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SOME REMARKS ON THE LUBIN-TATE EXTENSIONS
BY SUGURU HAMADA

In this paper, we consider the possibility of characterization of the Lubin-
Tate extensions, among the totally ramified abelian extensions over a local
number field K, by means of their Galois groups.

The tamely ramified case is well known (Remark 1). In other cases, if K
is a finite unramified local number field, the Lubin-Tate extension is character-
ized by the order and the exponent of its Galois group (Theorem). However, in
general such characterization of Lubin-Tate extension is impossible ; namely,
we can find fields K over which their exist always other totally ramified abelian
extensions whose Galois groups are isomorphic to those of Lubin-Tate exten-
sions (Proposition 1).

Finally, we give a remark on the composite of two Lubin-Tate extensions
(Proposition 2).

NOTATIONS. Z: the ring of rational integers. p: a prime number. Z,: the
ring of p-adic integers. Q,: the field of p-adic numbers. K: a finite extension
of Q,. m: a prime element of K. p: the maximal ideal of K. U: the group of
units of K. H, : the multiplicative group 1+p™ (m=1, 2, ---). ¢: the number of
elements of the residue class field of K. p: a primitive (¢—1)-th root of unity
in K. M*: the multiplicative group of a field M. <a): the cyclic group
generated by a. Ny,y: the norm map of a field extension M/N. Gal(M/N):
the Galois group of a Galois extension M/N.

Now, the Lubin-Tate extension L(z, m) is defined as follows; For f(X)=
X'4+7X let 2,(n=1, 2, ---) be elements of an algebraic closure of Q, such that
FQ)=0 (2,#0), f(Ap)=2Ar-:(n=2) and we set L(z, m)=K(A,).

Then L(x, m) is a totally ramified abelian extension of K such that Ny, m)/x
(L(z, m)*)=<=x>H,, and Gal (L(x, m))=U/H, (J. Lubin and J. Tate [3]).

THEOREM. Let K/Q, (p+2) be a finite unramified extension and M/K be a
finute totally ramified abelian extension. Then MS L(z, m) for some m 1f and only
if the exponent of Gal (M/K) 1s a divisor of (g—1)p™*. Moreover, 1f the order
of Gal(M/K) 1s (g—1)g™ ! then M= L(x, m) for some =.

Proof. “If” part: Let Ny, x(Uy)=U’ where Uy is the group of units of M.
By class field theory Gal(M/K)=U/U’. Since the exponent of Gal (M/K) is a
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divisor of (g—1)p™ ! we have U@L [,

On the other hand U=<{p) X H, (direct), H"'=H, because ¢—1 is a unit of
Z,, and Hi=H,,, (n=1, 2, ---) because p+#2 and K/Q, is unramified (J.P. Serre
4.

Hence U9-v»™'=[ and we have H,SU’. Now let Ny x(zy)== where
7y is a prime element of M then <x)H,S<z)U’ and L(x, m)2M by class field
theory.

Moreover, if the order of Gal (M/K) is (¢q—1)¢™ ! we have L(z, m)=M since
[L(z, m): K1=(qg—1)g™ "

“Only if” part: Suppose MS L(x, m). Let n’=Nyx(wy) and U’ =Ny, x(Uy),
then we have {zDU’'2<{x)H,. From this it follows U'2H,. We have shown
the exponent of U/H, is a divisor of (¢—1)p™~! so the exponent of Gal (M/K)
=U/U’ is also a divisor of (¢—1)p™~1.

COROLLARY. M/Q, (p#2) 1s a totally ramijied abelian extension of degree
(p—Dp™ ' 1f and only 1f M=L(pu, m) for some unit u of Z,.

The following is well known (S. Lang [2]).

REMARK 1. For arbitrary p, let K/Q, a finite extension. Then M/K is a
totally ramified abelian extension of degree ¢—1 if and only if M=L(x, 1) for
some 7.

Proof. Since HY"'=H, for arbitrary p and K, the proof is similar to that
of Theorem.

Next we show

PrROPOSITION 1. Let K=Q,({,) where p+#2 and {,(n=2) 1s a prumtive p -th
root of unity.

Then for any m=2, there exists a totally ramified abelian extension M over K
such that Gal (M/K)=U/H,, and M+ L(x, m) for any prime element = of K.

For the proof, we sketch the proof of the structure theorem of H;, of K=
Q) where p is an arbitrary prime and n=1, following to H. Hasse (H. Hasse
C1D).

Let e=[K:Q,1=(p—1p"", e;=p*', n=1-{, and R, be a complete system
of representatives of H,/H,,, (we take 1 as the representative of the class of 1).

Then every element 7 of H, is written uniquely as follows;

U:LI:IIUt (mERt)~
And for £ H, such that é=1+4an* mod p*** for some integer a in K we have

) { EP=1-+aP?x*? mod p*P*! if 1<e;

EP=1—carn'*®* mod p*tet! if 1>e
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where —p=er®.

We set F={i|1=1<e,p, (1, p)=1} then e integers k (e;<k=e,p) are written
uniquely k=1p", G€F and n=k;=0). Then every positive integer ¢ is written
uniquely and by (*) the corresponding R, is given as follows; Case . If 1=<t<e,
then t=1p*, 1€F, v;=0, 1, -+, k;—1 and R,={(1—rx)er*|0=Za<p—1}.

Case II(i). If e;<t=e,+se+r, 0=s and 1<r<e then t=1p*i+se,1€F (1#1)
and R,={1—rer"*|0<a=Z p—1}.

Case II(ii). If e;<t=e,+sete=e,p+se, 0<s R,={(1—n?)*P’|0<a=<p—1}.
We remark (1—r)%?=1.

Thus every element 5 of H; is written uniquely as follows;

p=1 g=(1—-mn I (1-z)*(1—zar)'ar
t=1 1EF, 1#1

where a;€Z mod p"* reduced, a,€Z, and a,,,<Z,.
And

- { Hy=Z/(p")X ZpX - XZ,  (direct)

77 '—->(d17 Agy ***, aelp-ly aelp)

where &, is the class of a; in Z/(p™).

Next, in order to write down the structure of H;/H,, in the Case I, for in-
teger m such that 1=m=<e,, let m, (=0, 1, -+, n—1) be the number of the
elements of the set G, (m)={i|1€F, m/p’<1<m/p’"*} and in the Case II(i), for
integer m=e;+se+r (0<s, 1=r<e), we set I(m)={i|i€F, ip*i<e,+r} and J(m)
={i11€F, e;+r=Zipfi<e,p}.

LEMMA 1. Let K=Q,(,) where p 1s a prune and n=1 then we have;
Case I. If 1=m=e, then

H/H,= nf[: Ch (direct).
=
Case II(i). If e;<m=e,+se+r, 0<s, 1=r<e then

Hy/Hp=CpnX( II CersarX TI Ceu)XCps  (direct).
wel(m) 1EJ (M)

i
Case II(ii). If e;<m=e,p+se, 0=s then
Hl/HmchnX(zey

1#1

cpwﬂ)xcps (direct)

where Cuu 15 a cyclic group of order p* and Chu 15 the direct product of v copies
Of cpu’S.

Proof. By the uniqueness of the representation n= tli 7: (9. € R;) we have
neH, if and only if 5,=1 for all ¢, 1=t<m.

Thus, in the Case I, p:(l—n)“l-E;Im(l—ﬂi)“l-(l—nelp)“‘w belongs to H,
if and only if



SOME REMARKS ON THE LUBIN-TATE EXTENSIONS 409

(*2) a;=0mod p?  for such 1€F as ip’ *<m=ip’
(i.e ieG,(m)) (4=0,1, -, n—1).
Analogousely, in the Case II(i) = H, if and only if

a;=0mod p", a,=0mod pri*s*! if 1=l(m)
(*3)

a,=0mod pri+s if 1€/(m) and a.,=0mod p°.
And, in the Case II(ii) = H, if and only if

a,=0mod p", a;=0mod p*i*s*! if 1€FG+#1)
(*4)

and a.,,=0mod p°.

Thus, the Lemma follows from the isomorphim (*1).

LEMMA 2. Let K=Q,(,), p#2 and n=2. Then for any integer m=2 thew
exists a subgroup U’ of H, such that U'#+H,, and H,/U =H,/H,.

Proof. As for the Case I of Lemma 1, let U’ be the group consisting of

those 7,
p=1—m)* I (I—r")%-(1—xP)%p
1EF, 1#1

where a, is arbitrary, a.,,=0mod p’ if 1€G(m), and other a,’s satisfy the same
conditions in (*2) of Lemma 1. Then, since m>1 l—z&¢H, and l—zcU’.
Thus we have H,+=U’. While H,/U = H,/H,, because H,;/U’ has also the type
described in Case I of Lemma 1.

As for the Case II(i), let U’ be the group consisting of those 7 in which
a,=0mod p", a,=0mod p°%, and

{Omod Pttt i 2eI(m)
Y7 0mod prers it 2ejm)

and other «,’s satisfy the same conditions in (*3). The since n=2, k,=n—1=1,
ka+s>s and k,+s+1>s we have (1—=n®)?°«H,, (1—=3)?’cU’ and H,=U'.
While H,/U’=H,/H,, because H,/U’ has also the type described in Case II(i) of
Lemma 1. As for the Case II(ii) the proof is similar as above.

Proof of Proposition 1. Let M be the class field which corresponds to the
class group <z)>U’ where U’ is that of Lemma 2. Then U’+H,, implies {x)U’
+<{ruyH,, for any u<sU, so that M is never a Lubin-Tate extension but Gal
M/K)=U/U'=U/Hp.

Remark 2. Lemma 2 does not hold for n=1; namely H,/U’=H,/H,., if and
Only if U/:Hp.).l.

Finally, we give a remark on the composite field of two Lubin-Tate exten-
sions.
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PROPOSITION 2. Let p be a prime number, K a finite extension of Q,, L(xy, n),
L(z,, m) (n<m) two Lubwn-Tate extensions over K, and d the order m,z, ' mod H,
w the group U/H,.

Then the wnertia field of the composite field L(xy, n)L(xwy, m) 15 of degree d
over K. [L(zy, n)L(ws, m): K]=(q—1)q™*d and [ L(z,, n)"\L(xs, m): K]=(g—1)
qn—ld—l.

Proof. By assumption we have <{n)>H,N\{zs0 Hpn=<ab> H,=<{a>UN{rs)Hp,
so we have by class field theory L(zx,, n)L(x,, m)=T4L(x,, m) where T, is the
unramified extension of degree d over K. From this we have the Proposition
immediately.

EXAMPLE. Qu(+/3)(+/=1) is unramified of degree 2 over Q.,(+/3) (H. Hasse
[1] p 214).
For, Qv 3)=L(—2, 2), Q:{(~/=1)=L(2, 2) and —1 has order 2 mod H,.
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