M)=7'(M’). Therefore in the above, all inequalities
become equalities. Thus

[C']=0, |G']=0, (mLy—Ky)(M)=0, mcS'(M)=(m-+1)Ly(M").

It follows that M is isotropic, has a constant curvature 2 and that VA’=0. In
the case of m=2, by Proposition 5.1, Ky(M)=K%(M’) and S*(M)=S"*(M") hold,
thus Ly(M)=L%4(M’), and from Lemma 1.1, vA’=0 holds. Q.E.D.

PROPOSITION 5.5. Suppose that 2=m=5, n=m+13, Spec(M, N)=Spec(M’, N)
and that SMKNESM'KQ, holds. If M has a constant curvature k and 1its second

fundamental tensor is parallel, then M’ has also the constant curvature k, 1ts second
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fundamental tensor parallel and SMKNng,Kﬁv holds.
Proof. From the assumption and Corollary 4.2
C(m, n)z'z(M)——IgKN(M)

6—m
m—2

LG IE)MO+Cum, e (M 35 6T TR

=C,(m, n)c’*(M")— I’%KN(M) .

Thus %(M)=<'*(M’). The rest of the proof proceeds in the same way as that
of Proposition 5.4.

PROPOSITION 5.6. Suppose that 2=<m=5, n=m~+13, Spec(M, N)=Spec(M’, N)
and that ﬁMKNégM'K‘/V holds. If M 1s 1sotropic and has a constant curvature k,
then M’ 1s also 1sotropic, has the constant curvature k, and SMKN:SM Kl holds.

Proof. From Lemma 1.2, mL y(M)=Ky(M)SXKY(M)<mLY(M"), thus Ly(M)

<LW(M’). Then the rest of the proof proceeds in the same way as that of
Proposition 5.4. Q.E.D.

PROPOSITION 5.7. Suppose that 2<m=5, n=m-+13, Spec(M, N)=Spec(M’, N)
and that SM(GLN_KN)éng(ESL;V_K;V) holds. If M has a constant curvature k,
then 5o does M’ and | (6Ly—Ky)=( (6Ly—K4) holds

This Proposition can be easily proved as a consequence of the above argu-
ments. Since from Lemma 1.2, SM(6LN—KN)=0 holds for a 6-dimensional iso-
tropic submanifold Mof constant curvature, we have the following corollary.

COROLLARY 5.8. In case m=6 and n=19, the followwng 1s a spectral prop-
erty, The vmmersion 1s isotropic and the sectional curvature a constant k.

COROLLARY 5.9. If a full mumimal submanmifold M of S¥[S*] has the same
spectrum with the 5-dimensional [6-dimensional] Veronese manifold V[V €], then
M is itself V[V

Proof. We shall prove Corollary 5.9 for 5-dimensional submanifolds, using
Proposition 5.4. Suppose that M isa full minimal submanifold of S** and isospectral
with V5 V?®is isotropic and has the constant curvature 5/12. Moreover its second
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fundamental tensor is parallel. Then M has the same property (note that 19=5+13).

Moreover, since vol(M)=vol(V?), the underlying manifold of M is S*(2+/3/5) and M
can be considered as V?°. Corollary 59 for 6-dimensional submanifolds can be
proved in a similar way as a consequence of Corollary 5.8. Q.E.D.

Remark. We cannot apply Proposition 54 to characterizing V?* or V* by
reason of the restriction on the codimension (i.e. n=m-+13).

THEOREM 5.10. If a full mwmmumal submanifold M of S® has the same spectrum
with the 3-dimensional Veronese manifold V? and 2<54\/ 2~ 37’2 holds,
then M 1s itself V2.

Proof. Let 7/, K% and so on denote the scalar curvature, normal scalar
curvature and so on of Vi V3 is isotropic and has the constant curvature 3/8.
Moreover its second fundamental tensor is parallel. Then

2 (M)’ V?3), thus t¥(M)=7'3(V?), and Ly(M)=LW(V?).
Therefore
LY V?)=10(|C|*+3|G | M)+30(6 L y — Ky )(M)

Z90L y(M)=90LW(V?).

Therefore we have the following conclusions; L y(M)=L3\(V?), C=0, G=0,
(BLy—Ky)M)=0; M is isotropic and has the constant curvature 3/8; its second

fundamental tensor is parallel. Since vol(M)=vol(S*2+2/3)), M=V?3. Q.E.D.

The following Theorem can be proved in a similar way.

THEOREM 5.11. If a full minvmal submanifold M of S’ has the same spectrum
with the 4-dimensional Veronese manifold V* and SM12§384/72=SV4T’2 holds, then
M 1s atself V4.

PROPOSITION 5.12. Suppose Spec(M, N)=Spec(M’, N) and m=7. Assume that
M 1s Einstein, M is conformally flat and 1sotropic and that SMKN_gSM,KQV holds.

Then M and M’ have the same constant curvature and M is isotropic. Moreover
if the second fundamental tensor of M is parallel, so 1s that of M.

Proof. Since an isotropic minimal submanifold is Einstein, from the assump-
tion,

6—m ) p M 1
WKN(MFTSO [C] (M)+12(6LN—KN)(M)
6—m

= K ()2 KM
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Thus Ky(M)=Ky(M’), and M is conformally flat and isotropic. Moreover if
vA=0, then from Lemma 1.2, mcS(M)=(m—+1)Ly(M). Since mL y(M)=Kxy(M)
M MY=mLy(M"), mcS"(M")y=(m~+1)Ly(M’) holds, thus VA’=0. Q.E.D.

The following Propositions 13, 14 and 15 can be proved in a similar way,
s0 we shall omit their proofs.

PROPOSITION 5.13.  Suppose Spec(M, N)=Spec(M’, N). If M has a constant
curvature k, and M’ 1s Einstein (resp. conformally flat, m=7 and n<m-+12) and

if | 6Lu—Kn=| GLy—Kx) Gesp. | GLy—Kn)2 | OL4—K0) holds, then 11

has the same constant curvature k and JM(6LAV—K‘V):IV’ (6L —KY%) holds.

PROPOSITION 5.14 Suppose Spec(M, N)=Spec(M’, N) and m=7. If M 1so-
tropic, has a constant curvature k, and 1f M’ is Einstewn and SMKgng{v holds,

then M’ is also isotropic and has the constant curvature k. Moreover if the second
Sundamental tensor of M 1s parallel, so 1s that of M.

PROPOSITION 5.15. Suppose Spec(M, N)=Spec(M’, N). If M has a constant
curvature k and a parallel second fundamental tensor, and 1f M’ 1s Einstein and

SMKNESWKQ holds, then M’ has also the constant curvature k and a parallel

second fundmental tensor.

From Propositions 5.13 and 5.15, we obtain

mim-1
N -1

COROLLARY 5.16. If a full Einstein mumwmal submanifold M of S™*
has the same spectrum with the m-dimensional Veronese manifold V™, and

(m—1)(m-+2)m*6— m)/Z(m—l—l) miz e
[ (6L Kz T S (SN = 6Ly~ K)
or
m*(m— 1)(m+2)/2(m+1) mi2
J Joos 2m+17 )" on=],,K

M
holds, then M 1s itself V™. In particular 1f a full 1sotropic minmvmal submanifold

M of St s the same spectrum with V™, then M 1s itself V™(m=3).

The latter statement follows from the observation that since an isotropic

minimal submanifold is Einstein and KN———Z-——Sz—I—LV holds ([15])), nem
m-+2 180

S |Cl*+ S v is its spectral invariant. Thus let K% be the normal scalar

curvature of V™, then
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n— 5 , 5&‘

180 hlCP +12§M V= 1)y 751, I

Thus the assumption on the normal scalar curvature is automatically satisfied.
Now we state some propositions which are related with Einstein property.

PROPOSITION 5.17. Suppose that n=18, M and M’ be 4-dimensional oriented
minimal submanifolds of N, and that Spec(M, N)=Spec(M’, N) holds. If M is
Einstein and its second fundamental tensor parallel,

8n—4) .yoan—( =8 L T e

g an—g ] Kz ST waon -4l K,

A(n—4) A—D . o N ,
D 2o sign(u)+ o K= nrsignoun -+ K

hold, and in either inequality the equality is atiamed 1f and only if M’ 1s
Einstein and its second fundamental tensor is parallel.

Proof. We prove the first inequality. The second inequality can be proved
in a similar way. From the assumption and using a spectral invariant given in
the proof of Proposition 4.3,

8(n—4) , 2
S m M) +H(Cold, m)— 1080) (M)— KN<M>

8(71—‘4) 2 / ’2 ’ 2 ’
=22, x(M)+(cl<4 n)— 1080) )+ " 6y

1 ’ / 7
+1567 —TKy)(M')

8(11, 4) 7 A 2 7 ’
= 808 e a0, m—- T Y~ R,
where we note that C,(4, n)> 1083 follows from n=18, and z"*(M’)=7* M) holds
because = is constant and t(M)=t'(M’). Q.E.D.

PROPOSITION 5.18. Suppose that n=14, M and M’ be 4-dimensional oriented
minimal submanifold of N and that Spec(M, N)=Spec(M’, N) holds. If = is

constant and | (6Ly—Kn={, OL4—Ks) holds,

sign(M)+ %X(M) <sign(M")+ %X(M’)

holds and the equality 1s attained if and only if t=t’' and S\l<6LN_KN):



246 TAKUICHI HASEGAWA
SM,(ﬁLé"—Kﬁ") hold. If the second fundamental iensor of M 1s parallel and

_[MKN;LW Ky holds, the same inequality 1s derwed and wn that case the equality
is attained 1f and only if the second fundamental tensor of M’ 1s parallel and

S KN:S K’y holds.
M M

Proof. From Proposition 4.3

T(n—4
(citt, m+ TSN = MY+ 6 Ly— K )M~ (6 Ly — KM

= 993;4)- - (sign(M)—sign(M’))+ ﬁ%})‘—‘l—l 72 (UM)—X(M)) .

And from the assumption, C,(4, 7z)+—1(2nl—g(§l—)»20. Thus the first statement fol-

lows immediately. The second statement can be proved in the same way.
Q.E.D.

PROPOSITION 5.19. Suppose that n=18, dim M=4 and Spec(M, N)=Spec(M’, N)
holds. If M 1s Einstewn,

8(n—4)

o 8(n—1)
15

1 1
2, il _ O\ . N T TR
- X(M)+ 45‘11(6[4, Ky)= 5 % XM )—1—45”(6LA K\

holds and the equality 1s attained 1f and only if M’ 1s Einstein.

Finally we state some miscellaneous properties.
The following Proposition was obtained by H. Donnelly ([8]7).

PROPOSITION 5.20 If Spec(M, N)=Spec(M’, N) holds and M 1s tolally geo-
desic, then M’ 1s also totally geodesic.
This follows from the fact that SMS is a spectral invariant and it becomes

0 when and only when M is totally geodesic.

The following two Propositions can be easily proved, so we shall omit their
proofs.

PROPOSITION 5.21. Suppose that m=6, n=19, Spec(M, N)=Spec(M’, N) and
SMKNgSMIK‘/V hold. If M 1s conformally flat and 11s second fundamental tensor

parallel, then M’ 1s also conformally flat, its second fundamental tensor parallel
and t=t' holds.

PROPOSITION 5.22. Suppose m=6 and Spec(M, N)=Spec(M’, N). Assume that
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M 1s conformally flat, and that t is constant and n=19, or that <’ s constant and
n<18, then XM(GLN——KN)ggM'@LjV—KfV) holds and the equalily 1s attained 1/ and
only if M’ is conformally flat and v=t’" holds.

THEOREM 5.23. Suppose that an m-dimensional mumimal submanifold M of
Stm-1 has the same spectrum with M,,..,, and SW6T§7S”KN holds. If M 1s
Einstein, or i1f its scalar curvature 1s constant and m<6, then M 1s itself M, .. ..

Proof. Under the assumption

n—m

0="180

<(Cf >+ b=m [G[5)(M)+ _1'(6T_‘7KN)(A"1)
m—2 12

= 6T~ TE)(M)Z0.
Thus M is flat, and by a result of S. T. Yau ([26]) a compact m-dimensional
fiat minimal submanifold of S*™~! is just M, ... Q.E.D.

THEOREM 5.24. If a mwmwmal submanifold M of S° has the same spectrum
with the Clifford hypersurface M, , and its Euler number X(M)<4=X(M, ,), then
M is itself M,,,.

Proof. For a minimal hypersurface, L y=S* and Ky=0 hold. Thus, using
an invariant given in the proof of Proposition 4.3, for a 4-dimensional minimal
hypersurface M of S°®

327 X(M)+3| G [ H( M)+ 2ig'rz(M)

is a spectral invariant. Thus if Spec(M, S*)=Spec(M,, ,, S®) and Z(M)=<4, then
M is also Einstein and S=m. Therefore M=M,,. Q.E.D.

THEOREM 5.25. Suppose that 2=mi=mi=< --- <mj}, m=m{+ -~ +m}, and Spec
(M- mi,» Smik-1—=Spec(M, S™**-Y) holds. If M has a nonnegative curvature and

g TZSS <’? holds, then M 1s My .. ..
M Mm:. m 1 k

o™y

Proof. Since Mmi,,,,, m, has a constant scalar curvature, first we can assert
that z=7¢’ i.e. S=S’=(k—1)m holds. Let K be a function on M which assigns
to each point the minimum value of sectional curvatures at that point. From
the assumption, K=0. Thus S=(k—1)m(1—2K). Then by a theorem of Yau ([26]),
the second fundamental tensor of M is parallel, and S=(k—1)m(1—2K) holds
because M is not totally geodesic. Thus K=0, and again by a result of Yau
([261), M is a product of spheres; M=Mpn . ..;m,, 1Sm; =< - Sy, m=my+ - +1m,.
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The normal bundle of My, ..», is globally parallelizable, and its Ais a
scalar transformation. Thus, from Proposition 2.7, Spec(Mm, ..m, S™"* D=
Spec(Mmi,...,m}e, Sm*+k-1) is equivalent to Spec(Mn,.... mk):Spec(M,,li_.,,mk), where
Spec(M) denotes the complete set of eigenvalues of —V? acting on functions on
M. Spec(]\/[mi,.“,mk) can be easily computed. Its eigenvalues between 2m and
3m are 2m <20 +1/mpym < - Z2(1 +1/m{)m < 3m, and the multiplicity of
2(1+1/m)m is equal to mi(m;+3)/2. Thus from Spec(My,... ,nk):Spec(1V17ni,..,m%)
we can conclude that m,=mj, ---, m,=ni}. Q.E.D.

§6. Kaechlerian case.

In this section, using the Kaehlerian spectral invariants given in §4, we
obtain some spectral properties, and then characterize some concrete Kaehler
submanifolds of a complex projective space.

Let n be the complex dimension of the complex space form N=N(c¢), and m
be the complex dimension of its compact Kaehler submanifold /.

First we note that in some situations those properties which appear general
reduce to special ones, for example, Kaehler submanifolds with parallel second
fundamental tensor or with constant holomorphic curvature in a complex space
form of nonpositive holomorphic curvature are necessarily totally geodesic. And
it n—m<m(m-+1)/2, a Kaehler submanifold of constant holomorphic curvature
is also totally geodesic.

PROPOSITION 6.1. Suppose that m=6 and n=m-+7, or thal m=7 and 35=n
<51, and that Spec(M, N)=Spec(M’, N) holds. Then 1f M has a constant holo-

~

morphic curvature ¢, so does M.

Proof. Under the assumption (it—m)(6—m)—15m+150>0 and C,(m, n)>0.
Thus, from (3) of Corollary 4.4

Cdm, n)c(M)

_ An—m)+45
180

=C,(m, n)z*(M").

From t(M)=7'(M’) and 7 being constant, *(M)=7"*(M’) holds, thus c*(M)=7"(M"),
and t=7/, B’=0, G’=0 hold. Q.E.D.

. 7( n— m)(6—m)—15m flSO

TL2AANN SO NG oY P2 ANIN (' A
| B"[%(M")~ 900 +2) [G A MY+C(m, n)c"*(M")

COROLLARY 6.2. Complex Veronese manifolds CV™ of dimensions from 3 to
7 are characterized by their spectra.

The case of 4<m=7 is an immediate consequence of the above Proposition.
The case of m=3 follows from the fact C,(3, 9)>0 even though 3+7>9. Note
that the complex codimension of CV? is just 3, which is the case out of our
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consideration.

PROPOSITION 6.3. Suppose that m=6, or that m=7 and 35=n=51, and that
Spec(M, N)=Spec(M’, N) holds. Then 1f M has a constant holomorphic curvaiure

¢ and Svrzz(u 7’2 holds, M’ has also the constant holomorphic curvature ¢.

v

From (3) of Corollary 4.4, we have

PROPOSITION 6.4. Suppose that 9=m, n=m+7, and Spec(M, N)=Spec(M’, N)
holds. If M s FEinstein, the Bochner curvature tensor of M’ vanishes and

S z'2:>:S T'% holds, then M and M’ have the same constant holomorphic curvature.
M M

This follows from the fact that under the assumption,
(n—m)(6—m)—15m-+150<0 and C,(m, n)>0.

COROLLARY 6.5. If an Einstewn Kaehler submanifold M of CP™+mm+bi2 pag
the same spectrum with the m-dimensional complex Veronese manijold CV™ and

8ma™ :

—2> L A 12 ! - m -

SJIL Zm(mn-+1) Hm—1)! chm“ holds, then M 1s itself CV™ (m=9).
PROPOSITION 6.6. Suppose Spec(M, N)=Spec(M’, N). If M has a constant

holomorphic curvature ¢, then SMT§S”,T’ holds and the equality 1s aliawned 1f

and only of M’ has the constant holomovphic curvalure & (m=2).

Proof. From (4) of Corollary 4.5 and the assumption

mE2 T
m(m+1) © (M)—T(M)
__l axeve _L,g7n*~t§, 712 2 __71771:%'2 VYN TS VT
=5 | B/I(M)+ — |G [*(M")~+ 1) © (M")—T"(M")
= 2 oan—ran=- " con—1ar
= nmED) TA(M)—T'(M")= D) AM)—T (M)
Thus we obtain the Proposition. Q.E.D.

COROLLARY 6.7. If a Kaehler submanifold M of CP™ ™™D/ hqs the same
spectrum with the m-dimensional complex Veronese manifold CV™ and the second
Jundamental tensor of M is parallel, then M 1s itself CV™ (m=3).

From (5) of Corollary 4.5 we have

PROPOSITION 6.8. Suppose that n =m-+6-+27/m—1 and Spec(M, N)=



250 TAKUICHI HASEGAWA

Spec(M’, N) holds. If M 1s Einstein, then SuT“S‘SwT/ holds and the equality 1s

attawned 1f and only if M’ 1s Einstein. In particular 1f M 1s Ewnstein and the
second fundamental tensor of M’ 1s parallel, then M’ 1s also Einstein and the
second fundamental tensor of M 1s parallel.

PROPOSITION 6.9. Suppose Spec(M, N)=Spec(M’, N). If M s Einstewn and
SMTZZSW?/Z holds, then LTéSM'T/ holds and the equality is attained 1f and only
if M’ 1s Einstein.

PropPosITION 6.10. If Spec(M, N)=Spec(M’, N) holds and M 1s tolallv geo-
desic, then M’ 1s also totally geodesic.

From Corollary 4.5 we have

PRrROPOSITION 6.11. If M 1s a complex curve in N, then the following are its
spectral wvariants;
S 72,8 T
M M

COROLLARY 6.12. For complex curves in N, the Gaussian curvature being a
constant K 1s a spectral property.

COROLLARY 6.13. If a full Kaehler submanifold M of CP™ has the same
spectrum wilh CVi_y, then M 1s CV_,.

PROPOSITION 6.14. Suppose that m=2, n=5 (resp. n=11), and Spec(M, N)=
Spec(M’, N) holds. If M s Einstewn, then sign(M)=<sign(M’) (resp. A(M)=xX(M"))
holds and the equality 1s attained 1f and only 1f M’ s Einstein.

Proof. In terms of B, G and 7, X(M) and sign(M) are expressed as

1 L1,
W= 4, (1BI*=21G ")),

. —1 1
sign(M)= o 2'(1 Bl*— —6—7:2)(M) .

From (2) of Corollary 4.5 and these expressions we obtain the spectral 1nvari-
ants;

—12(8n-+164)7*-sign(M)+2(n+28)| G | *(M)+ BBnEISQ ¥(M),

16(2n+41)=* X(M)+3(n+23)| G| *(M)+ —9117293 (M).
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If n=5 (resp. n=11) and M is Einstein, the coefficients of ¢* in the upper (resp.
lower) invariant is positive and ¢ M)<t’*(M’) holds. Thus we obtain the
Proposition. Q.E.D.

PROPOSITION 6.15. Suppose that m=2 and Spec(M, N)=Spec(M’, N) holds.
If the scalar curvature of M 1s constant and the second fundamental tensor of
M’ is parallel, then 2 sign(M’)+X(M')=2 sign(M)+X(M) holds and the equality
is attained 1f and only if the second fundamental tensor of M 1s parallel.

Proof. From (4) of Corollary 4.5 and the expressions for ¥ and sign given
in the proof of Proposition 6.14,

—247%-sign(M)+3] G| X(M)-+ Z—r*(M)—T(M) ,

1
16752~X(M)+4]Glz(M)+§z'2(1M)—T(M)
are the spectral invariants. From these, the following is also spectral invariant;

9672 sign(M)-+48x2- X(M)— g—r"’(M)JrT(M) .
Using this we obtain the Proposition. Q.E.D.

THEOREM 6.16. If a Kaehler submanifold M of CP* has the same speclrum
with the 2-dimensional quadratic Q* and 31X(M)-+117 sign(M)=<124=31%(Q>+
117 sign(Q* holds, then M 1is itself Q>

Proof. Using the invariants given in the proof of Proposition 6.15, we
obtain a new invariant;

1672 X(M)+247* sign(M)+| G |*(M)— %—TZ(]V[) .

This, together with the invariant given in the proof of Proposition 6.14 (in case
n=3), gives a new invariant;

31X(M)+117 sign(M) — 1637,T2 "

Using this we obtain the Theorem. Q.E. D.
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