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GEODESIC SYMMETRIES IN SASAKIAN
LOCALLY ¢-SYMMETRIC SPACES

By YoSHIYUKI WATANABE

1. Introduction.

In [2], D’Atri and Nickerson initiated a study of Riemannian manifolds
whose local geodesic symmetries are divergence-preserving (volume-preserving
up to sign). This class of spaces obviously includes the Riemannian locally
symmetric spaces and the harmonic Riemannian spaces.

On the other hand, Takahashi [10] has introduced an interesting notion of
Sasakian (locally) ¢-symmetric space, which is an analogous notion of Hermitian
symmetric space, and discussed about its properties.

In §2, an equation is derived from an infinite sequence of necessary
conditions on the curvature tensors (sufficient in the case of an analytic
manifold). In §3, we show that every local geodesic symmetry of a Sasakian
locally ¢-symmetric space is divergence-preserving, and give a necessary and
sufficient condition in order that a Sasakian space is locally ¢-symmetric. In
§ 4, we show that a 5-dimensional compact, (or | R|?=constant) Sasaki-Einsteinian
space of non-negative curvature is locally ¢-symmetric.

2. Preliminaries.

We shall give some formulas which are used in the subsequent sections.
Let (M, g) be a Riemannian space with Levi-Civita connection V. By R=(R,;:"),
we denote the Riemannian curvature tensor of V. Then R,=(R,.,*)=(R,;) and
S=g"R,, are Ricci tensor and scalar curvature respectively. For a tensor
field T=(T.;z), we put YT =N,T,,,) and |T|?*=T,;,T**, where V, denotes the
operator of covariant differentiation. We put

ﬁ:RadeRabuchduU;
T:RadeRaucvaudv-
Then they satisfy the following fundamental formulas.

(2.1) (Bianchi’s identities)
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(@) RijintRjpntRuan=0,
) ViRpjin+VeRjin+V;R2:,=0.

The following identities are derived from (2.1)

(2.2) (@) R YRuaas=1/4)R*N R opea ,
() R%N4R4pem=(1/4)R*** N, R spca
(€) R INYR gmea=(1/4)R**N 1R gpcq -

(2.3) (Lichnerowicz’s formula)
(1/2)A|R|*=|VR|*—4R7"*N V,R,,

+2R ;R FRY, B4 .

Where A is the Laplace-Bertrami operator acting on differentiable functions on M.
If M is Einsteinian, then we have

(2.4 (/DA R[*=|VR|*+(2/m)S|R|*+p+4r .

Let (M, g) be a Riemannian manifolds whose local geodesic symmetries
are divergence-preserving. D’Atri and Nickerson have found an infinite sequ-
ence of necessary conditions on curvature tensors, which are sufficient in the
analytic case, as follows [2], [3]: Let X denotes a nonzero vector at a point
0 of a C~-Riemannian manifold M and define an endomorphism I7 of the

tangent space T (M) by
(2.5) II(Y)=—R(Y, X)X, YeT(M).

Let V& II=II, and define V%II, i=1, 2, ---, by first extending X to the volocity
vector field along the geodesic through O determined by X and then extending
IT in according with (2.5). Define endomorphisms P7, r=2, 3, ---, of T(M) by
the recurrence formula

2.6) )P =1(r— 1)V T — 3 (j) P1e P74,
q=2

of Ledger [4]. Our necessary conditions are that
2.7 trace P"=0, r=3,5,7, -,

for all choices of O and X.
For =3, the condition trace P*=0 gives trace VxII[=0, or (VxR )(X, X)=0
([2]); in terms of the local components,

(2.8) VeR;i+ViRip+ VR ;=0,

from which S is a constant.
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For »=>5, the condition trace P°=0 gives trace Vy([l-II)=0 ([1]); in terms
of the local components

2.9) P(i]klm)(Rpququklp):O ’

where Pg,.im> denotes the sum of terms obtained by permuting the given free

indices, 1, 7, k, [, m.
Now, to derive an information from (2.9), we need the following

LEMMA 2.1. For a tensor field T=(Tjuim), we have
Y8 Piijrimy(Tojim) =8(T 4T oy m+T o) m
+T0 5+ T’ + T me
FT Ty +Togm®
+Tin'+Timy +Tam,

+T '+ T iy +Tm)®)
Proof. We see that

P(ijklm)(Tz]klm):Pa'jkl)(thlzlm+thkml+T1]mkl+szjlzl+Tmzjkl) .

The conclusion follows by a similary argument to Lemma 3.1 in [13].
If we put Ajrmn=R.,"ViRyun?, then we obtain

LEMMA 2.2. Let M be a Riemannian space satisfying (2.9). Then we have
(2.10) g7 GHPjrimy(Aijrim)=8[4R Y R 0y +(3/2) R**N 1, R ypeq
+8R ypem N R*] .
Proof. By straightforward calculations using (2.8), we have
898" Peijry(R pu, Vi Ryu?)
=8[ RPN, R pg+(1/2)R*** N, R ypca] ,
848" Piijri (R pu,™ViRgkm”)
=8[(3/2)R“ VR op+ R R 0+ R VoR yemal ,
88" Peijry(R pu, Vi Rm )
=8[(3/2)R*V 1, Rup+R** 4R spom— R NyR cam]
8Y8R Py (Rpum ViR ;:P)=32R*°, VN, Ry,
Y GH Py 1y (R pma ™V Ry P)=32R %, Y, Ry .
Thus, by Lemma 2.1 and (2.2), we get (2.10).
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PROPOSITION 2.3. Let M be a Riemanman space satisfying (2.8) and (2.9).
Then we have

(211) SRabvaab‘l'SRadevaabcd+16RabcmvaRbc:0 .

COROLLARY 24. If a Riemanman space with the parallel Ricci tensor satisfies
(2.9), then |R|* 1s constant.

3. Sasakian locally ¢-symmetric space.

Let M be an n-dimensional Sasakian space with structure tensors ¢, &,
and g (cf. (6], [7], [9]):

@.1) @ &n.=1, g:f'=7,,
(b) @, P’=—0"+7:",
(©) LiPe’'Pn'=grn—717e,
@ V7=,
(€) Vidyi=0,8m— 185>
from which we have
(3.2) @) 7Ry =01851— i8>
() 7Ry=(n—=1)p,,
(¢) Runp'p=n—1,
(@ 7R ey"=— RiyisTPre8ji—P1i8 e »
€ 7R, =—@ Ri+(n—1)¢is,
() Pa"Rrvca=¢ RracatPeagar—PerGaat Pavgea—Paages s
(8) Pa’ ¢’ Prsca=RavcatPaaoe—PacPoatgaagoa—8LaaLbc»
(h) ¢"*Ripr;=(n—2)¢1;+ PR,
(i) @*Rrpu=2(n—2)¢;—2¢,R/".
Let M be a Sasakian space satisfying (2.9) and
(3.3) VR ;= {(n—1)¢ 1+ R’} 9+ {p, Rey+(n =D} 7. .
It is easily seen that the Ricci tensor satisfies (2.8), RyjinV‘R7*=0,

and R*V,R,,=0, taking account of (3.1) and (3.2). Thus, by (2.11) we have
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the following

ProPoSITION 3.1. If a Sasakian space satisfies (2.9) and (3.3), then |R|? is
constant.

By definition (T. Takahashi [10]), a Sasakian space is said to be locally
¢-symmetric if the Riemannian curvature tensor R satisfies

(3.4) 0=V, R4jin
—(grPri—8nPri—Rijsti)n
—(—¢u1igintgsiPint Rysindi )04
—(P1.grn—8riPin—Risints)n;
—(gnPin—8udin—Rin'Psn): .

Let Tz put the right hand side of (3.4). Then we can calculate the
square |T'|? by using (3.1) and (3.2) and get the following

PROPOSITION 3.2.
(3.5 [VR|?—4(| R|*—4S+2n(n—1))=0.
The equality sign is valid if and only if M 1s locally ¢-symmetric.
COROLLARY 3.3. In an n-dimensional Sasaki-Einstewniain space M, we have
(3.6) |VR|?2—4(| R|?—2n(n—1))=0.
The equality sign 1s valid 1f and only 1f M 1s locally ¢-symmetric.

Now putting T;;"=9;4:"—7:0,"+¢;£", then (3.4) is rewritten as follows
(Takahashi [10], p. 108).
3.7 ViRii"=—T"Ry;i* +T14°Rsji" +T 1, R s+ T 1, Ry 5" .
On the other hand, it is easily seen that
3.8) ViT " =Gu;0:" —u:," + P 104" -

Thus, by the result of Ambrose and Singer ([1]), we can see that a locally
¢-symmetric Sasakian space is locally homogeneous and analytic. Moreover,
from (3.7) and (3.8) they satisfy the following sufficient conditions of D’Atri
and Nickerson [2] in order that every local geodesic symmetry of an analytic
Riemannian space is divergence-preserving,

(3.9 (VxRXY, X)X=T(X, R(Y, X)X)—R(T(X, Y)X)X,
3.10) (VxT)(X, Y)=0,

for any tangent vectors X, Y. Thus we have
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THEOREM 34. Let M be a Sasakian locally ¢-symmetric space. Then every
local geodesic symmetry of M is divergence-preserving.

4. Sasakian spaces of dimensions 3 and 5.

First we consider a 3-dimensional Sasakian space with constant scalar
curvature. It is known (cf. Tanno [117]) that the Riemannian curvature tensor
is given by

4.1 Ry =[(1/2)S—21(0+"g;:—0," g .
+03—(1/2)5104"n,7.—0," 47
748" 85— 7,8"gw) -

Applying ¥V, to (4.1), we have

4.2) ViR ;" =[3—(1/2)S1(0:" P1;7:+0:" 7,01
—0,"G1a0i—0," 7 xprit01£E"
+7:8" 85— 18" Gri— 0, G 0)

taking account of (3.1) and the constancy of scalar curvature.
On the other hand, substituting (4.1) into (3.4) and using (3.2) (f), we can
get (4.2). Thus we have.

THEOREM 4.1.%) A 3-dimensional Sasakian space with constant scalar curvature
15 locally @-symmetric.

COROLLARY 4.2. Let M be a 3-dimensional Sasakian space M whose every
geodesic symmetry is divergence-peserving. Then M is locally ¢-symmetric.

In the following, let M be a 5-dimensional Sasaki-Einsteinian space. We
denote by T ,(M) its tangent space at p. Then we have the following lemma
given by Ogawa [5].

LEMMA 4.3. Let M be a 5-dimensional Sasaki-Einsteinian space. Then we can
take for any pEM an adapted basis (X,, Xo=¢X,, X, Xo=0Xs, X;=&) of T (M)
such that

4.3) (@) Rie=Rus(=0a), Riz13=R04(=0),
Ris=Rass(=¢), Rizss=b+1, Ropssy=c+1,
Rizse=b+c+2, Ryzi=—1,
and all the other R,;u=0,

*) Prof. Tanno has suggested me to be able to prove the same fact by mean of
local fibring. I wish to express my thanks to him.
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(b) P(Xn XZ)EZ{P(Xn X2)+P(X1y X3,

where p(X, Y)=—R,,, XY’ X* Y 15 the sectional curvature at p with respect to
a 2-plane spanned by the orthonormal vectors X, YET ,(M).

By this lemma, he calculated the following
4.4) (S/5)| R[*=32{a*+3(b*+c®)+6(b+c)+2bc+8} ,
4.5) 2/5)S|R|*+B+4r=—64{5(b+c)*+15(b+c)+(9(b+c)+22)bc +6} .
Now substituting (4.5) into (2.4), we get
4.6) [VR|2=(1/2)A| R |*+32(106*4-20bc +10c*+30b+30¢

+-18b%*c +18bc?+-44bc+12) .
Moreover substituting (4.4) and (4.6) into the left hand side of (3.5), we get
4.7 [VR|2—4(| R|2—2n(n—1))
=(1/2)A| R|24+6(b*+c*+10bc+3b+3c+3b*c+3bc?),
by using a+b+c=—3. By virtue of (b) of Lemma 4.3, we have
btc=—2.

If the Sasakian space in consideration has sectional curvature =0, then it
satisfies that b+c¢=<0. So putting x=b+c¢ and y=bc, the range on which
(x, ) exists is

D={-2=x=<0, 0=y=(1/4)x% .

If we put f(x, y)=x24+(8x+8)y+3x, then for (x, y)€D we have
Flx, »=x2+1/4)x*Bx+8)+3x=3x[(1/2)x+1]%.

Hence if all sectional curvatures are non-negative, then we see that f(x, y)=0
for all (x, y)eD. Thus we get the following results.

THEOREM 4.4. If a 5-dimensional compact Sasaki-Einsteimian space has non-
negatwe sectional curvature, then it 1s locally ¢-symmetric.

THEOREM 4.5. Let M be a 5-dimensional Sasaki-Einsteinian space. If M 1s
of non-negatwe sectional curvature and |R|® 1s constant, then M 1s locally ¢-
symmetric.

THEOREM 4.6. Let M be a 5-dimensional Sasaki-Einsteinian space. If M s
of non-negative sectional curvature and satisfies (2.9), then M 1s locally ¢-symmetric.
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