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THE AUMANN-CARATHEODORY RIGIDITY CONSTANT

FOR DOUBLY CONNECTED REGIONS

BY CARL DAVID MINDA1

1. Introduction. Suppose G is a nonsimply connected region in the ex-
tended complex plane P such that P\G contains at least three points and c e
G. Aumann and Caratheodory [3] proved that there is a constant Ω=Ω(G, a)
Orgi2<l, such that if / is any analytic self-mapping of G fixing a and / is not
a conformal automorphism of G, then \f(a)\^Ω. In this paper we will ex-
plicitly determine the Aumann-Caratheodory rigidity constant for proper doubly
connected regions and identify all extremal functions. The value of the con-
stant and the form of the extremal functions were rather implicitly determined
by Heins [4] and Herve [6]. Our work is simultaneously more explicit and
more elementary it is based upon the use of covering surfaces.

Since the Aumann-Caratheodory constant is a conformal invariant, it suffices
to consider the case of an annulus because every proper doubly connected
region is conformally equivalent to an annulus. Fix R>1. Throughout this
paper A={z Λ/R<\z\<R}. Take a^Λ and let £F=£F(Λ a) be the family of
all analytic functions f:A-*A such that f{a)—a and / is not a conformal
automorphism of A. In this paper we shall find

Ω=Ω(A, α)=max |/'(α)|

and the extremal functions.

2. Expressing Ω as the quotient of two conformally invariant metrics.
The following result will enable us to express the Aumann-Caratheodory rigidity
constant for an annulus as the quotient of two basic conformally invariant
metrics.

ANNULUS THEOREM. Let γ be a generator of the fundamental group of A,

Suppose f is an analytic self-mapping of A such that f°y is freely homotopic to
γn for some integer n. Then n=0, ± 1 . Moreover, | n | = l if and only if f is a
conformal automorphism of A and n=ϋ if and only if f is homotopic to a con-
stant.
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This theorem has a variety of different proofs ([7], [8], [9], [10], [11], [13]).
In view of the covering surface theme of this paper we shall give yet another
proof. This proof is essentially due to Heins [5] and shows that the annulus
theorem should properly be traced back to his work.

Proof of the annulus theorem. Without loss of generality we may assume
that n^O; if not, then replace / by 1//. Let H = {z : Re (z)>0} and suppose that
π : H —• A is an analytic universal covering projection. By an appropriate choice
of π we can assure that the group of cover transformations is the cyclic group
generated by T(z)=λz, where λ>l. Fix a^A and define b=f(a). Select points
a, b^H with π(ά)=a, π(B)=b. Then there is a unique analytic function/: 7/—»
H such that f{a)—b and π°f=f°π. Since f°γ is freely homotopic to γn, it
follows that f<>T=Tn°f; that is, ?(λz)=λnf(z) for all z<=H.

First, we show that n is either 0 or 1. Let c be the angular derivative
of / at oo, then ϋ^c<^ by the Julia-Caratheodory theorem. Fix any z^H, then

l im- ' =c .

But the functional equation satisfied by / shows that f(λkz)=λnkf(z), so that

Since χ^n-^k is unbounded if n^2, we obtain a contradiction unless n=0, 1.
If n=l, then we obtain f(z)—cz and c must be positive. This implies that /
is a rotation, so a conformal automorphism of A.

When n=0, f°T is freely homotopic to a point, so / lifts to an analytic
function f:A->H such that π°f=f. Clearly, / is homotopic to a constant, so
the same is true of /.

Thus, if /e£F, then the annulus theorem shows that / is homotopic to a
constant. In particular, / induces the trivial homomorphism on the fundamental
group. Let π:B—*A be the unique analytic universal covering projection of
the unit ball B onto A such that π(0)=a and τr/(0)>0. Then each /<= ΞF lifts to
a unique analytic function f\A-+B such that /(α)=0 and π°f=f. Conversely,
if f:A-+B is an analytic function with /(α)=0, then π°ftΞ$. Let β=β(A, a)
be the family of all analytic functions f:A-*B which satisfy /(α)=0. Then
£F={ττ°/:/e/3} and

Ω=max\(π°fY(a)\

= π/(0)meix\f/(a)\ .

Now, 7r'(0)=l/Λ(α), where λ(z)\dz\ is the hyperbolic metric on A and

where cB(z)\dz\ is the metric on A induced by analytic capacity. Thus,
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Ω=cB(a)/λ(a).

Note that /e£F is extremal for Ω if and only if the associated function f^β
is extremal for cB(a).

3. The Ahlfors function for an annul us. Ahlfors [2] showed that the
extremal function h in β which attains the value cB(a) is unique up to
rotation and /ι is a two-sheeted branched covering of A onto B. Actually,
Ahlfors determined the extremal function for analytic capacity for regions of
finite connectivity. For the case of an annulus it is possible to give an ele-
mentary proof. We begin by studying two-sheeted branched coverings of A
onto B.

PROPOSITION. Fix a, b^A. There is a two-sheeted branched covering f: A-^
B with /(α)=0=/(6) if and only if \ab\=l. (In case a=b we require that f also
have a branch point of a) The function f is unique up to rotation and f has a
simple zero at ±Vab and no other zeros.

Proof. First, suppose that f:A->B is a two-sheeted branched covering
with f(ά)=f(b)=0. Observe that | / | = 1 on dA. Now, log|/| is negative and
harmonic on cl(A) except for the points a, b where it has logarithmic singularities
and vanishes on dA. Therefore, —log\f(z)\=g(z, a)+g(z, b), where g(z, a),g(z, b)
is the Green's function for A with singularity at a, b, respectively. Recall that

\og\z\+logR
φ ) = 2\ogR

is the harmonic measure of 7={z: \z\=R} with respect to A. The Poisson-
Green integral formula for an annulus gives

— 2 π ω ( a ) = \ ω(z)*dg(z, a)=\ *dg(z, a ) .
JdA Jγ

Of course, the same result holds with a replaced by b. Since / maps each
oriented contour of dA onto dB traversed once in the positive direction, we
obtain

f *dlog\f\=2π.
h

Consequently,

—ω{a) ω{ ) - 2 log i?

or \ab\=l. This establishes the necessity of the condition.
Conversely, assume a, b^A and \ab\=l. Then the function u(z)=g(z, a)

+g(z} b) is positive and harmonic in cl(A) except for logarithmic singularities
at a, b and vanishes on dA. Let δ(a), δ(b) be small, positively oriented circles
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centered at a, b, respectively. Then

I *du =—2π = \ *du

If \ab\=l, then our preceding work shows that

Jr

Since δ(a), δ(b), γ form a homology basis for cl(A)\{a, b}, this implies that all
periods of *du are an integer multiple of 2π. If w* is the multiple-valued
harmonic conjugate of u, then /=exp [—(W+IM*)] is a single-valued analytic
function in A with zeros at α and b. (A simple zero at each point if αφb and
a double zero at α if α—b.) Also, | / | = 1 on dA and / maps A into B. The
boundary correspondence of / implies that / is an n-sheeted branched covering
of A onto B for some positive integer n. The fact that / has exactly two
zeros shows that n=2. Hence, \αb\=l is sufficient for the existence of a two-
sheeted covering f:A-*B with f(α)=f(b)=Q.

That two points α, b^A with \αb\—l determine the two-sheeted covering
f:A—*B up to rotation is elementary; just apply the maximum principle to
the quotient of two such coverings.

Finally, we locate the zeros of /'. Since \αb\=l, T(z)=αb/z is a conformal
automorphism of A which permutes α and b. Also, T fixes the two points
±Vαb. Now, f°T is a two-sheeted branched covering of A onto B sending α
and b to 0. Thus, f°T=λf for some λ with \λ\=l. Since T°T is the identity,
we obtain λ2=l, or λ=±l. If f°T=—f, then f(±Vα~F)=0 which implies α b~
Λ/O5~'(— ^~αb)> a contradiction. Thus, f°T=f. From T /(±Λ/αF)= — 1, we obtain
/'(±VάF)=0.

THEOREM. L<?ί h:A-+B be the unique two-sheeted branched covering with
h(a)=0=h(-l/d) and A/(α)>0. T/zen \?'(a)\^h'(a) for any / ε β αnof ^wα/zty
/i6>/ί/s i/ αn<i on/3; if f—λh for some λ with \λ\=l.

Proof. Observe that the quotient g—flh is analytic in A except possibly
for a simple pole at —l/ά. Also, limsup|g(z)| rgl for any ζ e δ A Therefore, a
lemma of Robinson [12] as refined by Abe [1] implies that \g(a)\^l and equality
holds if and only if g is a constant function of modulus 1. Since g(a)=f(a)/
hf(a), this establishes the inequality.

4. Summary. Let us now gather together our results.

THEOREM. Let π:B—>A be the unique analytic universal covering projection
with π(0)=α and l/λ(a)=π/(0)>0. Lei h:A—>B be the unique two-sheeted bran-
ched covering with zeros at a, —1/ά and cB(a)=h/(a)>0. Then the value region {f'(a):
/e£F} is the closed ball with radius Ω=cB(a)/λ(a) and center 0. fλ = π°(λh), \λ\=l,
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is the unique function in £F which satisfies f'λ(a)=λΩ. Moreover, the only zeros
of Λ are simple zeros at ± V- a/ά.

We have already established most of the assertions in this theorem only
the statement about the value region needs consideration. The functions fλ,
where we now permit |Λ|^Ξ1, show that the value region is the closed ball with
radius Ω and center 0. Thus, the extremal functions for the Aumann-Caratheo-
dory rigidity constant for a proper doubly connected region are infinite-sheeted
branched coverings of the region onto itself with exactly two branch points.

5. Numerical evaluation of Ω. In order to evaluate the Aumann-Caratheo-
dory rigidity constant we shall separately calculate the hyperbolic metric and
the analytic capacity. By making use of an explicit analytic universal covering
projection of the unit ball onto A, it is straightforward to show that

π 1
4logR /7Γ log I ύ

The calculation of the analytic capacity is more involved. We begin by
expressing the Ahlfors function in terms of theta functions. This is analogous
to work of Robinson [12] and Abe [1]. Let

θ{z)=Θ(z, 1/R2)= Π ( l -
171 = 1

(This is the usual theta function with q replaced by l/R2.) θ has a simple zero
at the points z= — l/R4n~2, n=0, ±1, ••• and no other zeros. The following
functional equations are satisfied by θ.

From these facts we conclude that θ(—z/R2a) has a simple zero at a and no
other zeros in A. Also, θ{—άz) has no zero in A. Therefore, f(z;a)=θ(—z/
R2a)/θ(—άz) is analytic in A with a simple zero at a. By making use of the
functional equations for θ it is elementary to show that f(z a) has modulus 1
on \z\=R and modulus R\a\ on \z\=l/R. Similar results hold for the func-
tion /(* —IIa). Therefore, the function h(z)=(z/R)f(z d)f{z —1/ά) is analytic
in A, has modulus 1 on 3̂ 4 and has simple zeros at a, —I/a. Thus, up to a
possible rotation h is the Ahlfors function for A with respect to the base point
a. We shall see that h'(a)>0 so h is the Ahlfors function.

cB(a)=h\a)=(a/R)f(a a)f(a -l/ά)

_ a - 1 θ'i-l/R2) Θ(\a\2/R2)

R R2a θ(-\a\2) 0(1)

(1+1/1 a\2) g (l
R n=i (l+l/Rin-2)2(l-\a\2/R*n-2)(l-l/\a\2R*n-2)
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Our expressions for cB(a) and λ(a) reveal that

so that the Aumann-Caratheodory constant is not uniformly less than one in A.
Also, for | β | = l the expression for Ω simplies as follows:

Of A ^ -
λ(a) π R nil ( ϊ -

JJ (l
7ΓΓL

6. Extension to regions of higher connectivity. Let G be a nonsimply
connected region in the extended complex plane P such that P\G contains at
least three points. Fix a^G and let EF=3'(G, a) be the family of all analytic
self-mappings of G which fix a and are not conformal automorphisms of G.
The Aumann-Caratheodory constant is

Ω=Ω(G, α)=max|//(fl)| .
/€Ξ£F

Let £F0 be the subfamily of ΞF consisting of all functions which are homotopic
to a constant and set

Ω0=Ω0(G, α)=max|//(α)| .

Clearly, Ω0^Ω. Let π:B—*G be the unique analytic universal covering projec-
tion satisfying π(0)=α and π/(0)>0. Then ΞF0~{π°f :f^β}, where β=β(G, a)
is the family of all analytic functions / : G-* B that satisfy f(a)=Q. Therefore,

Ω0=π'(fl) max \f'(a) \ =cB{a)/λ{a),

where cB(z)\dz\ is the analytic capacity metric on G and λ(z)\dz\ is the hyper-
bolic metric on G. The extremal functions for Ωo are π°(λh), Ul=l, where
h:G^B is the Ahlfors function, and the value region {/'(α) :/e£F0} is the
closed ball with radius β 0 and center 0. Thus, in the general case we only
find that cB(a)/λ(ά) is a lower bound for the Aumann-Caratheodory rigidity
constant.
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