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SEPARABLY HILBERTIAN FIELDS
By Koj1 UcHIDA

Let ¢ and X be indeterminates. Let f,(¢, X), 1=1, ---, m be irreducible
polynomials over a field %2 and let a(t) be a non-zero polynomial over k. A
field % is called Hilbertian [6] if for any choice of f, and a« there exists an
element s of & such that every fi(s, X) is irreducible and a(s)#0. Any Hilber-
tian field of non-zero characteristic p is non-perfect because it has an element
s such that X?—s is irreducible. But this is not essential in applications of
Hilbertian fields, and a slight modification of the definition allows us perfect
Hilbertian fields. Let ¢ and X be indeterminates. Let f(¢, X) be a polynomial
over a field % such that it is separably irreducible over k(¢) as a polynomial of
X. A field & is called separably Hilbertian if for any choice of such f(¢, X)
it contains an element s such that f(s, X) is separably irreducible over k.
Let & be a Hilbertian field and let f(¢, X) be a polynomial over %k which is
separably irreducible with respect to X. Then the discriminant D(¢) is not
zero. Now there exists an element s of & such that f(s, X) is irreducible and
Ds(s)#0. Then f(s, X) is separably irreducible, i.e., any Hilbertian field is
separably Hilbertian. It has been known and will be shown below that two
definitions are equivalent when the characteristic of a field & is zero. In the
first section, it will be shown that a field 2 of non-zero characteristic is
Hilbertian if and only if it is separably Hilbertian and non-perfect. In section
2, we will show some extensions of separably Hilbertian fields are also separ-
ably Hilbertian. Galois groups of extensions of separably Hilbertian fields of
cohomological dimension 1 will be dealt in the last section. We will remark
here an important application of Hilbertian fields essentially due to Lang [7]
which does not seem to be well known. Let % be a field of characteristic p
containing a finite field F,. Let G be a connected linear algebraic group defined
over F,. Let x be a generic point of G over k. Then k(x) is a finite Galois
extension of k(x~!-x@) with Galois group G(F,), the rational points of G over
F, As x7'-x@ is also a generic point of G over k, k(x™'-x‘?) is isomorphic
to k(x) over k. This shows that if & is (separably) Hilbertian and if k(x) is
purely transcendental over k, £ has a Galois extension with Galois group G(F)).
It is known that k(x) is purely transcendental if G splits over k. For example,
let F, be the algebraic closure of F, and let { be an indeterminate. Then
F,(t) has a Galois extension with Galois group G(F,) for any connected linear
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algebraic group G defined over a finite extension F, of F,.

1. Hilbertian fields and separably Hilbertian fields.

Let % be a field and let u be an indeterminate. Then it is known that
k(u) is Hilbertian. This was first proved by Franz [1] for infinite fields & and
by Inaba [3] in the general case. This theorem will be used in the reduction
step. A proof of this theorem in the case k is infinite is rather elementary,
and we only need this case because every separably Hilbertian field is infinite.

LEMMA 1. Finmite fields are not separably Hilbertian.

Proof. Let F, be a finite field with ¢ elements. Let [ be a prime number
which is not a divisor of g. A polynomial f(t, X)=X!'—t+1t? is separably
irreducible, but f(s, X)=X' is not irreducible for any s€F,

LEMMA 2. Let k be a separably Hilbertian field. Let t,, ---, t, and X be

windeterminates. Let a polynomual f(t,, -, t;; X) be separably irreducible over
k(ty, -+, t) and let a(ty, -, t,) be a non-zero polynomial. Then there exist
elements sy, -+, s, of k such that f(s,, -+, s;; X) 1s separably 1rreducible over k
and a(sy, -+, s,)7#0.

Proof. We first assume [=1 and we put
S(ty, X)=by(t )X +b,(t )X 4 -+ +b,(ty).

If n=1, the assertion is easy as k is infinite. We assume n=2. As the
polynomial

g(ty, X)=X"+a(t)b(t ) X" '+ -+ +a(t)"by(t)" ba(ty)

is separably irreducible, there exists an element s, of £ such that g(s,, X) is
separably irreducible. Neither a(s;) nor by(s,) is zero for such s;, and f(s;, X)
is separably irreducible. We now assume [=2. Then the field k(¢ -+, t;-1)
is Hilbertian by Franz-Inaba theorem. Let D(¢,, -+, ;) be the discriminant
of f(ty, -+, t;; X). Then we can find a rational function ct,, ---, t;-;) such
that f(¢,, -+, t,-1, c(ty, -+, t,-1); X) is irreducible and a(¢y, -+, t;-1, ¢(ty, =+, t1-1)
Df(tl, sy by, C(tl, e, tl-,))io. We put

SCta, ooy tiog, ¢ty oty X)=d(ty, - £ gty 5ty X)

where gek[t,, - {;-;; X] and d is a power of the denominator of ¢. By the

induction, we can find elements s, ---, s;-; of £ such that g(sy, -+, Si-1; X)
is separably irreducible, d(sy;, -+, s;-0)#0, a(sy, -+, s;-y1, c(s5, -+, $;-1)#0 and
Dy(sy, ++, Si-y, €(S1, ++ $5:-))#0. Then s;=c(sy, -+, 5;-1) is an element of & such

that f(si, -, s;; X) is separably irreducible and a(sy, -, s;)#0.

Let 2 be a field and let ¢, --- {; be indeterminates. We put R=Fk[t, - #,].
Let fi(ty, -~ t;; X), 1=1, -+, m, be separably irreducible polynomials over R.
Let a, be a root of fi(¢,, -+, t;; X)=0 in the algebraic closure of k(¢ - t,).
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Any [-tuple (s;, ---s;) of elements of % determines a maximal ideal (t—s)
=(t,—S$,, -+, t;—s;) of R. Let R, be the local ring determined by this maximal
ideal. We put S=R,ai, - an] and S»=RJe«,, - a,] for any subset
(N=y, -+ 3») of (1, ---m). Let B; be the residue class of a, in S/(t—s)S.

LEMMA 3. Let ay(ty, - t,) and D,(ty, -+, t,) be the leading coefficient and
the discrimwmnant of fi(ti, -+, t,; X) wvespectwely. If we choose s, --s, as
ai(sy, -+ s1)Di(sy, -+ s1)#0 for every 1, S¢,y 1S the ntegral closure of R wn the
field k(ty, - ti; a,, -, a,,) for any ()).

Proof. Our assumption shows every «, is integral over R;, We only need
to show S,=R[ay, -+, a,] is integrally closed for any r. It is clear for »=0.
We assume S,.; is integrally closed. As the defining polynomial of «, over
S,-. divides f(ty, ---, t;; X), our assumption shows the discriminant of that 1s
a unit in S,-;. Let

‘B:b0+blar+ +bq—1arq_1r biek<t1) ) tl’ Ay, o ar—l)

be integral over S,.,, where ¢ is the degree of «, over S,.,., We get ¢
equations by replacing a, to its conjugates. By solving these equations with
respect to b;, we see by, --- b-1E€S,-, as every conjugate of B is integral over
S,-i. This proves S, is integrally closed.

LEMMA 4. Let k be a separably Hilbertian field. Let f(ty, -~ t,; X),
1=1, ---m, be separably irveducible with respect to X, and let a(t,, -+, t;) be a
non-zero polynomial. Then there exist elements sy, ---, s, wn k such lhat every
Sfi(sy, - sy; X) 1s separably irreducible and a(s,, -+ s;)#0.

Proof. Let «, and p; be as above. As every «, is separable over k(¢,, -+, 11),
we can find an element « such that k(t,, - &;; ay, -, an)=Fk(y, -, [ Q).
Let f(¢y, -+, t;; X) be the defining polynomial of @. Lemma 2 shows that we
can find s, -, s, in & such that f(s;, -, s;; X) is irreducible, a(s,, ---, s;)#0

and they satisfy the conditions of Lemma 3 for every f, and f. Then S=R[a]
=R a,, -+, an] is integrally closed. Let 8 be a root of f(s, ===, s;; X)=0.
Then S/(t—s)S=k[fB] is a field as f(s;, ---, s;; X) is irreducible. Hence (f—s)
is a maximal ideal of S¢, for all (j). Then R«a,]/(t—s)R[a,]=Fk(B:) is a
field and

Ch(Bo): RI=LR.[an]: RI=Lk(ty, -, ti; an)t k(ty, -, 1)].

This shows fi(s,, -+, s;; X) is irreducible, and it is separable by our chice of
Sy, "ty St

Remark. This lemma shows a field k& of characteristic 0 is Hilbertian if
and only if it is separably Hilbertian.

THEOREM 1. Let k be a separably Hilbertian field and let t,, -, t, be
indeterminates. We put K=Fk(t,, -, t;). Let Klay, -, an) be a Galois extension
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of K with Galois group G and let fi(ty, -, t,; X) be the defining polynomial of
a,. Then we can find sy, -+, s, in k and roots B; of fi(sy, -+, si; X)=0 such
that k(By, -+, Bm) 1s a Galois extension whose Galois group 1s isomorphic to G
and wntermediate fields Kla,, -, @,,) corrvespond to k(B,,, -+, B,,) through this
isomorphasm for all (7).

Proof. We can find an element a such that K(a)=K(ay, -+, an). Let
f(ty, -, t;; X) be the defining polynomial of «. We can find s, -, s, in &
as in the proof of Lemma 4. Then S=RJ[al=Ra,, -, an] is integrally
closed and f(s,, -, s;; X) is separably irreducible. The Galois group G
operates on S and on (¢—s)S. Hence G operates on S/(t—s)S=k(f) where j
is a root of f(s;, -+, s;; X)=0. As G operates faithfully on S/({—s)S, k(p) is
a Galois extension of 2 whose Galois group is isomorphic to G. The proof of
Lemma 4 shows

Rs[a“: Tty a],-:l/(t—s)Rs[ajly ) a';,'];k(ﬁjp Ty ‘BJT) .

Hence K(a,,, -, a,,) and k(B8,,, -+, B,,) are fixed fields of corresponding sub-
groups.

LEMMA 5. Let k be a field of non-zero characteristic p. Let f(X) be a
separably irreducible polynomial over k whose leading coefficient 1s 1 and which
has a coefficient not contained in kP. Then f(X9) s 1rreducible over k for any

power q of p.

Proof. Let a be a root of f(X9=0. Then S=a? is a root of f(X)=0.
We have to show [k(a): k(f)]=q. As [k(a): k(B)] is a power of p and is not
greater than ¢, a¥? should be contained in k(B) if [k(a): k(8)J<q. Then
k(a¥?)=k(B) and a¥? satisfies an equation

X*+a, X* '+ - +a,=0, a;<k, n=[k(B): kJ.
Then B satisfies
X+ a, P X"+ - +a,?=0,
which is impossible by our assumption.

LEMMA 6. Let k be a non-perfect field of characteristic p. Let h(t) be a
polynomial over k which 1s not contained wn RP[t?]. If there exist elements a of
k such that h(t+a)ek?[t], they are contained wm a unique residue class of the
additive group k mod kP. Let b be an element of k such that h(t-+b)e kP[¢].
Then the number of elements ¢ of k such that h(b+c?)Ek? 1s at most finite.

Proof. Let g(t)=h(t+a)=k?[t]. Let b be an element of £ such that
¢=b—a is not in k?. We put

gt)=g:(t")+gut), g(tV)ek?[t?],  glt)Ek?[t].
Then g,(t) is not zero and whose degree m is not a multiple of p. As
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h(t+b)=g(t+c)=g,(t?+c?)+gx(t+c)

and as g,(t?+cP)ekP[t?], the coefficient of degree m—1 of A(¢{+b) is not
contained in k2. Now let h(¢t+b)e £?[¢t]. Then there exist elements 1, u,, -, u,
of k which are linearly independent over kP such that

h(t+b)=¢:(t)+ oDttt - +¢(Dur,  $(t)Ek?[1].
Our assumption asserts at least one of ¢y(t), --- ¢.() is not zero. If
h(b+cP)=@:(cP)+Polc Mo+ - +(cPIu, k7,
it must be @y(c?)= - =¢,(c?)=0. Hence such elements are at most finite.

THEOREM 2. Let k be a field of non-zero characteristic p. It 1s Hilbertian 1f
and only if it is separably Hilbertian and non-perfect.

Proof. 1f k is Hilbertian, it has been shown that it is separably Hilbertian
and non-perfect. We now assume that % is separably Hilbertian and non-perfect.
Let f.(¢, X), i=1, -+, m, be any irreducible polynomials and let a(#) be any
non-zero polynomial. We can assume that the leading coefficient of every
fi«(t, X) is 1. Let fy, ---, f, be inseparable, and let f,,;, -+, f» be separable.
We can find a separably irreducible polynomial g,(¢, X) for any i=1, ---, [
such that fi(t, X)=g(t, X*) for some power ¢; of p. Then g, has the leading
coefficient 1 and has a coefficient h;(¢) which is not in kP[t?] as f, is irreduci-
ble. As the additive group k/k? has infinitely many residue classes, there
exists an element b of £ such that

h(t+b)e kP[],  i=1, -, L.

We put g.=f, for 1=I[+1, ---, m. As g,(t+b, X) are separably irreducible with
respect to X, g;(t?+b, X) are also separably irreducible. There exist only a
finite ¢, in k such that A (b+c;?)ek? for some i=1, ---, . Let d(¢) be the
product of a(b+1t?) and all t—c, for such ¢,, Then Lemma 4 shows there
exists an element r of k such that g,(b+r?, X), 1=1, --- m, are separably irre-
ducible and d(r)#0. We put s=b+r2. As h(s)& k? for 1=1, ---, [, gi(s, X) has
a coefficient which is not contained in kP for every i1=1, ---, . Then every
fi(s, X) is irreducible and a(s)#0. This shows k is Hilbertian.

2. Extensions of separably Hilbertian fields.

LEMMA 7. Finitely generated extensions of a separably Hilbertian (resp.
Hilbertian) field k are also separably Hilbertian (resp. Hilbertian).

Proof. 1f k is non-perfect, every finitely generated extension of £ is also
non-perfect. Hence we only need to prove the separably Hilbertian case. We
can divide the proof into three steps, i.e., purely transcendental extensions,
separably algebraic extensions and purely inseparable extensions. First step
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comes from Franz-Inaba theorem. For the second step, see [6]. Let K be a
purely inseparable extension of k. In this case K does not need to be finitely
generated. Let f(¢, X) be a separably irreducible polynomial over K[{]. We
put

A, X)=ay(t) X"+ a () X"+ - +a,0).
Then we can find a power ¢ of the characteristic such that
g(t, X)=ao(t)' X +a, ()1 X"+ - +au(1)

is a polynomial over k[t]. Let a be a root of f(¢, X)=0. Then a? is a root
of g(t, X)=0. As «a is separable over K(t), it must be K(¢, a)=K (¢, a?). This
shows g(t, X) is separably irreducible over K(t¢), hence also over k(¢). Then
we can find s in % such that a.(s)>0 and g(s, X) is separably irreducible over
k. Let 8 be a root of g(s, X)=0. As (8 is separable over k, it must be

n=Lk(p): k1=LK(B): KI=[K(p""): K].

As f(s, p9=0, [K(BY9): K]=n. This shows p"? is separable of degree n over
K, i.e., f(s, X) is separably irreducible over K.

We now show examples of infinite algebraic extensions of a separably
Hilbertian field which are separably Hilbertian. These are generalizations of [5].

THEOREM 3. Let k be a separably Hilbertian (resp. Hilbertian) field. Then

i) Every abelian extension of k 1s separably Hilbertian (resp. Hilbertian).

ii) Let K be contained wn a nilpotent extension of k. If K contains a subfield
E fimite over k such that [E: k] 1s divisible by at least two prime numbers, K 1s
separably Hilbertian (resp. Hilbertian).

Proof. 1f k is non-perfect, every separable extension is also non-perfect.
Hence we only need to show the separably Hilbertian cases. Let K be an
extension of k as in i) or ii). Let ¢ be an indeterminate and let f(¢, X) be a
separably irreducible polynomial over K[{]. Let a be a root of f(¢, X)=0 and
we choose an element B such that K(¢, a)CK(t, f) and K(¢, B) is a Galois
extension of K(f). We can find a finite subextension £ of K such that every
coefficient of f(¢, X) is in E, E(¢, B) is a Galois extension of E(f) whose Galois
group is isomorphic to that of K(¢, 8) over K(¢), and [E: k] is divisible by
at least two primes in case ii). Then there exists a field F such that EDFDE,
E is a cyclic extension of F of degree n>1, and » is divisible by at least two
primes in case ii). Let ¢ be a generator of G(E/F). Let t=t,, -+, t, be
indeterminates and let ¢ operate as o(t,)=t.4, 1=1, -, n—1, and o({,)=1,.
Then o determines an automorphism of E(¢,, -, t,) of order n. Let ¢ also
denote an extension to an automorphism of the algebraic closure of E(¢,, -+, f,).
We put a=a,, =8, and we define ay, -, an, By, -, Br by ola,)=a., and
0(B8:)=Bi+1, 1=1, ---, n—1. Though o(B,) may not be B;, ¢ causes an auto-
morphism of E(¢y, -, t,, Bi, -+, Ba) because o(8,)=0¢™(By) is in E(¢,, B,). Let
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E=F(), r=r, and o(7,)=7.s:. Then the invariant subfield of ¢ in E({,, -+, t,)
is F(uy, -, u,), where

U, =7 T Y, =1, -, n.

Then u,, ---, u, are algebraically independent over F, and E(t, - tn, 81, =, Bn)
is a Galois extension of F(u,, -, #,). As F is separably Hilbertian, we can
find elements v,, -+, v, of F such that the specialization u;—v; maps E[{,, -+, ta,
Bi, -+ Bal/FLuy, -, us] to a Galois extension of F with isomorphic Galois
group. Then E[t,, -+, {,] maps onto E. If we put {;—s;€F, a;— 2, and
Bi—t, we can assume E(y,)/E is a Galois extension containing 4,, and

LE(t, a): E()]=LE(ty, -, ta, )t E(ty, -+, ta)]
=[EQ): E].

As 2, is a root of f(s;, X)=0, f(s;, X) is separably irreducible over K if
E(u)NK=E. Let L be a subextension of E(t#, 8) which consists of the
algebraic elements over F. We can assume that L maps identically onto itself
by the above specialization. Then

ECLNKCE(t,, BONK({INK=EI)NK=E,

i,e, E=LNK. As L(t,, B, is a regular extension of L and as it is free from
L(t,, B.), 1#1, over L, they are linearly disjoint, i.e.,

L(tl; tl: Bl)mL(tb tl: ﬁz):L(tl) tt)y 1$]~ .
Then
L(tly Ty tnr ﬁl)mL<t1y ) tn; ﬁl):L(th Ty tn)

maps onto L(u)N\L(¢,)=L by the specialization. This shows E(u)NE(u.)C L.
When K is abelian, E(u;)NK is also abelian. Then it is invariant by o. As o

maps E(u;) onto E(u,),
E(u)NK=E@u)NKNE(t)CLNK=E .

This proves the first case. In the second case E(u,)NK is contained in a
nilpotent extension of F. Hence it is generated by elements of prime power
degrees over F. So we only need to show that d=FE for any element
o€ E(u,)NK of the degree [* for some prime [ By our assumption ¢™ for
some m has a prime order r#/ on E. Then there exists an isomorphism
which coincides with ¢™ on E and is the identity on F(6). Such an isomorphism
maps E(g,) onto E(un.:), m+1#1. Hence 0 is contained in E(g)N\E(ttm+1)

NKCLNK=E.
Remark. Let k be a separably Hilbertian field and let K be the maximal

p-extension of k for some prime p. Then K is not separably Hilbertian
because it has no p-extension. Let a be contained in some nilpotent extension
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of %, but not in K. Then K(«) is separably Hilbertian by our theorem. This
example shows that K is not necessarily separably Hilbertian even if it has a
finite extension which is separably Hilbertian.

3. Solvable extensions of separably Hilbertian fields of cohomological
dimension 1. Let 2 be a field and let K be a finite Galois extension with

Galois group H. Let
1-N—ESH-1

be a group extension of finite groups. We call L a field corresponding to this
extension if L is a Galois extension containing K with Galois group isomorphic
to £ and n coincides with the restriction of the operation of E=G(L/k) on K.

LEMMA 8. Let k be a field and let £ be a Galois extension of k with Galois
group G. We assume that the cohomological dimension of G 1s 1. Let K be any
finite Galois extension of k with Galois group H contaned in . Let

1-A—E>H—1
be any split group extension with a finite abelian kernel A. We assume that there

exists a field L wn 2 corresponding to this extension. Then for any group
extension

1-N—FSH—1

with a finite solvable kernel N, there exists a field M in Q corresponding to this
extension.

Proof. We assume that our assertion is true if the n—I1-st commutator
subgroup is trivial. Let the n-th commutator subgroup of N be trivial. Then

the n—I1-st commutator subgroup A is an abelian normal subgroup of F. By
our assumption, there exists a field M’ in £ corresponding to the group

extension
1-N/A—F/ASH-1
Then we only need to find a field M corresponding to the group extension
1-A—-F—F/A—-1.

That is, we only need to prove our assertion when N is abelian. We now
assume N is abelian. Let f: G—H be the natural projection. As cd G=1, we
can find a continuous homomorphism g: G—F such that rg=f. Let H,;=g(G)
and let K, be the field corresponding to the kernel of g. Then K, contains
K, H=G(K,/k) and F=H,-N. Let F;=H,XN be the semi-direct product by
the natural action of H, on N. Then F is naturally a homomorphic image of

F.. As
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1_’N'_’F1’_’H1'_’l

is a split extension with an abelian kernel N, there exists a field M, in 2
corresponding to this extension. Then the field corresponding to the kernel
of F,— F satisfies our condition.

LEMMA 9. Let k be a separably Hilbertwan field, and let K be a finite Galois
extension with Galois group H. Let

1-A—ESH-1

be a split group extension with a finite abelian kernel A. Then there exists a
field L corresponding to this extension.

Proof. We can assume A is an [-group for some prime /. First we assume
[ is not the characteristic of k. Let n be the exponent of A. Let K; be the
field obtained by adjoining a primitive n-th root of unity to K. Let H,=G(K,/k).
As E is a homomorphic image of a group extension

1->Z/nZ2)H,—»F—H,—1

where the kernel is a direct sum of finite copies of the group ring of H, over
Z/nZ, we only need to find a field corresponding to this extension. Let #,,,
1=1, .-+, v, o€ H,;, be indeterminates, where r is the number of copies of
(Z/nZ)H, in the kernel. We define the operation of H; by °t,.=f, .. Then
H, operates on K (t,,, i=1, -, r, 0€H,). Let K,=Fk(a). Then the invariant
subfield of H, is generated by

1l”:aJ—1f;e+a(J—1)a[w+ i

H,={e, o, -, 7}, 1=1, -, 7r; j=1, -, m=[K,: k]=|H,|, over k. That is, the
invariant subfield M is purely transcendental over k. We note that K.(¢,,)
Ky(u,;). Then the field K;(*+/'t,,) is a Galois extension of M with Galois
group isomorphic to F. As k is separably Hilbertian, we get a Galois extension
of k corresponding to the above group extension by substituting some values
of k for u,,, When [ is the characteristic of %, we can find an irreducible
polynomial f(#, X) such that a root of f(¢#, X)=0 generates a cyclic extension
of degree n over K(t) by using the method of Witt vector. Then we deter-
mine indeterminates t,, and the operation of H as above. If we consider a
field adjoining all the roots of f(¢{,,, X)=0, the same argument shows the
existence of a field corresponding to the given group extension.

Remark. Let k be a separably Hilbertian field of the cohomological
dimension 1, i.e., cd G(k,/k)=1, where k; is the separable closure of k.. Then
ks/k satisfies the conditions of Lemma 8 Examples of such fields are function
fields of one variable over an algebraically closed field and the maximal abelian
extension of the rationals.
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We can say a little more for algebraic number fields. Let %2 be an algebraic
number field (not necessarily of a finite degree). Let G=G(k/k). We say k or
G has the essential cohomological dimension esscd k=esscd G=n<oco, if G
has an open subgroup H such that cd H=n. It is independent of H and
esscd k<2 for every k [8]. Especially esscd =2 if k iS finite over the
rationals. Let & be an algebraic number field and let K be an algebraic
extension of 2. Then K is called totally real over k if every extension in K
of every real prime of % is also realN. Then the maximal totally real extension
2 of k is a Galois extension. Let G be the Galois group of this extension.

LEMMA 10. I holds cd G<esscd G for any algebraic number field. Move
precisely, cd,G=cd,G for any odd prime number p, and cd,G =ess cd,G.

Proof. Let p be an odd pLime number. Let K be a finite totally real
extension of k. Let H and H be corresponding open subgroups of G and G,
respectively. As c¢d,2=1 and as £ has no p-extension, we get [8]

HYH, z/pZ)=HYH, Z/pZ), q=1,2, -

This shows cdpégcd,,G. We now consider the case p==2. We first assume
that % is of a finite degree. Then £2** consists of the totally positive elements,
i. e, the elements of £* which are positive in any extension of any real prime
of k. Let K denote a finite Galois extension of % in £, and let K*, denote
the totally positive elements in K*. Then

Q% /22=1lim K*/K*, .

As K has elements of any signature type, K*/K*, is isomorphic to the direct
sum of r», copies of (Z/2Z)H, where r; is the number of real primes of %k and
H is the Galois group of K over k. This shows

HYH, K*/K*)=0, g¢=1,2,
and
HYG, 2</2%=0, q¢=1,2, -
Then it comes N
HYG, @*)=H%G, 2°), q¢=2,3,

This holds also for g=1, because (K*/K*,)¥=k*/k*,, i.e., (2°/2*)6=k*/k",.
By an exact sequence

2
1= p— 25— 02 —>1
and by the above equality, the sequence

) HYG, 295 HAG, 99— H™(G, p)—H (G, 27)

ZH(G, 07)
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is exact for ¢g=1, 2, --- The exact sequence

1-020"—Jp—Co—1
induces an exact sequence

0—H¥G, 29— HC, o> HG, Co)—HYG, 27)
—HG, Jo).

As no real prime of £ ramifies in £, it holds
HYG, Jo=X HY(Gy, 23, ¢=1,2, -

where the direct sum is taken over all the finite primes of k. As qu is
algebraically closed for any P, cd 5%:2. This shows H*G, Jo)=0and H*G, Jp)
is divisible as local degrees are divisible by p~ for any prime p. Then we
see ¢ is surjective, and H*G, 2°)=0. We also see the kernel H*G, 2%) of ¢
is divisible. Hence the exact sequence (*) shows cd,G=2 because (*) and the
above argument hold for any finite extension of & in . When £ is of infinite
degree, G is a projective limit of G,=G(2,/k.) where k, are subfields of %k of
finite degrees and 2, are maximal totally real extensions of k,. Thus ¢d,G=<2
also in this case. Then our assertion is true if esscd,G=2. If eschde:O, a
Sylow 2-subgroup of G is finite. Then a SYIOVNV 2-subgroup of G must be
trivial as G has no finite 2-subgroup because cd,G=2. We now prove the case
esscd,G=1. Then every local subgroup Gg=Gy has the cohomological

2-dimension at most 1. Then the above shows H*G, Jo)=0 and HYG, 29)=0.
Then cd,G=1 as above.

Remark. When k is of a finite degree, the above shows cdp§:2 for every
prime p.

THEOREM 4. Let k be a separably Hilbertian algebraic number field with
esscd k<1. Let Q be the maximal totally real extension of k. Let A be the
maximal solvable extension of k wn 2. Then the Galows group of A over k 1s a
free pro-solvable group with countable generators.

Proof. Let G~=G(Q/k) and G=G(A/k) be their Galois groups. Lemma 10
shows c¢d G=1. First we show that £/ satisfies the conditions of Lemma 8.
Let K be a totally real finite Galois extension of % with Galois group H. Let

1-A—-ESH-1

be any split group extension with a finite abelian kernel A. We can find an
H-module B such that A=B/C as an H-module and every element of order 2
in B is contained in C. Let

1-B—-E,—-H-1
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be a split group extension. Lemma 9 shows there exists a field L, correspond-
ing to this extension. As E is a homomorphic image of E,, we can find a
subfield L corresponding to E. As K is totally real over %k and as C contains
the elements of order 2 in B, L must be totally real over k. This argument
also shows that G is not trivial, i.e.,, cd G=1. Hence we can apply Lemma 8
to our case. As G has countable open subgroups, we can find a basis of
neighborhoods of the identity such that

G=N,DN,DN,D - DN, D -, 1=0,1,2, -

consisting of open normal subgroups of G. Let F be a free pro-solvable group
with countable generators. Let

F:Fo:)FlszD

be a basis of neighborhoods of the identity consisting of open normal subgroups
of F. We will prove by the induction that there exist open normal subgroups
U, and V, of G and F respectively such that U,CN;A\U,-,, ViCF;N\V,.; and
there exists an isomorphism f,: G/U;=F/V, compatible with f,-,. The case
1=0 is trivial. We assume that we get U,, V, and f,. Then there exists a
natural homomorphism

é/]VHM\UL‘—’F/Vi—’l .

As P_‘ is free with countable generators, there exists a surjective homomorphism
F—G/N, ..U, such that

F
/‘
G/Nmf\Ut — F/V,—>1

is commutative. Let V,., be the intersection of F,,; and the kernel of the
above homomorphism. Then there exists a surjective homomorphism

F/VHI_’C/NtHf\Ui—’l .

Let K be the Galois extension of k corresponding to N,.;NU,. As the kernel
of the above homomorphism is solvable, Lemma 8 shows that there exists a
field L corresponding to this group extension, i.e., there exists a continuous
surjective homomorphism G—F/V,,; such that

~

G

—

F/Vi-H —> 5/N1+1HU¢ —>1

is commutative. As F/V,., is solvable, it induces a surjective homomorphism
G—F/V,., such that
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/?
F/Viyg —> —G_/Niﬂf\Ui —>1
is commutative. Let U,., be the kernel of this homomorphism. Then there
exists an isomorphism f,,,: G/U,s1=F/V,,, compatible with f,, U,..CN,..NU,

and V... CFoan V,_. As UDUDU,D -+ and VDV, DV,D: are _bases of
neighborhoods of G and F respectively, there exists an isomorphism G=F.

EXAMPLES. Let %k be the Z-extension of the rationals. Then it is known
that esscd £<1. As k is separably Hilbertian by Theorem 3, the Galois group
of the totally real maximal solvable extension of % is free pro-solvable. Now
let £ be the maximal abelian extension of an algebraic number field of a finite
degree. Then cd k=1 and Theorem 4 holds for k. This is a theorem of
Iwasawa [4].

Remark. Though we stated our theorem in the case of algebraic number
fields, the same is true for every countable separably Hilbertian field with
cd k=1. For example, let F be the algebraic closure of a finite field F of
characteristic p. Let ¢ be an indeterminate. Then we can apply our theorem
for F(t), and its maximal solvable extension has a free pro-solvable Galois
group with countable generators as was shown in [4]. Let H be a finite group
whose order is not a multiple of p. Then it has been shown that F(¢) has a
Galois extension with Galois group H [2]. These and the remark at the
introduction suggest that the Galois group of the separable closure of F(¢)
over F(t) be free.
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