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§1. Introduction.

This paper is devoted to the study of almost Hermitian manifolds satisfy-
ing some curvature conditions, for example, R(X, Y)-R=0. Let (M, g) be an
m-dimensional connected Riemannian manifold with a positive-definite metric
tensor g=(g;;). Let V, R=(R,;;"), R,=(R;;) and S=g’*R;; be the Riemannian
connection, the Riemannian curvature tensor, the Ricci tensor and the scalar
curvature, respectively. In this paper, manifolds and tensor fields are assumed
to be of class C* unless otherwise specified. In 1965, Nomizu and Yano (cf.
[10]) proved the following

THEOREM 1.1. Let g be an irreducible locally symmetric Riemannian metric
on an m-dimensional manifold M (m=3). If g’ is another Riemannian metric on
M whose curvature tensor R’ coincides with the curvature tensor R of g, then
g'=cg, where ¢ is a positive constant and hence, g’ is also an irreducible locally
symmetric Riemannian metric on M.

In a locally symmetric space (M, g), at each point of M, we have
* R(X, YV)-R=0, for all tangent vectors X, Y,

where the linear transformation R(X, Y) operates on the curvature tensor R
as a derivation defined on the tangent tensor algebra at each point. Conversely,
does the algebraic condition (*) on the curvature tensor R imply that VR=0?
Nomizu gave a conjecture as follows.

CONJECTURE. Let (M, g) be an m-dimensional complete, irreducible Rieman-
nian manifold with m=3. If (M, g) satisfies the condition (*), then (M, g) is
locally symmetric.

Now, if the conjecture is valid, it must follow that as long as there is an
irreducible and locally symmetric Riemannian metric g on M, any metric g’
on M such that R’=R is also locally symmetric. This is nothing but Theorem

Received July 17, 1978
384



ALMOST HERMITIAN MANIFOLDS 385

1.1. Next, we denote by H the tensor field of type (1, 5) on (M, g) defined by
H(X, Y)=—R(X, Y)-R. If the conjecture is valid, the tensor field H represents
a deviation of a Riemannian metric from a locally symmetric one. However,
by examples given by Takagi [19] and the present author [13], the conjecture
is negative. In [14], the present author proved that the conjecture is valid in
the case where (M, g) is compact and irreducible, provided dim M=3. Thus
the following problem will be naturally set.

PrROBLEM. Does the algebraic condition (*) on the curvature tensor of a
compact and irreducible Riemannian manifold (M, g) with dim M >3 imply the
fact that (M, g) is locally symmetric ?

On the other hand, it might be interesting to study relations between the
Riemannian structure g and the almost complex structure F. For example,
how does the Riemannian structure g affect the almost complex structure F in
an almost Hermitian manifold (M, F, g)? In §2, we recall a theorem due to
Lichnerowicz for later use. §3 will be devoted to give some formulas and
theorems concerning almost Hermitian manifolds. In §4, we shall study some
K-spaces satisfying the condition (*). In §5, we shall give by using the tensor
fields H, R and etc., a sufficient condition for a 6-dimensional K-space to be a
homogeneous almost Hermitian manifold. In §6, we shall study 4-dimensional
F-spaces and H-spaces satisfying the condition (*).

§2. A theorem of A. Lichnerowicz.

Let (M, g) be a Riemannian manifold. Lichnerowicz [26] obtained the fol-
lowing formula

2.1) —;—A S=2HP g,y R — 4T, V,R VR4 (VR i) TP R ¥ |

Where f:Rkjlthjih, and Hqujih:'—(vaqujlh—qukajzh) (Cf §1).
In each local coordinate neighborhood, (*) is equivalent to

(2.2) Hqujih:()y or
qukthjth+qu;tRktih,+qu1,tR k]th‘l"quhtRkjiL:O .
From (2.1) and (2.2), Lichnerowicz proved the following

THEOREM 2.1. Let (M, g) be a compact Riemannian manifold satisfying the
condition (*). If V.R;;=0 holds on M, then (M, g) 1s locally symmeiric.

Fujimura [3], and Sekigawa and Takagi [17] gave some generalizations of
Theorem 2.1.
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§3. Curvature tensors in an almost Hermitian manifold.

Let (M, F, g) be an m(=2n)-dimensional almost Hermitian manifold with
almost Hermitian structure (£, g). If we now put

3.1 Rﬁ:%FJ‘Ru Wk
then, by definition, we have
3.2) FPRy=—2RF'F)', and FYR;,'=RFF,'.

Applying the Ricci identity to F.,*, we obtain

3.3) Vo VF =N =Ry, " F'— Ryt F* .
From (3.3), contracting with respect to & and A, we get
(34) V,V,F V,F,=(R;— REF,¢

where F,=—V,F,*.
Now, operating V, to F/'F,,=—4d,’ gives

FLFih_*‘FjiVjFih:O .

Operating V*=g"*V, to the both sides of this equation and taking account of
(3.4), we have

(3.5) S—S*=(V*FI9Y,F,,—F*F,—2F/(T,F,),

where S*=g7'R%.
Next, we shall recall the definitions of special kinds of almost Hermitian
manifolds. If (F, g) satisfies

(3.6) V,F,h=0,

then (M, F, g) is called a Kaehlerian space. If (F, g) satisfies

3.7 VPN F =0,

then (M, F, g) is called a K-space (or a Tachibana space). If (F, g) satisfies
(3.8) ViFin Vil +VuF,=0,

then (M, F, g) is called an H-space (or an almost Kaehlerian space). If (F, g)
satisfies

(39) v]kazh—*kaszh:RjkLtht—‘RjkltF‘h:O,

then (M, F, g) is called an F-space (or a para-Kaehlerian space). When (M, F, g)
is a Kaehlerian space, a K-space or an H-space, the condition F,=0 is satisfied.
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Suppose that (M, F, g) is an H-space. Then, by (3.8), we have
(VFIT,Fip = (T T, Fop =T )= (T,
and hence, by (3.5)
(3.10) s—s*:—éwwi)wﬂgo.
Thus, we have the following (cf. [26])

THEOREM 3.1. In an H-space, we have S<S¥*, and the equality sign occurs 1f
and only if the space 1s a Kaehlerian space.

Next, suppose the (M, F, g) is a K-space. Then, by (3.7), we have
(VPFIOVF, =" FINY,LF,,=0.
Thus, we have the following (cf. [26])

THEOREM 3.2. In a K-space, we have S=S*, and the equalily sign occurs if
and only 1f the space 1s a Kaehlerian space.

We denote by AWM, F, g) (I(M, F, g), resp.) the group of all automorphisms
of (M, F, g) (the group of all isometries of (M, F, g) resp.) which acts effec-
tively on M, and by AM, F, g) (I,(M, F, g), resp.) the identity component of
AWM, F, g) UM, F, g), resp.). Then, it is evident that A(M, F, g)CI(M, F, g)
(and AWM, F, g)CI(M, F, g)). Especially, if there exists a subgroup G of
A(M, F, g) which acts transitively on M, then (M, F, g) is called a homogene-
ous almost Hermitian manifold. Recently, concerning with the result of
Ambrose and Singer [1], the present author proved the following (cf. [16])

THEOREM 3.3. Let (M, F, g) be a homogeneous almost Hermitian manifold.
Then, there exists a skew-symmetric tensor field T=(T;*) of type (1,2) on M
satisfying the following conditions

(A) vakjih:TpLthjit—Tpkthjih_Tthkah’_TpltRkjth >
(B) VPTjih: pLthit—ijtTtth—TpttT;th ’
(C) Vo F =T " F =T, .

Conversely, if a complete and simply connected almost Hermitian manifold
(M, F, g) admits a skew-symmetric tensor field 7 of type (1, 2) on M satisfying
the conditions (A), (B) and (C), then (M, F, g) is a homogeneous almost Hermi-
tian manifold.

In the above Theorem, the skew-symmetricity of 7=(T,,") means that
Tjin=—Tjx. holds, where T;;»=T;*gss. The rough sketch of the proof of
Theorem 3.3 is as follows. Let O(M, F, g) (UM, F, g), resp.) be the ortho-
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normal frame bundle (the unitary frame bundle, resp.) over M with respect to
the Riemannian structure g (the almost Hermitian structure (F, g), resp.). We
denote by G the holonomy subbundle of U(M, F, g) with respect to the linear
connection Vi=Vy—T(X), where T(X)Y=T(X, V). Then, G acts effectively
and transitively on M as a group of automorphisms of (M, F, g).

§4. K-spaces satisfying the condition (*).

In this section, in connection with Theorem 3.3 and the conjecture stated
in §1, we shall prove the following main Theorems 4.1 and 4.2.

THEOREM 4.1. Let (M, F, g) be a complete and irreducible non-Kaehlerian
K-space satisfying the condition (*¥). Then (M, F, g) 1s a compact and locally
symmetric space.

In this paper, when an almost Hermitian manifold (M, F, g) is irreducible
with respect to the Riemannian connection V, we say that (M, F, g) is a irre-
ducible almost Hermitian manifold.

THEOREM. 4.2. Let (M, F, g) satisfy the same hypothesis as in Theorem 4.1.
Assume moreover that M 1s sumply connected. Then (M, F, g) 1s a compact and
wrreducible Riemanman symmetric space and furthermore, M adwmuts two actions
of compact Lie groups which are effective and transitive on M. But these two
actions are not similar to each other (cf. Remark below).

Remark. Let G, and G, be two compact, connected Lie groups which acts
on a manifold M effectively and transitively, K; and K, the isotropy subgroups
of G, and G, respectively at some point of M. Denote by g, q,, ¥, and f, the
Lie algebras of G,, G,, K, and K,, respectively. When there is an isomorphism
¢: g,—¢, such that ¢(f,)=¥, we say that the action of G, is similar to that
of G, (cf. [22]). Let (M, g) be a compact and simply connected, irreducible
Riemannian symmetric space, and M=I,(M, g)/K. Let G be a compact Lie
group which acts on M transitively and effectively. Then, it is known that,
for some kinds of such (M, g), for example,

SOQ2I41)/502m) X SOQ2l—2m~+1) 2<m<I—-1), SOQI+1)/SOQ2l) (+3),
SO@21)/SO@2m)yx SO@I—2m) (1<m<I-1), Sp(l)/Spim)xSp(l—m),
E/SU@2)-SU®6), E;/SU*®8) (SU*@®)=SU®)/Z,), E./SU2)-Spn(12),
Ey/SO(16), Es/SUQ)-E. F,/SU2)-Sp3), F,/Spn(9), G,/SO4) (cf. [22]),

the action of G is always similar to the standard transitive action of I,(M, g)
on M as a Riemannian symmetric space. In [4], Fukami and Ishihara showed
that there exists a Tachibana structure (F, g) on a 6-dimensional sphere S°
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with the canonical Riemannian metric g by making use of the properties of
the algebra of Cayley numbers and Aq(S¢ F, g)=G,, S°=G,/SU(3). Now, let
(M, F, g) be a K-space. First of all, we shall write down some fundamental
formulas in a K-space (cf. [97, [20], [23], etc.) as follows:

@) FPFSRy=R,, FpFeRL=FR%,

(4.2) R%=R},

“3) (V)T Fo=S,;

4.4) (VF )WES=5—-S*>0 (by (4.3) and Theorem 3.2),
“45) VIV, F =S,

46) R jsi— Roast FyPF 0= — (T, T,F o

@ Ryini—RuapeaF, A FOFyeF i =0,

8) Vo= g RuainFy Ry RosnF9),

(4.9) (Rijin—Rijpa P Fr*)S7 = %(31? T RE)SY,

4.10) (V,S,074 5= g (Ryy —BRE)S"S.*

where Sji:Rﬂ;_R;ki.
For the sake of later use, we shall establish the following formula (4.11).
Taking account of (4.3) and (4.6), we have

Ry PR yuyn F°—R ) "F Ry o Fr®
=R F (RouonF, 4 Roujo Fr”)
=—R " FF S (VEFyy
=—R j (N F)VEFy,
=R i R0 — Fy"Fo'R*y,)

1
2

= %(vvF"wahf)WDqu)(VfF #)

(RP,—Fy"F 'R, (Roye s — o F PRy )

1 .
= SV )(T,F )

1
:_?Srq(thkq_thbaFkaqa) .

Thus, from the above equation and (4.9), we have
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@.11) R B R Ry F R’ Fa® =5 BRar+ RE)S
Now, we define a tensor field T=(T;;") of type (1, 2) on M by

4.12) T,ih:—%F]“VuFJ‘ .

Then, we have

(4.13) Ty'=—T,", and Tju=—Tin-

By the second equation of (4.13), T is skew-symmetric. We shall here prove
the following

LEMMA 4.3. In a K-space, T satisfles the conditions (B) and (C) in Theorem 3.3.

Proof. From the definition of T and (4.6), we have

vaJihz %(Rpjih_prF]aRbalh—F]tvpV,Flh) )
Tp:thiL:— %Fqu]D(Ruhvi_RuhbaFvaL(l) »
TZ?JtTHh:%FquJU(Ruvzh—Rbathuvaa) )
and
1

t h —
sz Jjt

4 FquJv(Ruwh_Rbathuban) .

From the above equations, taking account of (4.6), (4.8) and the first Bianchi
identity, we have

Fo(NpT3i"—Tp " Ty'+ T, T "+ Tp Ty ™)
1
:-2_(Fk]Rpjih+FpuRukzh+vpkath)
+'i_(Fpuszuh—FuhRklpu—FpuRulnh_FkuRpuzh_FpuRuzkh_quRpukh)

1
2

V,,V,,F/‘—i—%(F"“Rpu“—FﬂRpuk’L—I—Fk"Rp,“”)
F AP R 4 Rk R
1 1
= (To V4P 5 (R Fa = RupaiF P+ Rups™F))=0.
Thus, T satisfies the condition (B). Next, using (3.7), we have
F U FMF ) =—F (N FOF M =F Y (N E N F=—F (NF ) F,*
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=V,F,",
F (N FYE S =—F (N FF M =F, (N E ) F ==Y, F " .
Taking account of the above equations, we have
Vo Ty Byt Ty, E A=, F ok STy £ T, =0,
Thus, T satisfies the condition (C). Q.E.D.

As a consequence of Lemma 4.3, we can now prove Theorem 4.4 given
later. Suppose that a K-space (M, F, g) is locally symmetric. Then, by (4.7),
we have

(va]u)Futhihk"l’(vatu)FutRjthk‘l—(vahu)FutRjitk’{_(vaku)FutRjih,t:O-
Thus, the above equation together with (3.7), (4.12) and (4.13) implies
TthRtihk_i_szLchhk+TphLRjitk+TpktRjiht:01

which means that T satisfies the condition (A). Consequently, from Theorem
3.3 and Lemma 4.3, we have the following

THEOREM 4.4. Let (M, F, g) be a complete, sumply connected and locally sym-
metric K-space. Then (M, F, g) 1s a homogeneous almost Hermitian manifold.

Proof of Theorvem 4.1. Let (M, F, g) be a complete and irreducible non-
Kaehlerian K-space satisfying the condition (*). Then the condition (*) implies
in particular

(%) Riy"R)'—R,;:;'R,*=0.
By the definition of R} and the condition (*), we have
(4.14) R¥R,'—RFR,*=0.
By a straightforward calculation, we get
vpka;g:—21—((vpkaba)R,,mFJt+(ka°u)(vaw)F,t
(TP )Ry, T F A (T FO2) (T Rygr)
+F (V¥ Roai)Fy 4 FP (N Rpar )V F )
F (Vo F 'Ry i(VeF, )+ FP (VR0 )V 1 F)
+FP R0 NV FY) .
Taking account of (3.2), (3.3) and (*), we have, from the above equation

(4.15) T, VaR%—V, T RE=—R 4, Ri— R 4 R%
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=Ry’ F Ry il — REF (R pis' F =Ry FsY)
=R i’ FoRyariF ) —RER p ot FL°F f—RER 1%
Now, by making use of the definition of S;;, we have easily
(4.16) (R ejin—RejpaFPFa®)S™
=R ;inR7—R 4 ;in R** — R} jpoa FPFa“R7 4R 4 jy o F2F, *R*I%

To obtain a new formula (4.21), we shall compute the right hand side of (4.16).
Taking account of the formula (**) given above, we have

(4.17) RyinR7*=—Ryjn'R’=—R;;’Ry'=R . R,
By using (3.2), (4.1) and (**), we have
(4.18) Rujpa FPFL R P=—R 4 ;o F/ F1*RP=—R ,;;’R,*F Y F 1,
=R}®F 'Ry F 1o =F R¥' Ry F1,*=RER .
Because of (3.2) and (4.15), we have
(4.19) RijinR¥'=R 7 'R+ RS F**RyainF )
—R¥R ' FPFP—RER
=R,,"F* Ry nF*+R5Rf.
Taking account of (3.2), (4.1) and (4.15), we have
(4.20) Rujpa FPFR R¥'=—R 5o '/ R¥F,°
=—(R;i’R¥*+R 4, P F ¥ Ry “F ' — REOR 1) F " F* — RF°R 4 ;F Y F
=—R P F Ry *Fro+RER .
Substituting (4.17)~(4.20) into the right hand side of (4.16), we have
(4.21) (R jin— R ijoal P Fr®)S7
=SnSe— (R 11" F *Royon F*—R 1, F Y Ry o " Fr, ) +2R%ES b .
This equation (4.21) together with (4.9) and (4.11) implies
(4.22) %(SRWLR’&)SJ

1
:Slztsht_§(3Rkt+Rtt)Sht+2R)TL A

Taking account of (4.14), we have, from (4.22)

(4.23) S (R p—5R%E)=0.
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Transvecting (4.23) with S** and using (4.10), we have finally the formula
4.24) V.S;=0.

Since (M, F, g) is irreducible, as a consequence of (4.24), there exists a
constant ¢ such that

(4.25) Sji=cg .

Thus, from (4.23) and (4.25), we have

(4.26) c(R;;—5R%)=0.

Since (M, F, g) is non-Kaehlerian, we have ¢#0. Thus, from (4.26), we have
4.27) R;;=5R}.

From (4.25) and (4.27), we have

(4.28) Rji:%cgji , R¥= %cgj,- .

Using (4.4) and (4.25), we have ¢>0. Thus, (M, F, g) is an Einstein space with
positive scalar curvature S=(5/4)mc. Since (M, F, g) is complete, by Myers’
theorem, we see that M is compact, and its diameter d(M) satisfies d(M)=
2(+/(m—1)/5¢)z. Consequently, because of Theorem 2.1, Theorem 4.1 is proved
completely. Q.E.D.

Proof of Theorem 4.2. We assume furthermore that M is simply connected.
Then, by Theorem 4.1, (M, F, g) is a compact, simply connected and irreducible
Riemannian symmetric space, and furthermore, by Theorem 4.4, (M, F, g) is a
homogeneous almost Hermitian manifold. Since (M, F, g) is a Riemannian
symmetric space, of course, the tensor field 7,=0 of type (1, 2) on M satisfies
the conditions (A) and (B) in Theorem 3.3. Let G, and G be the holonomy
subbundles over M of O(M, F, g) through a point of U(M, F, g) with respect
to the linear connections Vy and V§=Vy—T(X), respectively, where T is the
tensor field on M defined by (4.12). Then, G, (G, resp.) acts on M effectively
and transitively as a group of isometries of (M, F, g) (automorphisms of (M, F, g),
resp.). Since M is compact, A(M, F, g) and [,(M, F, g) are both compact Lie
groups (cf. [7]). Now, we assume that A,M, F, g)=I1,(M, F, g) holds. Then,
G,CA(M, F, g) and hence, G,CU(M, F, g). However, since (M, F, g) is non-
Kaehlerian, this is a contradiction. Thus, AM, F, g) is a proper subgroup of
I(M, F, g). Thus, dim A,(M, F, g)<dim I,(M, F, g) holds, and hence, the actions
of A(M, F, g) and [(M, F, g) on M are not similar to each other. Consequently,
we have Theorem 4.2. Q. E.D.

Recently, Ogawa [11] proved the following

THEOREM 4.5. Let (M, F, g) be a compact Kaehlerian space satisfying the
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condition (*). If the scalar curvature of (M, F, g) 1s constant, then (M, F, g) 1s
locally symmetric.

From Theorems 4.1 and 4.5, in connection with the problem stated in §1,
we have immediately the following

COROLLARY 4.6. Let (M, F, g) be a compact and rrreducible K-space satisfy-
ing the condition (*). If the scalar curvature of (M, F, g) 1s constant, then
(M, F, g) is locally symmetric.

§5. 6-dimensional K-spaces.

Let (M, F, g) be a 6-dimensional complete non-Kaehlerian K-space. Then,
besides the formulas (4.1)~(4.10), the following identities hold (cf. [9], [20]).

S
(5-1) kaszh:_?)—()(gkthn+gkchj+gkhFji)’
(5-2) (vtFk;)vtFih:thFthkjts'_Rk;ih.

S
:_'_(gjigkh_gkzgjh,_FjiFkn_l'Fkith) .
30
From (5.2), we have
S
(5.3) FptRkjth:_thRk]pL_l_3—()(Fhkg]p'_thgkp—ghkF]p+gthkp) .

Transvecting (5.2) with g**, we get

2S
Rji_Rﬁ:Egﬁ ’

from which and (4.9), taking account of Theorem 3.2,

R]l*5R;k1:O B
From the above equations, we have
S S
(5.4) Rji=%g, Ri=z;8-
From (3.2) and (5.4), we have
a S a S
(55) F? Rbaji:_EFji; F? ijatzs_OFji~

Now, we shall establish the integral formula (5.26) given later, which im-
plies the following

THEOREM 5.1. Let (M, F, g) be a 6-dimensional complete and sumply connected
non-Kaehlerian K-space satisfying the condition

ZHpk;pian“”‘F1—5<Rkjian“n_—1—5-)20 .
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Then, (M, F, g) 1s a homogeneous almost Hermitian manifold.

For the sake of later use, we shall prepare the following formulas (5.6)~
(5.9), (6.11) and (5.13). By making use of (5.2)~(5.5), we have

(5.6) RIPIRFRF IR yn=—F Fy'RI?"R
S
+:)TGR]pthzk(Fhkg]p_Fh]gkp—ghkF]p+gthkp)
— (Rklw S Jtypk Jk 5ot IR Dk ORIkt 2 2
=—(R7— 2 (g grt — g/t g —F P+ FHFP))R = 528
4
:—Rkt“’Rk}pt'—‘%Sz.
The formulas (5.4) and (5.5) imply
; SN2 s S?
67 RIPEF ¥R i =—(55) " Fan=—155.
Now, making use of (5.2)~(5.5) and taking account of (5.6), we have
(58) R]pthkaltRk]th:_FkaltR]pihRkth]__FkaztR]pithhJL
) S
:-R]pm<Rpihj_§(—)(gp]gih_gphglj—ijFih+Fp7LF1]>)
4
__Rkt]ka]pt_l_552
=—RIPILR ,+£SZ—R““’R,¢ —AS2
7y s
. 2 2
= 755.

By making use of (5.2), (5.4) and (5.5), we find
(5.9 R*FZF™R yjin
:_ka‘n(R . _§_(g Gon—GuGin—F yaFop - FoiF ))
vkih 30 k1 85vh mSkh 14 vh vid kh

. 4
:Rkﬂ-th”h—TsSz .

Furthermore, from (5.2) and (5.4), we have
(5.10) RIP(TAE YV Fu )R jen
S Jpih 52 Jpih k ¢ 1 RIDPLh kt
:_3_6<R Rz]ph‘!"g“i'R F1, Fp Rkjth T R F])‘LF Rlz]th)-

Substituting (5.6) and (5.7) respectively into the third term and the forth term
in the parenthesis of the right hand side of (5.10), we have
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4

(6.11) RIPM(TEE YV FUOR gjin=— 5.15

S2.
From (5.1) and (5.4), we have
(512) R]pl,LFpa(vkviFat>Rkjth

S . . S?
:é‘é(R]plth;ph‘l‘FpsztR]mthjzh‘}‘ 'é‘) .

Substituting (5.8) into the second term in the parenthesis of the right hand side
of (5.12), we have

‘ S/ 7
(5.13) RIPIRF 4(TET,F R 4 on= %(R“’”‘Rl,pmt 5—052) .

To obtain the integral formula (5.26), we define a tensor field L=(L ;i)
by

(5‘14) ka]ih:va kjih+ Tpktszm‘f‘ Tp]tRktih—}_sztR kjth+ TphtR kjit s

where T=(T;") is the tensor field defined by (4.12). We here compute the
square of the length ||L]| of the tensor field L, that is,

ILIP=Lppjon L
=(V,R 4 jun) VPR
F2(VPRYINT ' Ryjin+ Tpy R uvin+ T pi R ejon+ Tpn' R vjis)
-+ TPkuRujith kvRvjih+ TPivpR kuith]vR -
FTPRRIIT,R ot TR T R g
+2T?RER T, "R poin+TP**R T "R b0
+TPHR T R oot TP R* TR yon
TR T 0 R it TPHR* AT 0 R 4 i)
Thus we have
(5.15) ILIP=(VpR 1yin) VPR* ¥ +8(VPR*MT ) R g jun,
4T, Rosin TPHR ™
F4(TP R T, R 4oin+2TP**R T "R g yon) -

We now compute each of four terms appearing in the expression (5.15)
above. In the first step, we compute the second term of (5.15). From the de-
finition of 7T and the second Bianchi identity, we have

(G16)  (PRYMT, Ragin= oy (PRHWYFTENR o
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:—-ZI—(VkaPi”)(F,,“ViFu‘)Rkjm——21—(VJRP’””)(F,,“ViF,/)RkM
=—V*RIPMF,*VF )R yen)

+RIPI(VEF YV F QR pjon+ RIPF MV F R o -
Substituting (5.11) and (5.13) into the second term and the third term of the
right hand side of (5.16) respectively, we have
(5.17) (VPR¥MYT L R gy

; S o SP
= —vk(R’pm(FpuviFut)R kitn)— @(Rkjith“h_ B) .

In the second step, we compute the third term in the right hand side of
(5.15). By making use of (4.3) and (5.4), we have
(5.18) Tpi*Ryjin TPFR 7

_1

T Eo TaF YT E)R R

= L TESTE R R

-5

30

In the third step, we compute the forth term of the right hand side of
(5.15). By making use of (5.2) and (5.5), we have

Rkjih,Rkjih .

(5.19) Tpr¥Ryjin TPPRE M
= (P T F S FPUEIR R
S 2

- 12—0(RkjihR kjm_7_552+F”JFuka”ihR“jih> )

Substituting (5.9) into the last term in the parenthesis of the right hand side
of (5.19), we have
S

. in S°
(5.20) TpkuRuﬂthJkavm:__@(Rkjithnn__z_g) .

Similarly, by making use of (5.2), (5.4) and (5.5), we have
(5.21) TpiRyjin TPWR*,"

= L (P T F PPV E )R i RY

1
:Z(VaFku)(VaFlv)Rujith]vh
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S /4
:_m(é—s—sz—RujihR”uh—*_RujthqukleJvh) .
Substituting (5.6) into the last term in the parenthesis of the right hand side
of (5.21), we have
1
5-15%

Finally, substituting (5.17), (5.18), (5.20) and (5.22) into the right hand side
of (5.15), we have

(5.22) Tpi*Ruyin TPWR r=— S8,

(5.23) |LI*= (T, Rayin) V2R — 8TH(RIPM(F TP R )
25 kjih 52 25 kjin
— 52 (RusnRY™ =)+ 52 Rusun R

S wgin_ S0\ 85"
15<R esink? 25) 5-15?

—(V Rk'ih)qu i —83 (R“l (F 711 ut)Rk'Lh>
¥4 J ¥4 J
E kyih 5
_—(Rkjih.R J .__)‘

On the other hand, because of (4.4) and (5.4), (M, F, g) is an Einstein space
with positive scalar curvature. Thus, by Myers’ theorem, M is compact, and
the formula (2.1) implies in particular

52 Ty Ragin)TPRM 4= (R R = 2H7 i R
Substituting (5.24) into (5.23), we have

(5.25) L= ARy R~ 8TH R F TR )

S s
—‘ZHkapith“”—E<Rman’ h—‘ﬁ) .

From (5.25), by taking account of Green’s theorem, we have finally the integral
formula

S o S?
2 — . kjih > . kjth __ >
(5.26) [ JLiids=={ (207,500 R RuginRH "~ T2) )M,
where dM denotes the volume element of (M, F, g).

Proof of Theorem 5.1. If (M, F, g) satisfies the inequality

) S St
2Hpk]pith”h+1_5<Rkjith“h'—E)ZO ,

then, we see from (5.26) that L,,;;»=0 on M, and hence, the tensor field T
satisfies the condition (A) in Theorem 3.3. Consequently, from Lemma 4.3 and
Theorem 3.3, we have Theorem 5.1. Q.E.D.
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By direct computation, we have
S T S ji 1ol 1 SZ
(Rk}ih_%‘(g;igkh—gkzgjh)><Rk“h—éﬁ(g”gkh_gk gﬂ>>:Rk]ith] ’L—E .

Thus, from (5.26) and the above identity, if a 6-dimensional complete and non-
Kaehlerian K-space is simply connected and satisfies the condition (*), then it
is isometric with a 6-dimensional sphere S° in which the tensor fleld T defined
by (4.12) satisfies the conditions (A), (B) and (C) in Theorem 3.3. However, we
have other examples of K-spaces in which the tensor field T defined by (4.12)
satisfies the conditions (A), (B) and (C) in Theorem 3.3. The rest of this section
will be devoted to show the fact. Let M=G/K be a compact homogeneous
space with X(M)+0, where G is a compact simple Lie group acting effectively
on M and K is the isotropy subgroup at some point x&M. Then, X(M)=+0
implies rank G=rank K. We now assume that the Riemannian metric g of M
is determined by a biinvariant metric <{,> on G. Furthermore, we assume that
G admits an automorphism # of order 3 and K is the fixed point set of 4.
Since rank G=rank K, 6 is an inner automorphism (cf. [6], [24]). Then M=G/K
is a reductive homogeneous space. Let g=f-+m be the corresponding ortho-
gonal direct sum decomposition of ¢, where g and f are the Lie algebras of G
and K respectively. The subspace m can be naturally identified with the
tangent space at x=K<G/K. Let © be the automorphism of ¢ determined by
0. And we put @lm:—é—l—k%%F, where I denotes the identity. Then F':
m—m gives rise to a G-invariant almost complex structure (also denoted by F)
on M. This almost complex structure F is called the canonical almost complex
structure determined by 6. The almost complex structure F satisfies

(FX, FY>=<(X, V>
and

(5.27) [FX, Y]e=—F[X, Y., [X, Y1i=[FX FY],

for X, Yem (cf. [5], [24]). On the other hand, since (G/K, g) is a homogene-
ous Riemannian manifold, the Riemannian connection V of (G/K, g) is given at
x=K by the formula:

(5.28) 2VNyY, Z=—LX, Y, Z]w—<Y, [X, Z1w+<Z, [X, Y]w,

for X, Y, Z=m. Since <,y is biinvariant, (G/K, g) is naturally reductive with
respect to the decomposition g=t+mn, i.e., <X, [V, Z1.o+<LY, X1, Z>=0 holds
for X, Y, Zem, and furthermore, because of (5.28),

(5.29) VXYzé[X, Y, for X, Yem,
holds at x=K. Taking account of (5.27) and (5.29), we have at x=K
(5.30) (VNyF)Y=Vx(FY)—F{+Y)
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= 10X, FYJu— 3 FLX, ¥,
:—F[X: Y]m;

for X, Yem. Thus, (G/K, F, g) is a K-space (cf. [5], [24]). It is well known
that the curvature tensor R of (G/K, g) is given at x=K by the formula (cf.

[8) :
(30 ROY, V)Z=—[[X, Y1, Z1=5 (X, Y3, 20

F AL [V, 20040V, (X, Z0a,  for XV, Zem.

Now, let T be a G-invariant tensor field of type (1, 2) on M=G/K determined
by

(5.32) T(X, Y):%[X, Yin, for X, Yem.

Since (G/K, g) is naturally reductive, T is skew-symmetric. Taking account of
(5.30), we obtain at x=K

T(X, V)=1 [X, Y1,

=~ S F(FLX, Y1)

_—_%F(VXF)Y, for X, Yem.
Thus, the tensor field 7' coincides with the tensor field given by (4.12) and
hence, satisfies by Lemma 4.3 the conditions (B) and (C) in Theorem 3.3. Fur-
thermore, taking account of (5.29), (5.31) and (5.32), we can easily show that T
satisfies the condition (A) in Theorem 3.3. The following spaces are examples
of 6-dimensional compact, simply connected and non-Kaehlerian K-spaces (cf.

[5], [24]):
SUB)/SUM)xUQ)yxUl), SO0B)/UR2), G,/SUEB)=S".

§6. Some 4-dimensional F-spaces and H-spaces.

In [12], Sawaki and the present author proved that any F-space with non-
vanishing pointwise constant holomorphic sectional curvature is a Kaehlerian
space. On the other hand, in [21], Tricerri and Vanhecke gave an example of
non-Kaehlerian locally flat almost Hermitian manifolds of dimension 4. Obvi-
ously, any locally flat almost Hermitian manifold is an F-space. Therefore, it
might be interesting to give some sufficient conditions for an almost Hermitian
manifold to be Kaehlerian in terms of the curvature tensor and others. In
connection with this, we shall prove the following
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THEOREM 6.1. Let (M, F, g) be a 4-dimensional H-space satisfymng lhe condi-
twn (*). If the scalar curvature S of (M, F, g) 1s non-negatiwve on M, then
(M, F, g) 1s a Kaehlerian space.

Taking account of Theorem 3.1, Theorem 6.1 follows immediately from the
following

LEMMA 6.2. Let (M, F, g) be a 4-dimensional almost Hermuitian manifold
satisfying the condition (*). If the scalar curvature S of (M, F, g) 1s non-nega-
twe on M, then S=S* holds on M.

Proof. We now put By, =g(R(es, ¢,)e., ¢,), 1=k, j, 1, k=4, for an ortho-
normal basis (e,)=(e,, e, e;, ¢,) in T,(M) at each point x= M. Taking account
of the arguments developed in [15], at each point x=M, we may choose an
orthonormal basis (e,) in T,(M) in such a way that one of the following con-
ditions (I )-(@i), (I)-(ii), (I)-@i)’, (1)-(ii), (), (), (IV) and (V) holds:

(I)-(@) Big12=B\315=B1414=Bssps=Bs10,=DBj5,=—2/3  (2#0),

otherwise, B,,;» being zero, and 42=S;

(I)-(ii) Bis1:=DBi315s=—24/3, DBis15=Bsss:=DB111,=Bsss5=—1/6,
Bi333=2/3, Biss=—2/6, Bi=—2/6  (270),

otherwise, B,;,» being zero, and 41=S;

(1)-Giy Bio12=Ba13s=—22/3, Bis1s5=Bs1:=B111,=Baso5=—1/6,
Biyss=—2/3, Bi4s35=2/6, B,,=21/6  (2#0),

otherwise, B, being zero, and 42=S;

(I)-(iii) Bisis=Bg=—2  (A#0),

otherwise, B,;;», being zero, and 41=S;

() Bie=—4 Buu=—p  (A#p, 2, n#0),

otherwise, B;;;, being zero, and 2(A-+p)=S;

(Im) Bip1:=Bi315=Bsss=—21/2  (A#0),

otherwise, Bj.» being zero, and 31=S;

) Biyy=—2  (2=0),

otherwise, Bj;, being zero, and 21=S;

(V) Byin=0, 1<k, 5, 1, h=4.
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We now put f;=g(Fe,, ¢,), 1=<7,1=4. Then, taking account of g(Fe,, Fe,)=
g(e,, e,)=0,;, we have

0 f12 fl3 f14
"‘flz 0 "‘f14 f13
(6.1) (f1)= )
_f13 f14 0 —f12

—f14 _f13 flz 0

0 flz f13 f14
_fIZ 0 f14 _f13
(6.2) (fﬂ): )
_’fls ”_f14 0 f12

_fu f13 '—flz 0

or

VVhere (f12)2+(f13)2+(f14)2:1‘

We here consider eight cases (A)~(H) as followings. By the definition of S*,
we have

(63) —25*= X kfbaBbakakJ .

a,b,7,

(A) In the case (1)-(ii), we have from (6.3)
S*=—=2f12B1a12 fr2+ f12Buosa fsat F1sBusis [is+ f13Busea fos
+f1uBias frat f1aBuass fost FosBosia Frat fosBases fos
+fauBous frst foaBoass foat FsaBsars frot f3uBassa f10)
=—(22/3)2 [ 12 fost frs for— Fra Fos— A f12)" = (f1a)* = (f1)") -
Thus, when (/;,) has the form (6.1), we have

S*:4Z(f12)2 »
and hence

6.4) S*=S(/1).
When (f,,) has the form (6.2), we have

S*=42/3,
and hence

(6.5) S*=S5/3.
(B) In the case (1)-(ii)’, we have similarly

(6.6) S*=S/3,
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when (f;;) has the form (6.1), and
6.7) S*=S5(f12)*,
when (f;;) has the form (6.2).
(C) In the case (I)-(i), we have
(6.8) S*=(22/3)([12)*+(f16)*+(f1)*+([20)*+(fo)*+(f30))
=42/3=S/3.

(D) In the case (I )-(iii), we have

(6.9) SE=2A(f12)*+(f51))=WUD(/12)*
=S(/f12)".
(E) In the case (II), we have
(6.10) S*=20A(f 1)+ e [5))
=S(f12)?

(F) In the case (Il), we have
(6.11) S*=2=5/3.

(G) In the case (IV), we have

(6.12) S*=2(f12)=S(f12)" .

(H) In the case (V), it is evident that

(6.13) S*=S=0.

Taking account of (6.4)~(6.13), we can prove Lemma 6.2. Q.E.D.

Taking account of the arguments developed in the proof of Lemma 6.2, we
can prove the following Propositions 6.3 and 6.4.

PROPOSITION 6.3. Let (M, F,, go) be a Kaehlerian space of constant holomor-
phic sectional curvature ¢(>0) of complex dimension 2 and F be an almost complex
structure on M such that (M, F, g,) 1s an H-space. Then, F=F, or F=—F,.

Proof. From the hypothesis for (M, F, g,), at each point x=M, only the
case (I)-(ii)’ with 2=3¢/2 occurs with respect to any orthonormal basis (¢,)=
(e1, es=Fyes, 5, e,=Foe;) in T,(M). Since the scalar curvature of (M, F, g,) is
positive and constant on M, from Theorem 6.1, (F, g,) is a Kaehlerian struc-
ture on M. Thus, from Theorem 3.1, and (6.6), (6.7), we have finally
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Fe,=ey=Fge,, Fe;=e,=Fye,,
or
Fe,=—e¢,=—Fy,, Fe;=—e,=——Fye,. Q.E.D.

PROPOSITION 6.4. Let (M, F,, go) be a Kaehlerian space of constant holomor-
phic sectional curvature ¢ (#0) and F be an almost complex structure on M such
that (M, F, g,) 1s an F-space. Then, F=F, or F=—F,.

Proof. In general, in an F-space (M, F, g), from (3.3) and (3.4), it follows
that S=S*. Thus, taking account of (6.6) and (6.7), we have finally

Fe’_:eg—_—Foel, F23224:F083}

or
Fe,=—e,=—Fye,, Fey=—e,=—Fe,. Q.E.D.
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