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ON V-HARMONIC FORMS IN COMPACT LOCALLY

CONFORMAL KAHLER MANIFOLDS WITH
THE PARALLEL LEE FORM

By ToYOKO KASHIWADA

Introduction. A locally conformal Ké&hler manifold (I.c. K-manifold) has
been studied by I. Vaisman [8]. Especially when its Lee form is parallel, the
manifold seems to have properties exceedingly similar to that of a Sasakian
manifold. In this paper, we consider certain forms which correspond to C(C*)-
harmonic forms of a Sasakian manifold and with it we have some informations
on the Betti number of the manifold by a decomposition of such forms. The
main result is that in a 2m-dimensional compact l.c. K-manifold with the
parallel Lee form, the following relation holds good between the p-th (p<m)
Betti number b, and the dimension a, of the vector space of certain p-forms
which are defined in §2:

bp=ap—ap-s,
_ _[2
ap—bp+bp—2+ o 'l’bp—zry r= A2" .
§1. Preliminaries. A locally conformal Kédhler manifold is characterized
as a Hermitian manifold M*™(¢p, g), 2m=the dimension, such that

VkSDji: —ajGOki‘|‘0£T§Drig Bt aTSDJrg B (SDjiZSOJTgn)

with a closed 1-form « which is called the Lee form, ([2], [8]). Moreover, we
assume Va=0, |a|=1 and M is compact throughout this paper.
In this manifold, the following formulas are valid:

def

Vipsi=—Bi8uit+ Bk~ s0ritai0r,,  By=a"¢r;,
ind;fvfﬁi:—ﬁjai+afﬁi—s0ﬁ (==V.87,
aJn=PJn=0, JJ'=B:ip Ftaa'—d.t,
ViV;Bi=—B"Ry i

=Bigri—PigrT(a;fi—fra)as,
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V'V, B:=—2(m—1)B8;.

Furthermore, by virtue of Ricci’s identity, we have

71

arerjlz:O’
Rkhzr]]r_Rkth]zT
1.1) :‘-]ki(gnj‘“ahaj)"]kj(ghi_ahaz)+fhj(gkz‘akaz>—]hi(gkj_akaj) ’
from which
1
(12) 'ERrkhJ.]Tk:—thjrj+(2m—3)]h1 )
(1.3) erjn—l—R]TJ'rk:O}
(14) Rkhlrjjf_Rkh]Tj'LT: ”(sz kT]hT—lehTJkT) )
1.5) Runrs T =Rjirs 1" J0" .
The exterior product of 1 or 2-form ® and p-form u(z—;ru“...lp
dx"A - /\dx“’) is given as
(@AWY gy = Z (D1 (w: 1-form),

(@AW gy = El (=DF; Uy 3yt ey (@0 2-form),

where Upye? e, MNEANS i, is omitted, and the inner product for p-forms u, v is

Tyl

(u, v)=—1—)1!—SM Usya 01 Pd0

In general, the star operator * in a Hermitian manifold satisfies for a p-forms

U, v
sau=(—1u,  (u, )=, v),
ou=—sxd+u, A*=xA,
where
(@Wigeay= B (D Vapthigtyny s OWiger, ==Vt
(Aw)i,...,=(0du+dou),..,,
=~—V’VTu,1...“,+§) Rty foayt k% Rty Kby
and ull...f...zp means that » appears at the k-th position.

Let operators e(w), i(w) with respect to a 1-form w and L, 4 be as follows
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for a p-form u:
elw)u=wAu, (w)u=xe(w)*u ,

Lu=dBAu=(e(B)d+de(B))u,

Au=(—1)?* Lxu==(B)5+5i(B)u .
Explicitly, these are written as

(i(w)u)iz...1p=corun2...lp ,

(Lt =2 B, (DM, Bty 2yt

(Au)igmzp:VT,Bsursza...zp .
It should be remarked that
(elw)u, v)=(u, lw)), (Lu,v)=(u, Av).

Besides under the condition Va=0, it is valid for w=«, 8,
Le(w)=e(w)L, Ailw)=i(w)1 ,

(1.6)
Lilw)=iw)L, Ae(w)=e(w)1 .

Since w=a, B are Killing, the Lie derivative
O(w)=1(w)d+ di(w)
satisfies the relations ([1]):
0(w)=—(e(w)d+de(w))
and then 6(w) commutes with i(w), e(w), d and & for w=a, B respectively. In

the following we often write briefly e¢,: (resp. ¢’, i) instead of e(B), i(B8)

(resp. e(a), i(a)).
We notice here that

ei+ie=identity,
a.n

et'=—7e, e'i=—1e’, w=—1i1,
and
(1.8) Ae—eA=0L—LgJ, Ai—iA=dA—Ad,
Ae’—e’A=0, A" —1'A=0

because, for any Killing vector w, the following relation holds good:
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(Ae(w)—e(w)A)u=d(dw A u)— dd(w)u+0(w)du—dwNou .
We remark also V3/;=V,/;;=0, and from which for w=a,
(w)Vg=V3i(w), (w)V=V,i(w),

where we denote V(,,u“...,p:w’v,u,r..lp.
In this paper the following formulas are used frequently:

LEMMA 1.1. In a l.c. K-manifold M*™ with the pavallel Lee form, |a|=1,

the followings hold good for any p-form u.
(i) (AL*—L*Au=4k(m—p—Fk)L*‘u+4k(e’V+ei) L*  u.
(i)Y If iu=Au=0, rz=2,

AL =4"(r+s) -+ A+s){m—p—s—r) - (m—p—s—1)L°u

+rim—p—s—@—1)) - (m—p—s—1)e’i’ L3u} .

(ii) (OL—Lo)u=2(dV;—Vsd)u+4(m—ple—ei’eu.

(iii) (dA—Ad)u=2(—0Vz+g0)u+4(p—m)i—1e’?)u.

Proof. (i) and (i)’ are known by the mathematical induction.

Ty y= B (— D Vrhage oy s
we get by straightforward computations
%((H,u—LBu)zFu+ee’i’u+(2m—p—2)eu s
dVgu—Vgdu=I"u—ee'i'u+peu .

(iii) is known by the dual of (ii) and the property *Vzu=Vgu,.

§2. V-harmonic forms. At first we get

LEMMA 2.1. If u is harmonic p-form, then

(i) #la)u and e(a)u are harmonic,

(i) V.u=0,

(i) ([31) Au=0 (effective) and (B)u=0 provided that p<m.

(ii) : Putting

q.e.d.

(i) and (ii) are evident if we notice that 8(w)u=0 for a Killing vector o, a

harmonic p-form u, and V,=0(«).

Proof of (iii): In general for any p-form u, from (1.8) and Lemma 1.1, it

follows that
Aeiu=2(dV si—V gdi)u+e(Ai+4(m— p)ei-+4ee’t'i)u
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and then
(reu, Aeru)=2(ieu, dVgiu—Vgdiu)

=2Aeu—ideu, N giu)—20eu, Vgdiu)
=—2(ibeu, Vgiu)—2(eu, Vgdiu),

where we have used (deu, Vgiu)=(Au, iVziu)=0. Hence, for a form u which
satisfies

2.1 diu=0deu=0,
the equality
2.2) (reu, Aeiu)=0

holds good. We notify beforehand that this fact will be used after again in
the proof of Lemma 2.5.

Now, let u be harmonic. By virtue of §(8)u=0, (2.1) is satisfied and then
from (2.2) it follows deiu(=Liu)=0. So, making use of Lemma 1.1, we can
obtain

(—LAiu, iv)=4(m—phu-te’i’u, 1u),

which implies 1u=0 under p<m, and then Au=(01+16)u=0. q.e.d.

DEFINITION. A form u is called V-harmonic if it satisfies

du=0 and oJu=e(B)Au.
As a harmonic p-form (p<m) is effective, the following is trivial:

PROPOSITION 2.2. A p-form (p<m) is harmonic 1f and only if it is effective
V-harmonic.

Corresponding to a well known property between a harmonic form and a
Killing vector, we can get

ProposITION 2.3. For any V-harmonic form u,

0(Bu=0
holds.

This property follows immediately from the Lemma:
LEMMA 2.4. For any V-harmonic form u, di(B)u=0 1s valid.
Proof. If u is V-harmonic, taking account of (1.8), we get

ddiu=Aiu—ddiu=iAu-+diou
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=idou+didu=0(p)edu .
Then it follows that

(dwu, diw)=(u, ddiu)=(iu, 6(8)eAu)=0

because of ed(B)=0(p)e. g.e.d.

Next we shall consider orthogonal property to B of V-harmonic form.
For it, we provide

LEMMA 2.5. For any V-harmonic form u, 1l 1s valid that

(i) de(Bu=0,
(ii) (B u s V-harmonic,
(iii) Li(Bu=0. |

Proof. (i) follows from deu=—0(8)u—edu=0.
(ii): dw=0 is Lemma 2.4. Next, taking account of (1.6), we have

diu=Au—idu=Au—edu=cdru .
(iii): By virtue of (i) and (ii), the equality (2.1) holds good, and then (2.2)

as mentioned before. Hence on account of deiu=-—0(8)iu—ediu=0 ((ii)), we can
get
(deiu, deiu)=—(dieu, deiu)=—(eu, Aeiu)=0,

which implies Liu=0. qg.e.d.
THEOREM 2.6. In a compact . c. K-manifold M*™(p, g, a) with the parallel

Lee form, a V-harmonic p-form u (p<m) 1s orthogonal to B, i.e., i(Bu=0.
Proof. By virtue of Lemma 2.5 and Lemma 1.1, we get

— LAwu=4({(m—p)i+e'i")u,

and then
Gu, — LAiuw)=—(Awu, Awu)
=4(m—p)(iu, tu)+4@" 1w, 7'iu) .
This equality implies (u=0 for m> p. g.e.d.

PROPOSITION 2.7. If a p-form u (p<m) is V-harmonic, then so is Au.
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Proof. Let u be V-harmonic. About the codifferential, we know obviously
oAdu=Adu=cA(Aun).
We shall prove now dAu=0. On account of Lemma 1.1 and (1.7), we have

dAu=2(—0Vgu+Vpsu),
from which
(dAu, dAu)=2(Au, 6V geAu)

=2(Au, —0(B)Vg Au—edVzAu)

=20(8)Au, Vs Au)—20Au, 6VgAu)

=0,
where we have used Vge=eVs; and the properties of Lie derivative:
(B A=A40(B), OB, w)=—(v, 8(B)w) for any forms v, w. q.e.d.

We can also state a V-harmonic form with the Laplacian as follow:

PROPOSITION 2.8. A p-form u (p<m) 1s V-harmonic 1f and only 1f i(B)u=0
and Au=LAu.

Proof. Necessity follows from Au=ddéu=dedu=LAu (Prop. 2.7) and
Theorem 2.6.
Now we prove the sufficiency. Since

(du, du)+@u—edu, du—edu)
=(du, du)+0u, ou)—2(edu, ou)+(edu, edu)
=(u, Au)—2(Au, Au—0odiu)+(Au, Au—erdu),

we know, under the assumption =0 and Au=L/Au, the right hand side is
zero. Hence du=0, du=eAu, which prove our Theorem. q.e.d.

The following Proposition provids examples of V-harmonic forms actually.
PROPOSITION 2.9. The 2k-form L*-1 is V-harmonic for any k.

Proof. d(L*-i)=0 is trivial. So we shall prove OL* 1=eAdL*-1 by
induction.

For k=1, as dL-1=4(m—1)B, edL-1=4(m—1)B, it is satisfled. Now we
assume O6L*'-1=¢AL**.1. Taking account of Lemma 11 and Vzdp=0,
1"L"-1=0, we can obtain

OL*1=0L-L* 1
=LoL* - 14+4(m—2k+1)eL* -1
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=LeAL* ' 1+4(m—2k+1)eL*1 1
=edAL*-1.

g.e.d.
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§3. Decomposition to harmonic forms. The purpose of this section is to

study the Betti number relating with V-harmonic forms.

At first we consider a relation between A4 and A4A. On account of

Lemma 1.1 and 46=464, we have for any p-form u
AAu=A(Gd+dd)u
=0d Au—20(N g6+2(m— pp—21e"1")u
+0d Au—2(—0V30+2(p—1—m)id —21e'i'0)u

=AAu—4(p—m)Au+4(Gd+0ie’i’+e'i'id)u .
Since

—oe'i’'u=0(a)ii’u-+e’0it’u
=V, i’ ute’ v Au—e’i'idu,
taking account of §i’=—1'0 and f(a)=V,, we can get finally
AAu—Adu=4{(m—p)A+id+V i’ +e'i' A} u .

LEMMA 3.1. For any p-form u, we have

(AA—=ADu=4{(m— p) A+ e()i(a) A—V ,i(a)i( §)+1i(8)d} u

=4 {(m— p+1)A—ia)e(a) A=V ,i(e)i B)+i(B)d} u .

Taking the dual of above formula and on account of *V,=V,* we can get

LEmMMA 3.2. For any p-form u,

(LA—ALYu=4{p—m-+1)L—e(a)i(a) L+e(B)d -+ ela)e(B)} u
holds good.

Especially if u is a V-harmonic p-form (p<m), Lemma 3.2 implies

ALu=LLAu—4((p—m—+1)Lu—e’t’ Lu+V, e eu)

=L(ALu—4(m—p—Du—4e’i’u)—4(p—m-+1)L—e'i’ L+, e’ e)u

=LA(Lu)—4 e’ eu

which means Lu is also V-harmonic if V,e’eu=0.

From this fact, we know that the (2p-+1)-form (2p—1<m)ardfnr..dfB is

V-harmonic, because ¢’andf,...nd =0 and a is V-harmonic.
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PropPoSITION 3.3. If u is a harmonic p-form, then L*u s V-harmonic,
where 2+ p=2k+p=m-+2.

Proof. 1t is sufficient to notice

Vee'eL"u=0,

which follows from Lemma 2.1 (ii), V,e’e=e’eV, and V,df=0. qg.e.d.

THEOREM 34. In a compact I c. K-manifold M*™(p, g, &) with the parallel
Lee form, any V-harmonic p-form u (p<m) can be represented uniquely as

where @p-op 15 harmonic (p—2Fk)-form.
Conversely, p-forms (p<m) of the type in the right hand side are V-harmonic.

Proof. We shall prove it by the mathematical induction. At first the
case p=0 and 1 are trivial because a V-harmonic form is harmonic necessarily.
We assume now its validity for (p—2)-form. Let u be a V-harmonic p-form
(p<m). Since Au, is V-harmonic by virtue of Proposition 2.7, there exist
harmonic (p—2—2Fk)-forms ¢p_,-. such that

Aup:Zk) Lk¢p_2_2k .

Now we put
Up—2:§ Lk¢p—2—2k »

where

pr-z—zk e’i’gbp_z_gk

oot = G D m—pF A D) A(k Dm—pt b+ Dm— p+ 2+

From Lemma 2.1, ¢p-,-,» are also harmonic. By virtue of Lemma 1.1 and
Lemma 2.1, it follows

— E+1 — elilgél’j;?kf; —
ALvy=3 AL (¢p_2_2k ooty )/4(k+1)(m p+E+1)

:Z,; [4(k+1)(m—p+ k+l)Lk¢'p—2—2k+4<k+l)e,i/Lk(ﬁp-z—zk

—e'i" M k+1)(m—p+k+1)L*ppppp+4(k+1)e'i' L} [(m— p+2-+ k)]

1
XA Dn—pr 1)

:% Lksbp—z—zk

namely, ALv, ,=/Au, Now we define a p-form ¢, as
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¢p:up—L1)p-z.
Since va_2=§k] L*¥1@ 5 5x is V-harmonic because of Proposition 3.3, ¢, is

V-harmonic. Moreover as A¢,=Au,—ALv, ,=0, ¢, is harmonic. Then
Up=@p+ Lvpy=0¢,+2 L**'P, 5, is the desired representation.
The uniqueness comes from the following Lemma:

LEMMA 3.5. For harmonic p, g-form w, & (p, g<m), we have
(L*w, L*)=0 (k+h).

Proof. As iw=Aw=0, making use of Lemma 1.1 and (1.6), we know for
h<k
ArLrw=2L* "o+ puL* "e'{w, (1, p=const.).

Then from the property (Lw, {)=(w, A{), the Lemma is proved. q.e. d.
From Proposition 3.3, Theorem 3.4 and Lemma 3.5, we can get

COROLLARY 3.6. If u is a V-harmonic p-form (p<m), then sois Lu. More-
over the operator L 1s injective.

By virtue of Theorem 3.4 and Corollary 3.6, we can now obtain the desired
result :

THEOREM 3.7. In a compact 2m-dimensional l.c. K-manifold with the parallel
Lee form, we have for p<m,

ap=bp+bpot - +bps, 7:[_%]

bp=a,—ap-3,
where a, is the dimension of the vector space V, of all V-harmonic p-forms and
by, is the p-th Betti number,
§4. V*-harmonic forms. In this section we shall consider a dual form of
a V-harmonic form.
DEFINITION. A form wu is called V*-harmonic if it satisfies
du=i(f)Lu, Jdu=0.

For example, SidfBn..AdB is V*-harmonic. From the definition, we know
easily

PROPOSITION 4.1. A p-form u is V*-harmonic of and only if the (2m—p)-
form * u 1s V-harmonic.



80 TOYOKO KASHIWADA

Since BrdBa.ndB is V*harmonic (2p+1) for any p, by virtue of Proposition
4.1, aym-2p-1=1 is valid for any p. Hence combining with Proposition 2.9, we
can say

THEOREM 4.2. In a compact 2m-dimensional . c. K-manifold with the parallel
Lee form, we have a,=1 for any k=0, 1, --- 2m.

LEMMA 4.3. For a V*-harmonic p-form u, we have
(i) e(Pu=0 (p>m),

(i) 6(pu=0 vVp),

(ii) Ade(Bu=0  (¥Vp).

Proof. (i) follows from xu=0, @m—p<m).

(ii) follows from Proposition 2.3, i.e., *0(B)u=0(B)*u=0 for any V-harmonic
@m— p)-form *u.

(iii) follows from Lemma 2.5 (iii), i.e.,, *deu=(—1)?Lixu=0 for any V-
harmonic 2m— p)-form #u.

Next we shall consider a decomposition of V*-harmonic forms. For it,
we provide some Lemmas.

LEMMA 4.4. For any p(#m), we have
HP: me V? ’
where V% is the vector space of V*-harmonic p-forms.

Proof. From the definition, H,DV,n V% is trivial. We shall prove
H,CcV,nV% For p<m, it holds good evidently because of iu=Au=0 (ucH)).
As for p>m, taking account of that edu=—#*1L*u and *u is harmonic for a
harmonic form u, we have also edu=0 and :Lu=0. Hence the Lemma is
proved. q.e.d.

LEMMA 4.5. (i) e(B) s a homomorphism of V,\IV3i—V%.,. Especally,
e(Phw, is injectwe for p<m.

(i) iPB) is a homomorphism of V,\IVF—V,_.. Especally, i(f)w is surjec-
tive for p<m-+1.

Proof. For ueV,, deu=Lu=1Leu+eLiu=1Leu because Liu=0 for any

p (Lemma 2.5), and deu=-—6(B)u—edu=0 because #(B)u=0 (Prop. 2.3). Then
eues V;;.H.
For ueV%, deu=Lu—edu=Lu—eiLu=1Leu, and as above, by virtue of

Lemma 4.2, deu=0. Then eucsV},.
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Especially, for ueV, (p<m), if eu=0, then O=ieu=u—eiu=u, namely,

e(f) is 1:1.
In a similar way, (ii) can be verified. Especially for non-zero ucV,_,,
from (i), eus V}, and ieu=u—eiu=u for p—1<m. g.e.d.

LEMMA 4.6. It is valid that for p<m
Hy=1(B)e(p)V%.

Therefore b,=0 1f any only if e(B)Vi=1{0} for p<m.

Proof. 1t is sufficient to notice that for ue V¥, V,2teu=u—eciucsV} and
for ue H, (CVE(p<m), u=teu-+eiu=reu. g.e. d.

LEMMA 4.7. If p<m, we have Vi=H,De(B)Vp-1.

Hence ay=by+a,1=by+ kZ:)O bp-1-2k (r:[—p;—l]) holds good where a’ s the
dimension of V3.

Proof. Hp,neV,.,={0} follows from ieu=u for ueV,., (p<m) which
oppose to tH,={0} (p<m). Next, for usV%, from the previous Lemmas,
u=teu+eiuc€H,PeV,_, is valid. Moreover from ViDeV,.,, ViDH,HeV,,
is valid also, which completes the proof. g.e.d.

Making use of Lemma 4.7 and Theorem 3.4, we can obtain the following:

THEOREM 4.8. In a compact l.c. K-mamfold M*™(p, g, &) with the parallel
Lee form, any V*-harmonic p-form u (p<m) 1s decomposed uniquely wn the
following form.

u:¢3’+ ké)o e(AB)Lk¢p']—2k ’ TZ[%L] s

where ¢y 15 harmonic k-form.
Conversely, p-forms (p<m) of the type wn the right hand side are V*-
harmonac.

Remark. Recently, Ogawa and Tachibana [6] obtain the fact that if a
connected compact orientable Riemannian manifold admits a parallel vector

?
field, then kX:) (—1)*b,-,=0 holds good. Hence in our manifold now, as a¢,—a,-;

»
= > (—1)*b,-, because of Theorem 3.7, we can see the relation a,=a,-,.
k=0
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