ON A CERTAIN HYPERSURFACES OF R^{2m+1}

By Yoshio Matsuyama

Introduction

It is a well-known theorem of Reeb (See [3], p. 25) that if a compact differentiable n-manifold M admits a Morse function with exactly two critical points, then M is a topological sphere.

Recently, Nomizu and Rodriguez [4] showed the following results as their geometric nature: Let M be a connected Riemannian $n(n \ge 2)$ -manifold isometrically immersed in a Euclidean m-space R^m and f its isometric immersion. Put $L_p(x)=(d(f(x), p))^2$ for $p \in R^m$, $x \in M$, where d is the Euclidean distance function. (a) If M is complete, and there exists a dense subset D of R^m such that every function of the form L_p , $p \in D$, has index 0 or n at any of its nondegenerate critical points, then M is totally umbilical in R^m , i.e., M is isometric to a Euclidean n-subspace or a Euclidean n-sphere in R^m . (b) If M is compact, and there exists a dense subset D of R^m such that every function of the form L_p , $p \in D$, has exactly two critical points, then M is isometric to a Euclidean n-sphere.

In the present paper we shall prove the following result.

THEOREM. Let M be a connected, complete Riemannian 2m $(m \ge 2)$ -manifold isometrically immersed in R^{2m+1} with constant mean curvature. If there exists a dense subset D of R^{2m+1} such that every function of the form L_p , $p \in D$, has index 0, m or 2m at any of its nondegenerate critical points, then M is isometric to a Euclidean 2m-subspace R^{2m} , a Euclidean 2m-sphere S^{2m} in R^{2m+1} or the product $R^m \times S^m$ of an m-subspace R^m of R^{2m+1} and a sphere S^m in the Euclidean subspace perpendicular to R^m .

When we consider the problem similar to (b) to obtain a result that M is isometric to S^{2m} or $\mathbb{R}^m \times S^m$, it seems to be the natural condition that M is complete and there exists a dense subset D of \mathbb{R}^{2m+1} such that every function of the form L_p , $p \in D$, has two critical points ([1], pp. 714-715).

1. Preliminaries

Let f be an isometric immersion of a connected Riemannian n-manifold M

Received February 7, 1978

into \mathbb{R}^m . Any point of the normal bundle N(M) of M is denoted by $(x, t\xi)$, where $x \in M$, $t \in \mathbb{R}^1$ and ξ is a unit vector in $T_x^{\perp}(M)$, the normal space to M at f(x). Let F be a differentiable mapping of N(M) in \mathbb{R}^m given by $F(x, t\xi) = f(x) + t\xi$.

DEFINITION. A point $p \in \mathbb{R}^m$ is called a *focal point* of M if $p=F(x, t\xi)$, where $(x, t\xi)$ is a point of N(M) where the Jacobian F_* of F is degenerate. In this case, we also say that p is a focal point of (M, x).

Let I denote the identity transformation of the tangent space $T_x(M)$ and A_{ξ} the symmetric endomorphism of $T_x(M)$ corresponding to the second fundamental form of M at x in the direction of ξ . Then we have

LEMMA 1 (Nomizu and Rodriguez). A point $p=F(x, t\xi)$, where $(x, t\xi) \in N(M)$, is a focal point of (M, x) if and only if the endomorphism $I-tA_{\xi}$ on $T_x(M)$ is degenerate.

Now, let $p \in \mathbb{R}^m$ and consider the function $L_p(x) = (d(f(x), p))^2$ on M. Then

LEMMA 2 (Nomizu and Rodriguez). L_p has a critical point x if and only if p can be expressed as $F(x, t\xi)$, where ξ is a unit vector in $T_x^{\perp}(M)$. In this case, the Hessian H of L_p at x, which is a bilinear symmetric function on $T_x(M) \times T_x(M)$, is given by

$$H(X, Y) = 2 \langle (I - tA_{\varepsilon})X, Y \rangle, \qquad X, Y \in T_{x}(M),$$

where \langle , \rangle is the inner product on $T_x(M)$ induced from the Euclidean metric in \mathbb{R}^m through f.

Hence we see that x is a degenerate critical point of L_p if and only if p is a focal point of (M, x) and that index of L_p , $p=F(x, t\xi)$, at a non-degenerate critical point x equals the number of eigenvalues of A_{ξ} which are larger than 1/t, counting multiplicities.

2. Proof of Theorem

We remark that Theorem is an immediate consequence of the following lemma (See [2], [5]).

LEMMA 3. Let M be a connected (not necessarily complete) Riemannian $2m(m \ge 1)$ -manifold isometrically immersed in R^{2m+1} (not also necessarily having constant mean curvature). Under the assumption of Theorem, the second fundamental form A of M has at most two distinct eigenvalues at each point.

Proof. Let $x \in M$ and ξ be a field of unit normal vectors. Suppose $A(=A_{\xi})$ has a non-zero eigenvalue, say a. We may assume that a > 0, because if a < 0, then $A_{-\xi}$ has -a > 0 as eigenvalue.

Assuming thus that a is the largest positive eigenvalue of A take $t_1 > 0$ such that $1/a < t_1 < 1/b$, where b is the next largest positive eigenvalue if any (if a

YOSHIO MATSUYAMA

is the only positive eigenvalue, just consider $1/a < t_1$. Then $p = F(x, t_1\xi)$ is not a focal point of (M, x) and the function L_p has x as a nondegenerate critical point. The index at x is equal to the multiplicity, say k, of the eigenvalue a. If $p \in D$, k = m or 2m, since k cannot be 0. Now p may not belong to D. By denseness of D, however, we know that there exists a point $q \in D$ such that L_q has y as a nondegenerate critical point of index k (q and y may be chosen as close to p and x, respectively, as we want). Thus we may conclude that k=m or 2m.

Now if k=2m, then a is an eigenvalue of A with multiplicity 2m so that x is umbilic. Suppose then that k=m. The following two subcases should be discussed:

- (i) There exist positive eigenvalues of A other than a.
- (ii) A negative of (i).

(i) Assuming that b is the next largest positive eigenvalue of A, take $t_2 > 0$ such that $1/a < t_1 < 1/b < t_2 < 1/c$, where c is the third largest positive eigenvalue if any (if a and b are the only positive eigenvalues, just consider $1/a < t_1 < 1/b < t_2$). By the same argument as above, $p_1 = F(x, t_2 \xi)$ is not a focal point of (M, x) and the function L_{p_1} has x as a nondegenerate critical point of index 2m. Thus multiplicity of b is m.

(ii) If there exist non-zero eigenvalues of A other than a, then let b be the smallest eigenvalue of A. Noting that -b is the largest positive eigenvalue of $A_{-\xi}$, take $t_2 > 0$ such that $1/-b < t_2 < 1/-c$, where c is the next smallest eigenvalue of A if any (if b is the only negative eigenvalue of A, just consider $1/-b < t_2$). By the same argument as above, $p_2 = F(x, t_2(-\xi))$ is also not a focal point of (M, x) and the function L_{p_2} has x as a nondegenerate critical point of index m. Thus multiplicity of b is also m.

Therefore A has at most two distinct eigenvalues at each point.

References

- S. CARTER AND A. WEST, Tight and taut immersions, Proc. London Math. Soc. 25 (1972), 701 720.
- [2] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Vol. 2, Interscience, New York, 1969.
- [3] J. MILNOR, Morse theory, Ann. of Math. Studies, No. 51, Princeton University press, Princeton 1963.
- [4] K. NOMIZU AND L. RODRIGUEZ, Umbilical submanifolds and Morse functions, Nagoya Math. J. 48 (1972), 197-201.
- [5] P.J. RYAN, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J. 21 (1969), 363-388.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ENGINEERING CHUO UNIVERSITY

274