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THE SPECTRUM OF SASAKIAN MANIFOLDS

BY YHUJI SHIBUYA

§ 0. Introduction.

The spectrum of a manifold, which is the set of eigenvalues of Laplacian, is
in some sense related to the " pure tone " of the manifold.

There is an old question asking, " Can you hear the shape of the drum ? ",
that is, to what extent can you determine some geometric character of the
manifold by knowing its spectrum ? (See Kac [4])

In particular, we are interested in the question of whether a manifold is
isometric to a sphere, if the spectrum of the manifold is the same as that of the
sphere. This question has been affirmatively answered in the 1, 2, 3, 4, 5 and 6
dimensional cases. (See Berger, etc. [1] and Tanno [8]) But it is an open
question for other dimensions.

In this paper, we affirmatively answer this question in the (5), 7, 9, 11 and
13 dimensional cases under the assumption that the manifold is a Sasakian
manifold, which is a contact manifold with certain integrability conditions.

For the proof, we first establish several curvature properties of a Sasakian
manifold, then study some geometric implications of the vanishing of the contact
Bochoner curvature tensor, and finally we use the asymptotic expansion of the
fundamental solution of the heat equation to express the spectral condition in
terms of curvatures. The main theorem is then obtained for the wider class of
spaces in which spheres are included.

§ 1. Sasakian manifolds and their curvature properties.

Let M2n+1 be a 2n+l-dimensional differentiate manifold. M 2 n + 1 is said to
have an almost contact structure if the structural group of its tangent bundle is
reducible to U(n)Xl, where U(n) is an (n, n) unitary group.

An almost contact structure can also be seen from a different point of view.
A differentiate manifold M2n+1 is said to have a (φ, ξ, η)-structure if it admits
an endomorphism φ of the tangent spaces, a vector field ξ, and a 1-form rj
satisfying

(1.1)
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and

(1.2) φ2=-I+y®ζ,

where / denotes the identity transformation. It is easily seen that φ satisfies

(1.3) φξ=0 and 7}°ω=0,

that is, φ has rank 2n. It is easily proved that the notions of an almost contact
structure and a (φ, ξ, ^-structure are equivalent. In this sense we sometimes
refer to an almost contact structure (φ, ζ, η).

We also see that M2n+1 admits a special Riemannian metric called a com-
patible metric such that

(1.4) g(φX, φY)=g{X, Y)-7]{X)τj{Y).

M2n+1 with (φ, ξ, ^-structure and then metric (1.4) is said to have (<p, ξ, τn g)-
structure or an almost contact metric structure (φ, ξ, -η, g).

The fundamental 2-form Φ of an almost contact metric structure (φ, ς, η, g)
is defined by

(1.5) Φ(X, Y)=g(φX, Y).

Φ is skew-symmetric because of (1.2), (1.3) and (1.4).
An odd dimensional euclidean space R2n+\ a hypersurface in an almost com-

plex manifold,"especially an odd dimensional sphere, a product manifold M2nxR
of an almost complex manifold and the real line, and a Brieskorn manifold are
examples of almost contact metric manifolds.

An almost contact manifold M2n+1 is said to be normal if an almost complex
structure of M2n+1xR is normal, that is,

(1.6) lφ, ψ]{X, Y)+dV(X, Y)ξ=0,

where \jp, φ] is the Nijenhuis torsion tensor for φ.
An almost contact metric structure is said to be a contact structure if

(1.7) Φ(X, Y)=dV{X, Y).

A Sasakian manifold is an almost contact metric manifold satisfying (1.6)
and (1.7). But it is well known that

(1.8) W

is the necessary and sufficient condition for an almost contact metric manifold
to be a Sasakian manifold.

An odd dimensional euclidean space R2n+1, a principal circle bundle by
Boothby-Wang fibration over a Hodge manifold, a hypersurface of a Kaehler
manifold, and a Brieskorn manifold are examples of Sasakian manifolds. (For
more detailed theory of contact manifold, see Blair [2])

In a Sasakian manifold we have

(1.9) lxζ=φX.
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By (1.8), (1.9) and the Ricci identity for ξ we have

(1.10) Rkjiψ^δk

h

Vj-δ*ηk,

or

(l ll) Rkjihr)

By applying δh

k to (1.10), we have

(1.12) R

The Ricci identity for ψ and (1.8) and (1.9) lead to

(1.13) Rkjι
hφil-Rkji

lφιh^=~ψkhgjiJrψjhgki-

δh

k applied to (1.13) implies

(1.14)

thus

(1.15) φ φ

Furthermore by using the first Bianchi identity, we have

(1.16) Rkhjiφ
kh=2Rjlφi

ι+2(2n-l)φji.

Considering (1.16) as 2-forms then taking the exterior derivative then using (1.5)
and the second Bianchi identity, we have

(1.17) VkRji-VjRkιφφ

— 2RJιφk

ιηι

JrRkιψi

ιηJ,
and

(1.18) VkRJt=φimφΛVJ

From (1.18) we easily see that

(1.19) (7*

(1.19) suggests the following definition: If the Ricci tensor Rjt of a Sasakian
manifold Mi1t+1 satisfies

(1.20) (7 X Riccϊ)(φY,

for any vector fields X, Y and Z on M 2 n + 1 , then the Ricci tensor RH on Λ/2n+1

is said to be ψparallel. It is known that if M 2 n + 1 is a regular Sasakian mani-
fold, then Rji on M2n+1 is ^-parallel if and only if the Ricci tensor on M'2n+1/ξ
is parallel. (See Kon [5]) From (1.18) we see that in a Sasakian manifold with
97-ρarallel Ricci tensor we have

(1.21) ^kRJi
 ι l

and thus

(1.22)
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We also see from (1.18) that in a Sasakian manifold M 2 n + 1 with ^-parallel Ricci
tensor the scalar curvature S is constant and the square of the length of the
Ricci tensor is constant. From (1.17) and (1.18) it is easily seen that

(1.23) 17 Ricci 12=21 Ricci 1 2-8nS+16n 3+8n 2

is the necessary and sufficient condition for a Sasakian manifold to have the
^-parallel Ricci tensor.

Let M2n+1 be a Sasakian manifold. The sectional curvature of the section
spanned by X and φX which are orthogonal to ξ is called a φ-sectional curvature.
A Sasakian manifold of constant ^-sectional curvature c is called a Sasakian
space form M27l+1(c). The necessary and sufficient condition for a Sasakian
manifold M2n+1 (2n + 1^5) to be a Sasakian space form A42n+\c) is that the
curvature tensor has the following form :

(1.24) R(X, Y)Z= - J - (g(Y, Z)X-g(X, Z)Y)+ 4 {η{X)η{Z)Y

-V(Y)V(Z)X+g{X, Z)η{Y)ξ-g{Y, Z)v(X)ξ

+g(φY, Z)ψX-g{φX, Z)ψY-2g(,ψX, Y)ΨZ).

If the curvature tensor is of the form (1.24), the Ricci tensor Rjt and the scalar
curvature S are given by

(1.25) Ricci(Z, F ) = n ( c + 3 ) + c 1

 g(χt Y)

and

(1.26) S=- | (n(2

An odd dimensional sphere S2n+1, and odd dimensional euclidian space R2n+1

and the product bundle (R, CD71), where CD71 is a simply connected homogeneous
complex domain with constant holomorphic sectional curvature ^ 0 and R is the
real line, are examples of Sasakian space forms.

By generalizing (1.25), we call a Sasakian manifold M2n+1 CΈinstein if the
Ricci tensor Rjx of M2n+1 is of the form

(1.27) Rji—agjiΛ-bηjΎ]^ where aJrb~2n.

Remark. The second Bianchi identity reduces to

(1.28) 7 J S-27 1 /?/=0.

From (1.27), the scalar curvature is expressed by

(1.29) S=(2n+l)a-τ-b=2n(a

By putting (1.27) and (1.29) into (1.28), we have
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(1.30) (2n-2)lja+2η£ilia=Q,

since (1.9) and (1.3) hold. Applying ξJ, we see

(1.31) 2nξ%a=0.

Thus if n>l, a and b in (1.27) are necessarily constants, because (1.30) with the
second term replaced by (1.31) gives

(2n-2)7.,α=0.

§ 2. Contact Bochner curvature tensor.

From this section Sasakian manifolds always have dimension ̂ 5 .
The contact Bochoner curvature tensor B of a Sasakian manifold M2n+1 with

structure tensor (φ, ξ, η, g) is introduced as an analogue of the Weyl conformal
curvature tensor of a Riemannian manifold. (See Matsumoto and Chΰman [6])
But we do not know as to what kind of non-trivial transformation leaves the
contact Bochoner curvature tensor invariant.

(2.1) BkJi

h = Rkji

JrLk

h(gji—Ύ]Jηι)~LJ

h(gki—*ηkΎ]ι)

+φkhMji-φJ

hMki+Mk

hφJi--M3

hφk%

2{Mh + M h )

where

(2.2)

(2.3)

(2.4)

(2.5)

and

(2.6)

From ι

(2 7)

where

(2.2) and

S is the
Applying (1

(2.8)

which, together

(2.4) it

scalar
.12) to

with

1 . R (7 I o\
2(n+2) Jl Sjι

L=g>iLJt,

MJt = -LJtψt

t ,

MS=Mjtg".

follows that

5+2(3n + 2)

4(w + l)

curvature of M2n+1.
(2.2), we have

(2.5) yields
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(2.9) Mnψi

t^LJi+η]ηι.

The following identities are easily verified:

(2.10) BkSl

h+Bjkl

h=0,

(2.11) Bkj

(2.12) Bti:

(2.13) Bkj

(2.14) Bkjih-=Bihkl,
/O 1 Γ\ JD h „ . A

{Δ.iΌ) ΰkji y]h — V>

(2.16) Bkjt

hψi

t = Bkji

tφt

h ,

(2.17) BkJi

hφk^0.

Since the vanishing of the Weyl conformal curvature tensor has an important
geometric meaning, next, we will study some geometric implications of the
vanishing of the contact Bochoner curvature tensor, i. e., B~0.

First we have

PROPOSITION 2.1. Let M2n+1 be a Sasakian manifold. If M2n+1 has constant
φ-sectional curvature, then M2n+1 is C-Einstein and the contact Bochoner curvature
tensor B vanishes.

Proof The first part was already observed in (1.25), so we will just prove
the second part. By using (1.25) and (1.26) we have

___ πc+3π+4

L _ _

and

o o

thus

which, substituted in (2.1), gives the result. Q. E. D.

The converse of Proposition 2.1 is given in the next proposition.

PROPOSITION 2.2. Let M2n+1 be a Sasakian manifold. If the contact Bochoner
curvature tensor vanishes and M2n+1 is a C-Einstein manifold, then M2n+ι has a
constant φ-sectional curvature.

Proof. Since M2n+1 is C-Einstein, the Ricci tensor is expressed by Rji =
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agji

JrbηJηl) where a and b are necessarily constants such that a+b—2n. Thus
the scalar curvature S=(2n-\-l)a-\-b is constant. By using (3.1), we can compute
Rkji

h, which has the form (1.24) with

2 n α + 4 α - 3 n 2 - 5 n + 2
c= ~ - ( S + Ϊ X » + 2 Γ " • • Q L D

Next, we will weaken our condition on the contact Bochoner curvature
tensor and assume that the contact Bochoner curvature tensor is parallel, that
is, 7 5 = 0 .

The following proposition gives one sufficient condition for a Sasakian mani-
fold to have the 97-parallel Ricci tensor.

PROPOSITION 2.3. Let M2n+1 be a Sasakian manifold with parallel contact
Bochoner curvature tensor and constant scalar curvature. Then the Ricci tensor
of M2n+1 is ψparallel.

Proof. By using the curvature properties of a Sasakian manifold that were
given in § 1, we obtain the following formula straightforwardly :

(2.18) VΛBkji

h =

By applying ψυψukφt3φs

τ and making use of (1.18), we obtain

V , Λ Λ t ^ t t V = 0 Q.E.D.

Differentiating (2.1) directly, we have

PROPOSITION 2.4. Under the same assumption on M2n+1

y the curvature tensor
R of M 2 n + 1 satisfies

(2.19) C7xR)(φY, φZ, φV, φW)^0 .

If the curvature tensor R of a Sasakian manifold M2n+1 satisfies the condi-
tion (2.19), M2n+1 is said to be a locally D-symmetnc space. It is easy to check
that when M2n+1 is a regular Sasakian manifold, M2n+1 is a locally /^-symmetric
space if and only if M2n+1/ξ is a locally symmetric space since ξ is a Killing
vector field.

Now we compute the length of the contact Bochoner curvature tensor of a
Sasakian manifold M2n+1 and study some applications.

By computing assiduously, we have

(2 20) l β | 2 - ^ | 2 i



204 YHUJI SHIBUYA

, 4(3n2+3n-2) _ 4n(6n3+9n2-n-2)

The same result is obtained independently by D. Janssens [3].
As a preparation we prove the following lemma:

LEMMΛ 2.5. Let M2n+1 be a Sasakian manifold. Then we have

(2.21) I Ricci 12 ( S ~ 2 n ) 2

2n

Equality holds if and only if M2n+1 is a C-Einstein manifold.

Proof. At each point p of M2n+1, choose an orthonormal basis including
the characteristic vector field ξ of TpM

2n+1 so that the matrix representing the
Ricci tensor Rjt is diagonalized. Then the scalar curvature is expressed by

S= Σ Rtt+2n,

since Ricci(f, ξ)=2n.
By using Schwartz inequality, we get

l^2n Σ /? ι t

2=2n(|Ricci|2-4n2),

giving the inequality. Equality holds if and only if the Ricci operator restricted

to the contact distribution D is — 9 —- /, where / denote the identity. This
S—2n

means Rji= 9 gμ for l^z, j^2n. Since Ricci(£, ξ)—2n, we have

• η % . Q.E.D.

Now we establish an inequality involving the curvature tensor R and the
scalar curvature S.

PROPOSITION 2.6. Let M2n+1 be a Sasakian manifold. Then the following

inequality holds

n o o λ , p | . > 2 « 4(3n + l) 4n(3n+lX2n+l)
n(n + l) n + 1 n+1

Equality holds if and only if M2n+1 has a constant φ-sectional curvature.

Proof. First we rewrite \B\2 so that we can use (2.21).
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n+f """ *
Now by virtue of | 5 | 2 ^ 0 and (2.21), we have the result.

When the equality holds, M2n+1 is a C-Einstein Sasakian manifold with
vanishing contact Bochoner curvature tensor. Thus by Proposition 2.2 M2n+1

has a constant ^-sectional curvature. The converse is also true by Proposition
2.1. Q.E.D.

§ 3. Spectrum of Sasakian manifolds.

Let (Mn, g) be a compact orientable Riemannian manifold without boundary
with a Riemannian metric g. The Laplaaan Δ, acting on the real valued C°°-
function on Mn (=C°°(M)), is defined by

where £=det(g ι-7) and {x*} is a local coordinate system of Mn.
The spectrum of (Mn, g), denoted by Spec(Mn, ^), is the set of eigenvalues

λ of Δ, i.e., the λ}s^R such that there exists / G C ° ° ( M ) , /^O with Af=λf. We
write

each / being written a number of times equal to its multiplicity, which is
known to be finite.

One of the ways to observe the geometric meaning of the spectrum of a
manifold is the asymptotic expansion of Σ,e~λίt. In particular we have

T H E O R E M 3.1. For every Riemannian manifold, there exist α / s (ι=0, 1, •••)

with

(3.2) Σ β- λ* ί=(4τr0"n / 2 Σ αi ί ι +O(ί* + 1 - n / 2 )

for every k.

Theoretically we can compute the α/s. But so far only aOt au a2, and az

have been computed.

(3.3) ao=\ vg=volume of (MΛ, g)
J M

(3.4) n̂ lj/i-,,
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(3.5) a2=~

and

(3.6)

where

(3.7) / = - - | p 1VSI •- | | 17 Ricci | « - 1

OΓJ O

ΌO ΌO

~ r,i ^ ΐ / ι ^ - m ί ^ ^ ^

(α3 is obtained by Sakai [7], but his curvature tensor has the opposite sign.)
Several results have been obtained by using these α/s by Berger, Sakai,

Mckean-Singer, Patodi, Tanno, etc. In particular Tanno [8] obtained

THEOREM 3.2. Let (Mn, g) be a compact onentable Riemannian manifold,
2^n^6. If SpecCS71, £0)=Spec(Mn, g), then (Mn, g) is isometric to (Sn, g0),
where (Sn, g0) is an n-dimensional sphere with standard metric g0.

Now we consider the problem of this direction on a Sasakian manifold.
First we prove

PROPOSITION 3.3. Let (M2n+1(c), g) be a 2n+l (^5) dimensional compact
Sasakian space form of a constant ψ-sectional curvature c and let (M*, g*) be a
compact CΈinstein Sasakian manifold. If Spec(M2n+1(c), g)=Spec(M*, g*), then
M* is a (2nJrl)-dime?ιsio?ιal Sasakian space form of a constant φ-sectional curva-
ture c*—c.

Proof. The isospectral condition means the equivalence of ats and a^s.

Thus we have d i m M * = 2 f t + l and

(3.8)

(3.9)

Recall that a C-Einstein Sasakian manifold has a constant scalar curvature. Thus
from (3.8) and (3.9) we see S—5*. a2, in general, is expressed by
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(3.10) α2=™

_ 1_

-"360.ULΛ1"1 τι(n+l)" ' π+1 " π+1

oΛp , _ (S--2nY Λ
Zl ίvlCCl " o •" 4t?l j

V Z?Z /

, 5 n 2 + 4 n + 3
C2n(n + l) n + 1

Thus in our case, the assumption implies that

+ 1X27i + 1 ) ] ,
n + 1 \Vg'

n(n + l) )M

+ n(n+l) JΛ/ l s*

Since both S and S* are constants and S=S*, we have the second line of (3.11)
vanishes. Proposition 2.6 shows that M* is a Sasakian space form. By (1.26)
S=S* implies c=c*. Q. E. D.

We can improve Proposition 3.3 in the following sense by using the contact
Bochoner curvature tensor.

THEOREM 3.4. Let (M2n+1(c), g) be a compact Sasakian space form of a con-
stant φ-sectwnal curvature c of dimension 2?^+l=5, 7, 9 or 11, and let (M*, g*)
be a compact Sasakian manifold. If Spec(M2n+1(c), g)=Spec(M*, g*), then M* is
a Sasakian space form of a constant φ-sectional curvature c*=c of the same
dimension as that of M2n+1(c).

Proof. From the assumption we have

d i m M * = 2 n + l ,

(3.12)

(3.13) \sυt=\s*υ*t..
J M J M*

By using the length of the contact Bochoner curvature tensor, a2, in general,
is expressed by
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4(5n + l) 4n(5n + l)(2yι + D Ί
+ 1 lb"t~""~" + l r*

Now our assumption a2=a2* together with other assumption implies that

5 n 2 + 4 n + 3
(3.15)

o ( S * -

Because of Lemma 2.5, we see that

(3.16) S2[ vg>[ S*2v*g*.
JM JM*

On the other hand using (3.12), (3.13) and the Schwartz's inequality, we have

(3.17)

that is,

S2[ vg^[ S*2v*g*.

Hence equality holds in (3.17), which means S*=S~constant.

(5*_272)2

Looking back (3.15) we see that 5*~0 and I Ricci* 12= -. h4?z2 in our

situation. Lemma 2.5 and Proposition 2.2 imply that M* is a Sasakian space
form, whose constant ^-sectional curvature c*=c because of S*=S. Q. E. D.

The expression (3.14) gives the following corollary:

COROLLARY 3.5. Let (M, g) and (M*, g*) be compact Sasakian manifolds
with dim M=13. // Spec(M, ^)=Spec(M*, g*), then the contact Bochoner curva-
ture tensor B of M vanishes and the scalar curvature S of M is constant, if and
only if the contact Bochoner curvature tensor 5* of M* vanishes and the scalar
curvature S* of M* is constant.

In order to extend Theorem 3.4 to 13-dimensional case, we shall use a3 in
(3.6) and (3.7). Since we have Corollary 3.5, we only have to consider the case



THE SPECTRUM OF SASAKIAN MANIFOLDS 209

of B=0 and S^constant. After simplifying the expression of as term by term
under this assumption we have

LEMMA 3.6. Let (M2n+1, g) be a compact Sasakian manifold of dimension
2n + l (^5). // the contact Bochoner curvature tensor B of M2n+1 vanishes and
the scalar curvature S of M2n+1 is constant, then a3 of M2n+1 is expressed by

, O 1 Q N 1 f Γ 2(A(n)SB(n)) ( p . . | 2 (S-2n)2

Γn

where

5(n)-4n(βln 3+435n 2+788n+420),

and the Ck(n)'s, k = l, 2, 3, 4 are the algebraic expressions in n.(*)

THEOREM 3.7. Let (M13(c), g) be a 13-dimensιonal Sasakian space form of a
constant ψ-sectional curvature cΦ31, and let (M*, g*) be a compact Sasakian
manifold. If Spec(M13(c), ^ )=Spec(M*, g*), then M* is a 13-dimensιonal Sasakian
space form of a constant ψ-sectional curvature c*=c.

Proof. First we have dim M*—13. Next, by Proposition 2.1 and Corollary
3.5, the contact Bochoner curvature tensor 5* of M* vanishes and the scalar
curvature S* of M* is constant. Our assumption α o = α o * and ax—a^ imply that
the scalar curvature 5 and S* of M13(c) and M* respectively are equivalent.
From (1.26) we see that c^31 means S=S*^1416.

Now we only have to prove that M* is a C-Einstein manifold. (3.18) with
n=6 is given by

, Q 1 0 . 1 f [5765-815616/, D . . 2 (5-12) 2 \
(3.19) **=-6j\M[ 169344 ( | R l C C l 1 Ϊ2 1 4 4 )

The assumption as—a.^, together with other assumptions, implies

2 (5*-12)2

 Λ
8

0=\AΓ
169344

Since S*^1416, lRicci*l 2 - v --144=0. Hence M* is a C-Einstein manifold.

Therefore, M* is a Sasakian space form of a constant ^-sectional curvature

(*) The author would like to thank Professor G. Ch-uman for pointing out a mistake
in the original version of (3.18).
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c*Φ31. Q.E.D.

An odd-dimensional sphere S2n+1 with the standard metric g0 is a compact
Sasakian space form of a constant ^-sectional curvature c=l. Here we give a
partial answer to one of the questions proposed in the Introduction.

THEOREM 3.8. Spec(Sn, g 0)=Sρec(Aί, g), under the assumption that n—5, 7,
9, 11 or 13 and that (M, g) is a compact Sasakian manifold, implies that (M, g)
is isometric to (Sn, g0).

Proof. Theorem 3.4 and 3.7 imply that (M, g) is a Sasakian space form of
a constant ^-sectional curvature = 1 , that is, a space form of a constant curva-
ture = 1 , with the same volume as that of (Sn, g0). Therefore (M, g) is isometric
to {Sn, g0). Q. E. D.

§ 4. Spectrum of 1-forms of Sasakian manifolds.

By considering the action of the Laplacian Δ on ^-forms on a compact

orientable Riemannian manifold (Mn, g), we can consider spectrum of jί?-forms:

It is again an interesting problem to investigate how the spectra {λltγ\
reflect the geometry of Mn.

The asymptotic expansion in this case is

(4.1) Σle-^ Pt=(Aπt)-n/2 Σ aι,pt
J

Γ0(tk+ί-n/2).

The following coefficients are known:

(4.2) ao,i=n\ vg — n volume of (Mn, g),
J M

n—βί(4.3) fllil_ ,
6 JM

(4.4) a2,1=-^L-J^[2(n-15) IR12+2(90-n) \ Ricci [ 2

By using the similar technique, we get the following results:

THEOREM 4.1. Let (M, g) and (M*, g*) be compact Sasakian manifolds. As-
sume Spec^M, ^r)=Spec1(M*, g*), then we have

(1) dim M=dim M*,
(2) for dimM=dimM*=17, 19, 26, •••, 101, 103, M is of a constant φ-sec-

twnal curvature c, if and only if M* is of a constant φ-sectional curvature
c*=c.
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COROLLARY 4.2. Spec\Sn, ^0)=Spec1(M, g), under the assumption that n =
17, 19, 21, ••• , 101, 103 and that (M, g) is a compact Sasakian mamfotd, implies
that (M, g) is isometric to (Sn, g0).

Remark. Tanno [9] proved that Spec\Sn, go)=§pec(M, g) implies that (M, g)
is isometric to (Sn, g0) for n = 2 , 3 or 16, 17, 18, ••• , 92, 93. Hence our corollary
applies for n=95, 97, 99, 101 and 103.
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