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ANTI-INVARIANT SUBMANIFOLDS OF A
SASAKIAN SPACE FORM

By IKUO ISHIHARA

§1. Introduction.

In a previous paper [8] we studied anti-invariant submanifolds in a Kidhler
manifold, especially in a complex space form. In the present paper we shall
study anti-invariant submanifolds of a Sasakian manifold, especially those of a
Sasakian space form, in the same way as taken in [8].

An (n-+1)-dimensional Riemannian manifold M isometrically immersed in a
(2m~+1)-dimensional Sasakian manifold M with structure tensors (¢, &, 1, 8) is
said to be anti-invariant (resp. invariant) if ¢7T ,(M)CT ,(M)* (resp. ¢T ,(M)C
T,(M)) for each point p of M, where T,(M) and T ,(M)* denote respectively the
tangent and the normal spaces to M at p. Thus in an anti-invariant submanifold
¢X is normal to M for any vector X tangent to M. Since ¢ is necessarily of
rank 2m, we have n=<(2m+1)—(n-+1) which implies n<m. In the present paper,
we assume that for any anti-invriant submanifold M we consider the structure
vector field & of the ambient manifold is tangent to M everywhere.

When for an anti-invariant submanifold M the structure vector field & of
the ambient manifold M is tangent to M, then each of the following assump-
tions (a), (b), (c) is not meaningful: (a) the second fundamental form is parallel;
(b) the mean curvature vector is parallel; (¢) the connection induced in the
normal bundle is flat. So, in the present paper, we shall replace the assump-
tions (a), (b), (c) respectively by new but rather weaker assumptions (a’), (b’),
(¢’) as follows: (a’) the second fundamental form is pseudo-parallel; (b’) the mean
curvature vector is pseudo-parallel; (c¢’) the connection induced in the normal
bundle is pseudo-flat (see Lemmas 3.2, 3.3 and 4.1).

§2. Sasakian manifolds.

First, we would like to recall definitions and some fundamental properties
of Sasakian manifolds. Let M be a (2m-1)-dimensional differentiable manifold
of class C* and ¢, &, 7 be a tensor field of type (1,1), a vector field, a 1-form
on M respectively such that
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2.0 PP =—I+nQE, ¢£=0, n(@X)=0, =1

for any vector field X on M, where I denotes the identity tensor of type (1, 1).
Then M is said to admit an almost contact structure (@, €, ») and called an
almost contact manifold. The almost contact structure is said to be normal if

(2.2) N+dyp®E=0,

where N denotes the Nijenhuis tensor formed with ¢. If there is given in M
a Riemannian metric g satisfying

(2.3) 23X, ¢Y)=8(X, Y)—n(X)n(Y), 9(X)=2&(X, &)

for any vector fields X and Y on M, then the set (¢, &, 7, 8) is called a almost
contact metric structure and M an almost contact metric manifold. If

(24) dn(X, Y)=2(¢X, Y)

for any vector fields X and Y an M, then the almost contact metric structure
is called a contact metric structure. If the structure is moreover normal, then
the contact metric structure is called a Sasakwan structure and M a Sasakian
manifold. As is well known, in a Sasakian manifold M with structure (6, & 71,8

(2.5) Veé=9X, (Uxp)V=—E(X, V)E+9(V)X

are established for any vector fields X and Y on M, where ¥V denotes the
operator of covariant differentiantion with respect to 2.

A plane section ¢ in the tangent space T,(M) of a Sasakian manifold M at
p is called a ¢-section if it is spanned by vectors X and ¢X, where X is as-
sumed to be orthogonal to §&. The sectional curvature K(¢) with respect to a
¢-section ¢ is called a ¢-sectional curvature. When the ¢-sectional curvature
K(o) is independent of the ¢-section ¢ at each point of M, as is well known,
the function K (o) defined in M is necessarily a constant ¢. A Sasakian manifold
M is called a Sasakian space form and denoted by M(c) if it has constant o-
sectional curvature ¢ (see [4]). The curvature tensor K of a Sasakian space
form M(c) is given by

K(X, V)Z=(c+3@Y, DX-8(X, DY)~ e~ DX @)X
—g XDV +2(Y, Zyp(XE~(X, Zyn(V)E
—2(pY, PX+EGX, DY +22(HX, V)2).
ExAaMPLE 1. Let S*"*! be a (2n+1)-dimensional unit sphere, i.e.,
SHi= (e O+ |z =1},

where C"*! is a complex (n+1)-space. For any point z=S***!, we put £=Jz, |
being the complex structure of C"*'. Considering the orthogonal projection
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T TZ(Cn+1> - T2(82n+1> B

at each point z in S*"*!' and putting ¢=r=-/, we have a Sasakian structure
(¢, &, n, g) on S***! where 7 is a 1-form dual to & and g the standard metric
tensor field on S***'. Obviously, S***! is of constant ¢-sectional curvature 1.

EXAMPLE 2. Let E?"*! be a Euclidean space with cartesian coordinates
x%, -+, x®, y1, --, 9" z). Then a Sasakian structure on FE?***! is defined by

, & 7 and g such that

—~

SZ(O: ) O’ 2)’ 277:(_311’ ty, “yn, 0’ ) 0) l);
1 1
"4‘(5114')113/’) 0 _'4_yl
1
(gAB): O Z5u 0 )
1 1
0T
0 & 0
wh={ 0 0 0
0 » 0

Then E*"*!' with such a structure (¢, &, 5, g) is of constant ¢-sectional curvature
—3 and denoted by E?"*(—3).

§3. Fundamental properties of anti-invariant submanifolds.

Let M be a Sasakian manifold of dimension 2m-+1 with structure tensors
(@, ,& 7, 2. An (n+1)-dimensional Riemannian manifold M isometrically im-
mersed in M is said to be anti-invariant in M if ¢T ,(M)CT,(M)* for each
point p of M. Throughout the paper, we now restrict ourselves only to anti-
invariant submanifolds of a Sasakian manifold such that the structure vector
field & of the ambient manifold is tangent to the submanifolds.

We choose a local field of orthonormal frames e¢,=¢, e1, -, €4} €ns1, ***» €m }
ep=@e;, =, Cp=0Cy ; Cins1»=PCpnt1, **, Cpr=@e, In M in such a way that
ey, €1, =+, ¢, are along M tangent to M. Taking such a field of frames of M,
we denote the dual coframes by o'=7p, ', -+, &"; @™, -+, @™; 0", -+, ®™;
o™ .. @™, Unless otherwise stated, let the ranges of indices be as follows:

A, B,C, D=0,1, -+, m, 1* - m*

1, 7, By 1, s,1=0,1, -+, n,

x, ¥, z, v, w=1, -+, n,

a, b, ¢, d=n—+1, ---, m, 1*, -~ m*,

a, B, r=n+1, ---, m,

Ay, v=n+1, -, m, (n+1)%, -, m*,
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and use the so-called summation convention for these systems of indices. Then
the structure equations of the Riemannian manifold M are given by

(3.1 do*=—wiNo®, o0it+wi=0,
3.2) dap=—wi N+ 04, Q)gz—;—KgCDwC/\wD,

where K#.,p are components of the curvature tensor of M with respect to {e,}
and wj satisfy

o . T e o
W=y, wy =¥, w*=w; , 0¥ =—wy,

(3.3 wi=wi, o=, o=, 0T=—of,
wr=wis, wr =t .

Thus we have along M
(34) =0,

which implies 0=dw®=—w] Aw* alng M. Thus, by Cartan’s lemma, we obtain
along M

3.5) w;="he’, h%;=hj:,

which imply the following structure equations of the submanifold M:

(3.6) do'=—wi o', oj+o}=0,
3.7 do,(=—w,Not+27, Q}:%R;Mw”/\w‘,
(3.8) Riu=Kjut+Z (hiyhhi—hihf)
(3.9 doj=—0iNw;+27, Qz";:%RZkzwk/\w‘ ,
(3.10) R,Q‘kl:Kg’kl—I—?(h?kh’él—h‘hh?k) ,

where R}, are components of the curvature tensor of M with respect to {e;}
and RY,, components of the curvature tensor of the normal bundle with respect
to {e;} and {e,}. The equations (3.8) and (3.10) are called respectively the
equations of Gauss and those of Ricci for the submanifold M. The forms (w})
define the Riemannian connection of M and the forms (w§) define the connection
induced in the normal bundle of M.

We now state a lemma for later use.

LEMMA 3.1. (Yano and Kon [6]) _Lez‘ M be an (n—+1)-dimensional anti-invariant
submanifold of a Sasakian manifold M*™*'. Then the structure vector field & is
parallel along M and M 1is locally a Riemannian direct product M™XM?*, where
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M?™ 1s an n-dimensional Riemanmian manifold and M* 1s a 1-dimensional subspace
generated by §.

From (3.3), (3.4) and (3.5) we have along M
(3'11) h?z:h%z:hiy ’ hé'L:O ’ hfozza.rt ’

where we denote A7, simply by A7,

The second fundamental form A%w'w’e, is sometimes denoted by its com-
ponents Af,. When the second fundamental form vanishes identically, i.e., A%,=0
for all indices, the submanifold is as usual said to be totally geodesic. 1f h%,

have the form hf:y:i(z h&)o., for a fixed index a, then the submanifold is
n = Y

said to be contact umbilical with respect to the normal vector e¢,. If the sub-
manifold M is contact umbilical with respect to all ¢,, then M is said to be

contact totally umbilical (see [2]). The vector field -n—_’l_T(g hie,) normal to M

is called the mean curvature vector of M. The submanifold M is said to be
mimimal if its mean curvature vector vanishes identically, i.e., Zk‘, hi=0 for all

a. We define the covariant derivative hy;, of AY, by
(3.12) hEwt=dhl,—hhwh—hiwi+h?wf.

If h¢;,=0 for all indices, the second fundamental form of M is said to be
parallel. 1f the mean curvature vector of M is parallel with respect to the con-
nection D induced in the normal bundle, then the mean curvature vector of M
is said to be parallel. The Laplacian 4h¢, of hY, is defined as

(3.13) Ah?j:§ h(LIjIzk s
where we have defined A}, by
(3.14) h?,;kza)l:dhfjlz“thLkwf_h(fzkwé_h?ﬂwi»‘]'hlfjkwg-

We shall establish a formula containing the Laplacian of A4f,. Now, the
second fundamental form of M is assumed to satisfy equations of Codazzi type,
i.e.,

(3.15) hie—hi,,=0.

Then, from (3.14), we have

(3.16) hp—hE=hE R+ R Ry —hY R,
On the other hand, (3.13) and (3.15) imply

(3.17) Ahgj:§ hf‘jkkzzk‘: NTS
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From (3.15), (3.16) and (3.17), we obtain
(3.18) Ah?]:kz(h,?,”,—khztRf,-k+h?1R,i]k—h21R3jk).

Therefore for any submanifold M satisfying the equation (3.15) of Codazzi type
we have the formula

(3-19) > h;lehu: Zk(hgjhgku_'_h?jh%LRijk
a.1,) a. .7,
+hiht Ry j—hih. R
We are now going to prove some lemmas for later use. From (3.3), (3.11)
and (3.12), we have

(3.20) He=—hy,  hG=hy,  hip=0,

(321 D (= E (A3 X (RL),
a, 1,0, k a,r,y,z2 A,z,y

(3-22) > h;ljhgklj: > hﬁjhi’m—E(Z htk)z .
a1, 7, k a,x,). k A k

Thus, we have from (3.20)

LEMMA 3.2. Le_t_ M be an (n+1)-dimensional anti-invarant submanifold of a
Sasakian manifold M?*™*'. If the second fundamental form of M 1s parallel, then
h?,=0 for all 2.

Using (3.20), we obtain
(3.23) D hGe=—2 R, XD hT=2ZhY,
which imply

LEMMA 3.3. Let_M be an (n+1)-dimensional anti-invarant submanifold of a
Sasakian manifold M*™*'. If the mean curvature vector of M 1s parallel, then
> ht=0 for all A

When m>n, Lemmas 3.2 and 3.3 show that the conditions that the second
fundamental form is parallel and that the mean curvature vector is parallel
are not meaningful for anti-invariant submanifolds. Therefore we shall now
introduce some new concepts as follows. On an anti-invariant submanifold M
of a Sasakian manifold M@m™+ if h$,.=0 for all indices a, x, ¥ and z, then we
say that the second fundamental form of M is pseudo-parallel. If > h%.=0 for

all indices a and x, then the mean curvature vector said to be pseudo-parallel.
If the ambient manifold M*™*! is of constant ¢-sectional curvature ¢, then
the Riemannian curvature tensor of M?*™*! has the form

1 1
(3.24) Kfep= s (c+3)04cO0pp—04005c)+ T (c—=D(%anclap
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- 773771)5,40 + 7}A77D550 - 77A770530+¢AC¢BD
_¢AD¢BC +2¢AB¢CD) 5

and the second fundamental form of M satisfies the equation (3.15) of Codazzi
type.

§4. The connection D in the normal bundle.

In this section we study the connection D induced in the normal bundle to
an (n+1)-dimensional anti-invariant submanifold M of a (2m-+1)-dimensional
Sasakian space form AM®*™*! (c) when the structure vector field € is tangent to M.

First of all, by (3.24) we obtain

(4-1) Kﬁ*kzzo, Kf‘u:O, Kfsz:O;
. 1
K;‘kl:Z(Cﬁl)(axkayl—axlay k) .

From (3.10), (3.11) and (4.1), we have
(4.2) R4, ,=hi,, Ri%,,=0.

The connection D induced in the normal bundle to M is said to be flat if RE,,=0
for all indices. Thus we have from (3.11) and (4.2)

LEMMA 4.1. Let ]Vi' be an (n+1)-demensional anti-invariant submanifold of a
Sassakwan space form M®*™*' (c). If the connection D 1s flat then h’;=0.

When m>n, Lemma 4.1 shows that the condition that the connection D is
flat is not meaningful for anti-invariant submanifolds of a Sasakian space form.
Therefore the pseudo-flatness of D will be introduced as follows. On an anti-
invariant submanifold M of a Sasakian manifold M?2™*! the connection D is said

to be pseudo-flat if Rf,,=0 for all indices.

LEMMA 4.2. Let M be an (n-+1)-dimensional anti-invariant submanifold of a
Sasakian manifold M*™+'. If the connection D 1s pseudo-fiat then

4.3) R;“”:zx: (hd,hlw—hiuhi,) .
Proof. (3.2) and (3.3) imply
4.4) K =K%, —(02:0 )0 —0z00y:) .
Moreover, from (3.8), (3.10) and (3.11), we obtain
(4.5) R;zw:K;"szr%‘, (h&,h8w—h%why,)
= K0 —(02:0y0 =000y + 2 (hihl—hichi)
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:R;I,w—l—;, (R4, hdw—hiuhe.) .
This completes the proof.
From (3.3) and (3.8), we have
(4.6) jok:() .
Thus Lemmas 4.1 and 4.2 imply immediately

COROLLARY 4.3. Let A{ be an (n+1)-dimensional anti-invarnant submanifold
of a Sasakian space form M?™*' (¢). If the connection D 1s flat, then M 1s flat.

If the connection D is pseudo-flat, then (3.10) and (4.1) imply

) 1
Moreover, using (3.11), we have
1

PROPOSITION 4.4. Let M be an (n+1)-dimensional (n>1) anti-invariant sub-
manifold of a Sasakian space form M?™**(¢) and the connection D wnduced wn the
normal bundle to M be pseudo-flat. Then, 1f M 1s contact umbilical with respect
to ey for some windex v, then ¢c=-—3.

Proof. 1f M is contact umbilical with respect to e,, then i3, is of the form
1
h};y:;(z h%)0.,. Moreover, using (3.11), we have
2 (hl;zh?y_h?y ’7-1&):5010“1011_501/5109: .

From this and (4.8) we find ¢c=—3.

For each index a, the second fundamental form will be represented by a
symmetric (n+1, n+1)-matrix A,=(h%) composed of its components. Following
such notations, we have from (3.11)

x
0 " 0---010--0
0
Ap= 0 H,. , for all «x,
x| 1
0
0 |
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H; , for all 4,

where H,=(h%,) are symmetric (n, n)-matrices.

LEMMA 4.5. Let M_be an (n+1)-dimensional anti-invariant submanifold of a
Sasakian space form M*™*'(c) (¢c#—3). If the connection D 1s pseudo-flat, then
M is contact umbilical with vespect to all e;.

Proof. From (4.9) we obtain H;H,=H,H; and H;H,=H,H, for all 2 and p.
Therefore we can choose a local field of orthonormal frames with respect to
which H; and all H; are simultaneously diagonal i.e.,

(01 00, 00 - 0
| 1|kl 0| ik
. [ .
@11) A= 0 : , A=
[o R 0 R

Putting x=1 and v=y in the first equation of (4.9) and using (3.11) and (4.11),
we find

(4.12) (hti—h})hy,=0.

On the other hand, putting v=x=1 and w=y#1 in (4.10) and using (3.11) and
(4.11), we have

1
(4.13) (hts—hyhyy=——(c+3).

Since c¢#—3, (4.13) implies hl,#0 (y=2, ---, n). From this fact and (4.12) we
find that h},=h}, for all . Thus M is contact umbilical with respect to all e;.
This proves Lemma 4.5.

LEMMA 4.6. Let 11/[ be an (n+1)-dimensional anti-invariant submanifold of a
Sasakiwan space form M?*™**(c) (c#—3). If the connection D 1s pseudo-flat, then

1 o
(4-14) R;zw: —nz—; (Tr A2>2(5x25yw_01‘w5yz) .

Proof. Lemma 4.5 implies h}cy:%(’l‘r A;)0,, for all 2. Therefore (4.3) im-
plies (4.14).

PROPOSITION 4.7. Let M be an (n+1)-dimensional (n=3) anti-invariant sub-
manifold of a Sasakian space form M+ (c) (c#—3). If the connection D nduced
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wn the norvimal bundle to M 1s pseudo-flat, then M 1s locally a Riemanman direct
product M™XM?*, where M™ 1s of constant curvature, and M* 1s a 1-dimensional
subspace generated by &.

Proof. Since n=3, (4.14) implies that %}(Tr A,)? is constant. Therefore

Proposition 4.7 is proved by means of Lemma 3.1.
If M 1s minimal, then Tr A;=0 for all . Thus Lemma 4.5 and (4.2) imply

immediately

PROPOSITION 4.8. Let M be an (_n—I—l)-dimenswnal anti-invariant minunal sub-
manifold of a Sasakian space form M?*™*'(c) (c+—3). Then the connection D n-
duced wn the normal bundle to M 1s flat 1f and only 1f the connection D 1s pseudo-

flat.

Moreover, Corollary 4.3 and Proposition 4.8 imply immediately

COROLLARY 4.9. Let M be an (n_—|—l)-dimenszonal anti-invariant mimmal sub-
manifold of a Sasakian space form M?*™**(c) (c#—3). If the connection D induced
in the normal bundle to M 1s pseudo-flat, then M 1s flat.

§5. Pseudo-parallel mean curvature vector.
Using the results obtain in the previous section, we have

THEOREM 1. Let M be an (n+1)-dimensional (n=3) anti-invariant submanifold
of a Sasakwan space form M2™*'(c) (c#—3) with pseudo-parallel mean curvature
vector. If the connection D wnduced wn the normal bundle to M 1s pseudo-flat,
then there 15 m M®*™*1(¢) a totally geodesic and wmvariant submanifold M®**(c)
of dimension 2n+1 wm such a way that M 1s immersed wn M****(c) as a flat anti-
invarant submanifold.

Proof. (3.23) implies that X (Tr A,)? is constant because the mean curvature

vector is pseudo-parallel. Since n=3, (4.14) implies that Zl]('l‘r A;)? is constant.
On the other hand, from (3.8), (3.24) and (4.14), we have

n—I1
n

(GRY) %} (Tr A;)zzi—n(n—l)(c—{—?’)—{— %} (Tr A~ Zx) (h&,)2.

a,z,y

Moreover, using (3.11), we find that the square of the length of the second
fundamental form of M is constant, i.e., > (h%)* is constaant. From this we
a,t, )

have

1
(5.2) > (h?_,;k)z%—a%}}h;’jd}zg:?da‘ljj (h%)2=0.

a,1.).k

On the other hand the mean curvature vector is pseudo-parallel and the connec-
tion D is pseudo-flat. Thus (3.11), (3.19), (3.22) and (4.6) imply
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(6.3 2 hidhl=—=3(Tr A+ 3 hihiRy.
a,1,J ) : A a, Ty, z, w

+ 2 h?zhg'nRZzy'—z Z hg‘yR?r‘yO .
a.z,y

a1, z,y. 2

Moreover, substituting (4.14) into (5.3), we obtain by using (3.11) and (5.2),

(5.4) T tay=—

a9k n®

2(Tr AN X (n(hty) —hiehg,)—n)
a, T,y

+2, 3 (),

A zy

from which
1 2 2
(5.5) . IZ’?)M (hzyz)?:_—n; ; (Tr A1)~(I§Z(n(h;y)z_m,h;y))

1
=—— 2 (Tr A Z (X (hiw—h3) + 2 (h3)"),
n i z Ty TFy
by means of Lemma 4.5 and (3.21).
Since ¢+ —3 by assumption, Proposition 4.4 implies >} (h%,—Ah},)*>0. Thus
2y

(5.5) implies Tr A;=0 for all 2 which mean that A,;=0 for all . And from (5.5)
we see that £%,,=0, i.e., that the second fundamental form of M is pseudo-
parallel. Since A;=0 for all 2, (3.20) implies h?%,=0. Therefore the second
fundamental form of M is parallel. Moreover, since A,=0 for all A, Lemma 4.6
and (4.6) imply that M is flat. From the arguments above, taking account of a
fundamental theorem in the theory of submanifolds, we see that M is an anti-
invariant submanifold immersed in some totally geodesic and (2n-+1)-dimensional
submanifold M?*"**'(c) of M?*™*'(c) (see §6). And the submanifold M®*"*'(c) is
invariant (see §6). Thus Theorem 1 is proved.

In Theorem 1, the case where n=2, that is, where M is 3-dimensional, is
excluded. However, the same conclusions will be established even if n=2,
provided that M is compact. To establish this fact, we now prove

THEOREM 2. Let M be a compact (n+1)-dimensional (n>2) anti-invariant sub-
manifold of a Sasakian space form M*™*'(c) (c#—3) with pseudo-parallel mean
curvature vector. If the conmection D wnduced in the normal bundle to M 1s pseudo-
flat, then there 1s n M+ (¢) a totally geodesic and wmvariant submanifold M*™** (c)
of dimension 2n-+1 wn such a way that M 1s ummersed wm M***'(c) as a flat anti-
wmvariant submanifold.

Proof. Since M is compact, we have

[,. 2 ==\ = nudes,

Ma, i3k Ma .,

where *1 denotes the volume element of M. Using this formula, we can prove
Theorem 2 by a same way as taken to prove Theorem 1.
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In the proof of Theorem 1, the following Corollary 5.1 has already been
proved.

COROLLARY 5.1. Let M be an (n+1)-dimensional (n=3) anti-invariant sub-
manifold of a Sasakian space form M2™*'(c) (c#—3) with pseudo-flat normal con-
nection. Then followwng notions (a), (b), (c), (d) are equivalent to each other: (a)
the mean curvature vector 1s pseudo-parallel, (b) the mean curvature vector is
parallel, (c) the second fundamental form 1s pseudo-parallel, (d) the second funda-
mental form is parallel.

Theorem 1 and (4.2) imply immediatelly

COROLLARY 5.2. Let M be an (n+1)-dimensional (n=3) anti-tnvariant sub-
manifold of a Sasakian space form M*™*'(c) (c#—3) with pseudo-parallel mean
curvature vector. Then the connection D induced wn the normal bundle to M 1s
flat 1f and only 1f the connection D 1s pseudo-flat.

Remark. By Theorem 2, if M is compact, Corollaries 5.1 and 5.2 hold even
for n=2.

We shall now study submanifolds of a Sasakian space form A®™*+1(c) in the
case where ¢c=-—3.

PROPOSITION 5.3. Let M be an (n+1)-dimensional (n=3) anti-invariant sub-
manifold of a Sasakian space form M>™** (—3) with pseudo-parallel mean curvature
vector and with pseudo-flat normal connection. If M 1s contact umbilical with
respect to all ey, then M 1s either a flat anti-invariant submanifold immersed n
some totally geodesic and (2n-+-1)-dimensional submanifold M?™+t (—3) of M?*™+1(—3),
or a totally contact umbilical submanifold.

Proof. From the assumption and Lemma 4.2 we have the equation (4.14).
Therefore the equation (5.5) holds. Thus we have either Tr A;=0 for all 4, or
(X (hz,—hi) 4+n 2 (h%,)H)=0. In this step, we can prove the following fact
z xly TFY

by the same way as taken to prove Theorem 1: M is flat and immersed in
some totally geodesic and (2rn-1)-dimensional submanifold M?*"*!(—3) of M?m*1
(—3) as an anti-invariant submanifold, when Tr A;=0 for all 2. When
;(zgy(him"hiy)2+n$§l(h§ey)2):0, hzw=h, hi,=0 (x#y) hold and hence M is

contact umbilical with respect to each e,. Therefore, in this cace, M is a
totally contact umbilical. Thus Proposition 5.3 is proved completely.

Remark. 1f in Proposition 53 M is totally contact umbilical, then (3.11)
implies H,=0 for all z.

THEOREM 3. Let M be an (n+1)-dimensional anti-invariant submanifold of a
Sasakian space form M*™*1(c). If the second fundamental form s parallel, then
M 1s an anti-invariant submanifold tmmersed 1n some totally geodesic and (2n+1)-
dimensional submanifold M (c) of M*™+1 ().
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Proof. From Lemma 3.2, (3.3) and (3.5) we have wi.=—wi=—h4,0'=0, which
and (3.12) imply h?;,=0. From these and a fundamental theorem in the theory
of submanifolds, we have our assertion.

Using Lemma 4.1, we have the following Theorem 4 from Corollary 4.3 by
the same way as taken in the proof of Theorem 3.

THEOREM 4. Let M be an (n+1)-dimensional anti-invariant submanifold of a
Sasakian space form M?*™1(c). If the connection D wmduced wn the normal bundle
to M s flat, then M 1s a flat anti-invariant submanifold vmmersed 1n some totally
geodesic and (2n-+1)-dimensional submanifold M+ (c) of M*™*1(c).

According to a theorem due to Yano and Kon (see [7], p. 100), Theorem 2
and Corollaries 5.1, 5.2 imply

THEOREM 5. Let M be an (n+1)-dimensional (n>2) compact orientable anti-
nvarant submanifold with pseudo-parallel mean curvature vector of S*™*'. If the
connection D induced wn the normal bundle to M 1s pseudo-flat, then

M=S8"(r)x -+ XS (rz+1)

immersed wn an S which s totally geodesic in S?™*, where ri+ - +vh,=1.

§6. Axiom of ¢-holomorphic planes.

Let M be a (2n+1)-dimensional Sasakian manifold with structure tensors
(¢, &, 1, g) covered by a system of coordinate neighborhoods {U, x’}. (In this
section, indices i, j, k, I, p, q, 7, s, t run over the range {1, ---, 2n-+1} and the
summation convention is used with respect to this system of indices.)

We assume that a Sasakian manifold M admits the axiom of ¢-holomorphic
(2r+1)-planes; that is, for each point p of M and any (2r+41)-dimensional ¢-
holomorphic subspace S of T,(M), 1<r<n, there exists a (2r+1)-dimensional
totally geodesic submanifold N passing through p and satisfying T ,(N)=S,
where we mean a ¢-holomorphic subspace S by a subspace of T,(M) satisfying
¢SCS. Since rank ¢ is 2n, the subspace S contains the structure vector field
& of the ambient manifold. Thus, by assumption, there is a (2r+1)-dimensional
totally geodesic submanifold N passing through this point » and being tangent
to given subspace S. If we represent such a submanifold N by parametric
equations

(6.1) xl:xz(ya)y

where {y%} are local coordinates in N, (In this section, the indices «a, b, ¢, d run
over the range {1, ---, 2r+1} and the summation convention is used with respect
to this system of indices.) then the fact that the submanifold N is totally
geodesic is represented by the equations
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0*x* i) 0x? ox* c\ 0x*
6.2 0y%oy® +{j k} 0y° _355_—{a b} 0y° =0,
1 c . . . .
where { } and { } are the Christoffel symbols formed with the Riemannian
7k ab

metric tensor g,, of the ambient manifold M and the naturally induced Rieman-

1 7
nian metric tensor gab:g“—g%—-g%; of the submanifold N respectively.
The integrability condition of the differential equation (6.2) is
(6-3) BcdeleJI{gkl:BalRl?cdy

where K7, and Rg, are the curvature tensors of the ambient manifold M and
the submanifold N respectively, and B,'*=0x/0y%.

We first assume that M satisfies the axiom of ¢-holomorphic 3-planes. Take
arbitrarily a unit vector field v tangent to N. If we put B,=¢v, B,=¢%, then
we have by (6.3)

(64) (¢Stvs)(¢qr¢lqvl)(¢pk¢]pvj)K;;”:a,¢]lvj+‘B¢q1¢]qv1+r€1 )
from which
(6.5) (@' Kiyi—ds'nim v’ =(ag,'— Bo,"+ B n v’ +1&*,

or equivalently
(65)/ (¢lezﬁl—¢sz77!Vj)vsvlvjz(aﬁﬁjl_ﬁgji‘i',BY/J]j)U]‘*_r’?l ’

where K, =K%,g,, and ¢, =¢;*g,,. Transvecting (6.5) with &, we get r=0.
On the other hand, transvecting (6.5)" with v*, we obtain =0, because K,;;; and
¢;, are skew-symmetric with respect to : and ;.

If we put
« «

TlgvlE T (gu—7amvty

4 1

then we have from (6.5)
(@' Kioi—@s" i v’ =c(ga—nsmvv'v’,
from which
O K+ ¢ K0 Kl 400 Kys+0, Ky s+ 0, Ky
— 2B 7,075+, )
=20(ga1,' +81i0s'+ 80P’ —N1B," =717 sPs" = 1,78) -
Transvecting this with ¢,°, we obtain

(6.6) —ZK;'kl—2]{{k1+¢Lt¢ksth]+¢jt¢ks §"”——Jl’“gk1——5]’gkl



ANTI-INVARIANT SUBMANIFOLDS 185
20" 81,2838 0 —0."47,—0," 0 k204" 17,
=280k, G Py TPy P
=20(9 1P, =810k T 8uE Nkt PP 0, —E ) -
On the other hand, we get easily by using the Ricci identity
PG Kl =i’ Ki,
=—Kjut@i'dr,— @' 1,080, 01" g1y,
0,0 Kiyi—0,' 0, Kir
==K +204"81,—0"8 1) 0.0 e — 04" ) 01 +2¢ 110,

Using the equations above and taking the skew-symmetric part with respect to
the indices k£ and [ in (6.6), we get

6.7) 4K§H:(C’|‘3)(5klgz;—(szlgkj)"f‘(c“l)@z‘?? km‘l;kl?']ﬁ?;
+ 22— 81 N — PPt +Pu,08 2008, .

Conversely, if the curvature tensor has the above form (6.7), it is easily
seen that (6.3) is satisfied. Hence we have proved

THEOREM 6. A Sasakian manifold 1s of constant @-sectional curvature if and
only 1f the manifold satisfies the axiom of ¢-holomorphic 3-planes.

If a Sasakian manifold satisfies the axiom of ¢-holomorphic (2r--1)-planes,
then it satisfies the axiom of ¢-holomorphic 3-planes and hence it is of constant
¢-sectional curvature. Therefore we obtain

THEOREM 7. A Sasakian manifold 1s of constant ¢-sectional curvature i1f and
only 1f the manmifold satisfies the axiom of ¢-holomovphic (2v-+1)-planes.

In the proof of Theorem 7, we have implicitly used the following Theorem 8.

THEOREM 8. Let N be a (2r+1)-dimensional totally geodesic submanifold of a
Sasakian manifold M***. If N s ¢-holomorphic at one pownt p, then N 1s n-

variant.

Proof. The van der Waerden-Bortolotti covariant derivative of #,C,* (see
[5]), where C,* is a unit normal vector field. From (2.5) we have

va(vicxi)ZQﬁszulcx] » vbva(ViCzi):—gbaﬁicxt .

Because of the initial condition (3,C.,%),=(¢;;B,'C."),=0 the relation #,C,'=
9:;8B4'C,’=0 holds indentically on . This equation shows that N is invariant.
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