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ON A CERTAIN HYPERSURFACES OF R?"+
By YosHIO MATSUYAMA

Introduction

It is a well-known theorem of Reeb (See [3], p. 25) that if a compact differ-
entiable n-manifold M admits a Morse function with exactly two critical points,
then M is a topological sphere.

Recently, Nomizu and Rodriguez [4] showed the following results as their
geometric nature: Let M be a connected Riemannian n(n=2)-manifold isomet-
rically immersed in a Euclidean m-space R™ and f its isometric immersion. Put
L,(x)=0d(f(x), p))* for pe R™, x= M, where d is the Euclidean distance function.
(a) If M is complete, and there exists a dense subset D of R™ such that every
function of the form L,, pD, has index 0 or n at any of its nondegenerate
critical points, then M 1is totally umbilical in R™, i.e., M is isometric to a
Euclidean n-subspace or a Euclidean n-sphere in R™. (b) If M is compact, and
there exists a dense subset D of R™ such that every function of the form L,
peD, has exactly two critical points, then M is isometric to a Euclidean n-

sphere.
In the present paper we shall prove the following result.

THEOREM. Let M be a connected, complete Riemannian 2m (m=2)-manifold
wsometrically immersed wn R*™*' with constant mean curvature. If there exists a
dense subset D of R*™*! such that every function of the form L,, p€ D, has index
0, m or 2m at any of its nondegenerate critical points, then M 1s 1sometric to a
Euclidean 2m-subspace R*™, a FEuclidean 2m-sphere S*™ in R®*™*! or the product
R™XS™ of an m-subspace R™ of R*™*' and a sphere S™ wn the Euclidean subspace

perpendicular to R™.

When we consider the problem similar to (b) to obtain a result that M is
isometric to S*™ or R™XS™, it seems to be the natural condition that M is com-
plete and there exists a dense subset D of R®*™*! such that every function of
the form L,, p=D, has two critical points ([1], pp. 714-715).

1. Preliminaries

Let f be an isometric immersion of a connected Riemannian n-manifold M
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into ™. Any point of the normal bundle N(M) of M is denoted by (x, t&),
where x€ M, t€ R* and & is a unit vector in Ti(M), the normal space to M at
f(x). Let F be a differentiable mapping of N(M) in R™ given by F(x, t§)=f(x)
+1&.

DEFINITION. A point peR™ is called a focal pownt of M if p=F(x, t),
where (x, t§) is a point of N(M) where the Jacobian Fy, of F is degenerate.
In this case, we also say that p is a focal point of (M, x).

Let I denote the identity transformation of the tangent space 7T .(M) and
A. the symmetric endomorphism of T,(M) corresponding to the second funda-
mental form of M at x in the direction of & Then we have

LEMMA 1 (Nomizu and Rodriguez). A pownt p=F(x, t&), where (x, t§)c N(M),
15 a focal pownt of (M, x) 1f and only 1f the endomorphism [—tA: on T (M) 1s
degenerate.

Now, let p&€ R™ and consider the function L,(x)=(d(f(x), p))* on M. Then

LeMMA 2 (Nomizu and Rodriguez). L, has a critical pownt x 1f and only 1f
p can be expressed as F(x, t§), where & 1s a umt vector m TH(M). In this case,
the Hessian H of L, at x, which 1s a bilinear symmetric function on T ,(M)X
T (M), 1s gwen by

HX, Y)=2€(I-tA)X, Y>, X, YeT, (M),

where <,> 1s the wmner product on T (M) wnduced from the Euclidean metric in
R™ through f.

Hence we see that x is a degenerate critical point of L, if and only if p
is a focal point of (M, x) and that index of L,, p=F(x, t£), at a non-degenerate
critical point x equals the number of eigenvalues of A which are larger than
1/t, counting multiplicities.

2. Proof of Theorem

We remark that Theorem is an immediate consequence of the following
lemma (See [2], [5]).

LEMMA 3. Let M be a connected (not necessarily complete) Riemanman
2m(m=1)-manifold 1sometrically wmmersed n R*™*' (not also necessarily having
constant mean curvature). Under the assumption of Theorem, the second junda-
mental form A of M has at most two distinct eigenvalues at each point.

Proof. Let x&M and £ be a field of unit normal vectors. Suppose A(=A;)
has a non-zero eigenvalue, say a. We may assume that a>0, because if a<0,
then A_; has —a>0 as eigenvalue.

Assuming thus that a is the largest positive eigenvalue of A take ¢;>0 such
that 1/a<t,<1/b, where b is the next largest positive eigenvalue if any (if a
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is the only positive eigenvalue, just consider 1/a<t,). Then p=F(x, t,§) is not
a focal point of (4, x) and the function L, has x as a nondegenerate critical
point. The index at x is equal to the multiplicity, say k&, of the eigenvalue a.
If pe€D, k=m or 2m, since k cannot be 0. Now p may not belong to D. By
denseness of D, however, we know that there exists a point gD such that
L, has y as a nondegenerate critical point of index k (¢ and y may be chosen
as close to p and x, respectively, as we want). Thus we may conclude that
k=m or 2m.

Now if k=2m, then a is an eigenvalue of A with multiplicity 2m so that
x is umbilic. Suppose then that k=m. The following two subcases should be
discussed :

(i) There exist positive eigenvalues of A other than a.

(ii) A negative of (i).

(i) Assuming that b is the next largest positive eigenvalue of A, take t,>0
such that 1/a<t,<1/b<t,<1/c, where ¢ is the third largest positive eigenvalue
if any (if @ and b are the only positive eigenvalues, just consider 1/a<t,<1/b
<t,). By the same argument as above, p,=F(x, {,§) is not a focal point of
(M, x) and the function L, has x as a nondegenerate critical point of index 2m.
Thus multiplicity of b is m.

(ii) If there exist non-zero eigenvalues of A other than a, then let b be the
smallest eigenvalue of A. Noting that —b is the largest positive eigenvalue
of A take #,>0 such that 1/—b<t,<1/—c¢, where ¢ is the next smallest
eigenvalue of A if any (if b is the only negative eigenvalue of A, just consider
1/—b<t,). By the same argument as above, p,=F(x, {,(—§)) is also not a focal
point of (M, x) and the function L,, has x as a nondegenerate critical point of
index m. Thus multiplicity of b is also m.

Therefore A has at most two distinct eigenvalues at each point.
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