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ANTI-INVARIANT SUBMANIFOLDS OF A
SASAKIAN SPACE FORM

BY IKUO ISHIHARA

§ 1. Introduction.

In a previous paper [8] we studied anti-invariant submanifolds in a Kahler
manifold, especially in a complex space form. In the present paper we shall
study anti-invariant submanifolds of a Sasakian manifold, especially those of a
Sasakian space form, in the same way as taken in [8].

An (n+l)-dimensional Riemannian manifold M isometrically immersed in a
(2m + l)-dimensional Sasakian manifold M with structure tensors (φ, ξ, η, g) is
said to be anti-invariant (resp. invariant) if φT p(M)dT P(MY (resp. φTp(M)d
TP(M)) for each point p of M, where TP(M) and TP(M)L denote respectively the
tangent and the normal spaces to M at p. Thus in an anti-invariant submanifold
φX is normal to M for any vector X tangent to M. Since φ is necessarily of
rank 2m, we have n^(2m + l)—(n+1) which implies n^rn. In the present paper,
we assume that for any anti-invriant submanifold M we consider the structure
vector field ζ of the ambient manifold is tangent to M everywhere.

When for an anti-invariant submanifold M the structure vector field ξ of
the ambient manifold M is tangent to M, then each of the following assump-
tions (a), (b), (c) is not meaningful: (a) the second fundamental form is parallel
(b) the mean curvature vector is parallel; (c) the connection induced in the
normal bundle is flat. So, in the present paper, we shall replace the assump-
tions (a), (b), (c) respectively by new but rather weaker assumptions (a'), (b')>
(cr) as follows: (a') the second fundamental form is pseudo-parallel (b') the mean
curvature vector is pseudo-parallel (c') the connection induced in the normal
bundle is pseudo-flat (see Lemmas 3.2, 3.3 and 4.1).

§ 2. Sasakian manifolds.

First, we would like to recall definitions and some fundamental properties
of Sasakian manifolds. Let M be a (2m + l)-dimensional differentiable manifold
of class C°° and φ, ξ, rj be a tensor field of type (1,1), a vector field, a 1-form
on M respectively such that
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(2.1) φ2=-I+V®ξ, φξ=O, y(φX)=Q, ?(£)=1

for any vector field X on M, where / denotes the identity tensor of type (1,1).
Then M is said to admit an almost contact structure (φ, ξ, η) and called an
almost contact manifold. The almost contact structure is said to be normal if

(2.2) N+dη(g)ξ=0,

where N denotes the Nijenhuis tensor formed with φ. If there is given in M
a Riemannian metric g satisfying

(2.3) g(φX, φY)=g(X, Y)-V(X)V(Y), η{X)=g{X, ξ)

for any vector fields X and Y on M, then the set (φ, ξ, η, g) is called a almost
contact metric structure and M an almost contact metric manifold. If

(2.4) dη{X, Y)=g(φX, Y)

for any vector fields X and Y an M, then the almost contact metric structure
is called a contact metric structure. If the structure is moreover normal, then
the contact metric structure is called a Sasakian structure and M a Sasakian
manifold. As is well known, in a Sasakian manifold M with structure (φ, ξ, rj, g)

(2.5) ϊχξ=φX, {lxφ)Y=-g{X, Y)ξ+V(Y)X

are established for any vector fields X and Y on M, where V denotes the
operator of covariant differentiantion with respect to g.

A plane section σ in the tangent space TP(M) of a Sasakian manifold M at
p is called a φ-section if it is spanned by vectors X and φX, where X is as-
sumed to be orthogonal to ξ. The sectional curvature K(σ) with respect to a
^-section σ is called a φ-sectional curvature. When the ^-sectional curvature
K{σ) is independent of the ^-section σ at each point of M, as is well known,
the function K(σ) defined in M is necessarily a constant c. A Sasakian manifold
M is called a Sasakian space form and denoted by M(c) if it has constant φ-
sectional curvature c (see [4]). The curvature tensor K of a Sasakian space
form M(c) is given by

K(X, Y)Z=j(c+3)(g(Y, Z)X-g{X, Z)Y)-j(c-l)(V(Y)V(Z)X

, Z)η{X)ξ-g{X, Z)η{Y)ξ

-g(φY, Z)φX+g(φX, Z)φY+2g(φX, Y)φZ).

EXAMPLE 1. Let S2n+1 be a (2n+l)~dimensional unit sphere, i.e.,

S2n+1={z<ΞCn+1: | * | = 1 } ,

where Cn+1 is a complex (n+l)-space. For any point * e S 2 Λ + 1 , we put ξ=Jz, J
being the complex structure of Cn+1. Considering the orthogonal projection
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π: Tz(Cn+1)—^Tz(S2n+1),
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at each point z in S2n+1 and putting φ—π°J, we have a Sasakian structure
(φ, ζ> V> g) on S2n+1, where rj is a 1-form dual to ξ and £ the standard metric
tensor field on S2n+1. Obviously, S2n+1 is of constant 0-sectional curvature 1.

EXAMPLE 2. Let E2n+1 be a Euclidean space with cartesian coordinates
(x1, •••, JCW, j / 1 , •••, yn, z). Then a Sasakian structure on E2n+1 is defined by
φ, ξ, η and g such that

£=(0, 2η=(-y\ -yn, 0, - , 0, 1 ) ,

B) =

0 ~

-fδ., 0

0 4

0 0;

- o j 0

0 v 7 0

Then £ 2 r ι + 1 with such a structure (0, ξ, rj, g) is of constant ^-sectional curvature
- 3 and denoted by E2n+\-3).

§ 3. Fundamental properties of anti-invariant submanif olds.

Let M be a Sasakian manifold of dimension 2m+ 1 with structure tensors
(φ, > ζ, V> S)-_ An (?x+l)-dimensional Riemannian manifold M isometrically im-
mersed in M is said to be anti-invariant in M if φTp(M)dTP(M)X for each
point p of M. Throughout the paper, we now restrict ourselves only to anti-
invariant submanifolds of a Sasakian manifold such that the structure vector
field ξ of the ambient manifold is tangent to the submanifolds.

We choose a local field of orthonormal frames eo=ξ, elf •••, en en+1, •••, em

ev=φe1, •••, en*=φen; e(n+Ώ*=φen+1, •••, em*=φem in M in such a way that
e0, elf ••-, en are along M tangent to M. Taking such a field of frames of M,
we denote the dual coframes by ω°=η, ω1, •••, ωn ωn+1, •••, ωm ωι\ •••, ωn*
ωCn+iy, •••, ωm\ Unless otherwise stated, let the ranges of indices be as follows :

m*,A
i,

X,

a,
a,

I

, B

h
• y>
^ y

β>
μ>

, C, D=Oy 1
k, I, s, t=0,

Zy Vy lU = ly

C d=n+l,
γ=n+l, •••
v = n + l, •••

, •••, m, 1*
1, •••, n.
•" , n,
••• , m, 1*,
, m,
, πiy (n + 1) m
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and use the so-called summation convention for these systems of indices. Then
the structure equations of the Riemannian manifold M are given by

(3.1) dωA=-ωA

B/\ωB,

(3.2) dωA

D=-ωϊ/\ωc

B+Φi, ΦA

B=^KA

BCDωcAωD,

where KBCD are components of the curvature tensor of M with respect to {eA}
and ωB satisfy

ωΎ

y—ώζ*, ω'y =ω% , ωx=ωl , ωx = — ω $ ,

(3.3) ωj=ωf, ωf=ωξ, ωa=ωf, ω^=-ωj,

ω^^^ωa* y ω^ ~~ωx .

Thus we have along A/

(3.4) ωa=0,

which implies 0=dωa — —ωn

ίf\ω'1 alng M. Thus, by Cartan's lemma, we obtain
along M

(3.5) ωσ

t = h?jωJ, ha

τj=hn

jίy

which imply the following structure equations of the submanifold M:

(3.6) dώL=—ω)/\ω3, ω^+ωl—O,

(3.7) do)'7z=— ω\/\ωkj-\-Ωi

J, Ωj=-prR}ki(ί)k/\ωι,

(ό.Q) Kjkι = Kj

(3.9) dωϊ=-ωl;Λωί+Ωϊ, Ω"b = jRίklω
k Aωι,

(3.10) RSH=Kίkι + Σ,(h1kh
b

u-hauhb

ik),

where R)kL are components of the curvature tensor of M with respect to {βj
and Rbki components of the curvature tensor of the normal bundle with respect
to {βi} and {ea}. The equations (3.8) and (3.10) are called respectively the
equations of Gauss and those of Ricci for the submanifold M. The forms (ω))
define the Riemannian connection of M and the forms {ωf) define the connection
induced in the normal bundle of M.

We now state a lemma for later use.

LEMMA 3.1. {Yano and Kon [6]) Let M be an {n+ϊ)-dimensional anti-invariant
submanifold of a Sasakian manifold M2m+1. Then the structure vector field ξ is
parallel along M and M is locally a Riemannian direct product MnxM1, where
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Mn is an n-dimensional Riemannian manifold and M1 is a 1-dimensιonal subspace
generated by ξ.

From (3.3), (3.4) and (3.5) we have along M

(3.11) hτ

yz=hlz=hz

xy, hλ

0i=0, hx

Qi=δxι,

where we denote hf3 simply by hx

l3.
The second fundamental form hf3ω

ιω3ea is sometimes denoted by its com-
ponents hΐj. When the second fundamental form vanishes identically, i.e., hΐj=O
for all indices, the submanifold is as usual said to be totally geodesic. If h%

have the form h%——(Σ h£)δxy for a fixed index a, then the submanifold is

said to be contact umbilical with respect to the normal vector ea If the sub-
manifold M is contact umbilical with respect to all ea, then M is said to be

contact totally umbilical (see Γ2Ί). The vector field r~(Σ h^a) normal to M
n + l k

is called the mean curvature vector of M. The submanifold M is said to be

minimal if its mean curvature vector vanishes identically, i.e., Σ h%k=0 for all

a. We define the covariant derivative hfJk of hf3 by

(3.12) hΐJkω
k = dhϊJ-hϊιaή--hΐM+hb

ιjωS.

If hΐjk—0 for all indices, the second fundamental form of M is said to be
parallel. If the mean curvature vector of M is parallel with respect to the con-
nection D induced in the normal bundle, then the mean curvature vector of M
is said to be parallel. The Laplacian Δha

l3 of hΐj is defined as

(3.13) dhΐj^Έhΐjtk,

where we have defined hfjkι by

(3.14) hΐJklω
ι=dhΐjk-hΐtM-hΐιkat-hϊjM + hb

ιJkωS.

We shall establish a formula containing the Laplacian of ha

l3. Now, the
second fundamental form of M is assumed to satisfy equations of Codazzi type,
i.e.,

(3.15) hΐJk-hΐkJ=0.

Then, from (3.14), we have

(3.16) hϊJkl-hϊjlk = hΐtR
t

Jkι + htJRlkl-h'ljRgkl.

On the other hand, (3.13) and (3.15) imply

(3.17) JΛ? i=ΣAί/** = ΣΛ?ti*.
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From (3.15), (3.16) and (3.17), we obtain

(3.18) J

Therefore for any submanifold M satisfying the equation (3.15) of Codazzi type
we have the formula

(3.19) Σ hfjAhfj= Σ (h?jhtklJ+h?jha

ktRljk
a, i, j a,i,j, k

We are now going to prove some lemmas for later use. From (3.3), (3.11)
and (3.12), we have

(3.20) h«t=-hrJt hfJ0=hί}, hfJO=0,

(3.21) Σ (A&*)'= Σ (hiy.γ+3 Σ (tiv)\
a.i.j.k a, x,y ,z λ , x, y

(3.22) Σ hϊjhikιJ= Σ hijhhxj-ΈCΣ Hkγ.
a, i, j, k a, x, j, k λ k

Thus, we have from (3.20)

LEMMA 3.2. Let M be an (n+1)-dimensional anti-invariant submanifold of a
Sasakian manifold M2m+1. If the second fundamental form of M is parallel, then
h*j=0 for all λ.

Using (3.20), we obtain

(3.23) Σ λfto=-Σ hΐl9 Σ h«;0=Έ h?t,

which imply

LEMMA 3.3. Let M be an (n+1)-dimensional anti-inυanant submanifold of a
Sasakian manifold M2m+1. If the mean curvature vector of M is parallel, then
Σ hii=0 for all λ.

X

When m>n, Lemmas 3.2 and 3.3 show that the conditions that the second
fundamental form is parallel and that the mean curvature vector is parallel
are not meaningful for anti-invariant submanifolds. Therefore we shall now
introduce some new concepts as follows. On an anti-invariant submanifold M
of a Sasakian manifold M2m+1, if h%yz=0 for all indices a, x, y and z% then we
say that the second fundamental form of M is pseudo-parallel If Σ hfix=O for

X

all indices a and x, then the mean curvature vector said to be pseudo-parallel.
If the ambient manifold M 2 m + 1 is of constant ^-sectional curvature c, then

the Riemannian curvature tensor of M2m+1 has the form

(3.24) KBCD=-£(c+3)(δΛcδBD—δADδBc) + -τ(c
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and the second fundamental form of M satisfies the equation (3.15) of Codazzi
type.

§4. The connection D in the normal bundle.

In this section we study the connection D induced in the normal bundle to
an (ft-f-l)-dimensional anti-invariant submanifold M of a (2m + l)-dimensional
Sasakian space form M 2 m + 1 (c) when the structure vector field ξ is tangent to M.

First of all, by (3.24) we obtain

(4.1) Kx*kl=0, Kjkl=0, Kλ

μkl=0,

Kpkl = -^(c-l)(δxkδyl-δxιδyk).

From (3.10), (3.11) and (4.1), we have

(4.2) Ri*υo=hiy, Rfg0=0.

The connection D induced in the normal bundle to Mis said to be flat if R^j—0
for all indices. Thus we have from (3.11) and (4.2)

LEMMA 4.1. Let M be an (n + l)-demensιonal anti-invariant submanifold of a
Sassakian space form M2m+1 (c). // the connection D is flat then hij=0.

When m>n, Lemma 4.1 shows that the condition that the connection D is
flat is not meaningful for anti-invariant submanifolds of a Sasakian space form.
Therefore the pseudo-flatness of D will be introduced as follows. On an anti-
invariant submanifold M of a Sasakian manifold M2m+1 the connection D is said
to be pseudo-flat if Rξxy=0 for all indices.

LEMMA 4.2. Let M be an (n+l)-dimensional anti-invariant submanifold of a
Sasakian manifold M2m+1. If the connection D is pseudo-fiat then

(4.3) /?5,W = Σ (hxzh}jw-hλ

vwhy2).

Proof (3.2) and (3.3) imply

(4.4) Kpzw = Kζzw—(δxgδyw—δxwδyz).

Moreover, from (3.8), (3.10) and (3.11), we obtain

(4.5) Rϊ,u>=K*tw+Σl (hϊ,h*w-hxu,h*a)
a
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Έ (hxzhyw-hxwh
λ

yz).

This completes the proof.

From (3.3) and (3.8), we have

(4.6) Rljk=0.

Thus Lemmas 4.1 and 4.2 imply immediately

COROLLARY 4.3. Let M be an {n-\-Y)-dimensιonal anti-invariant submanifold
of a Sasakian space form M2m+1 (c). // the connection D is flat, then M is flat.

If the connection D is pseudo-flat, then (3.10) and (4.1) imply

(4.7) Έ(hϊxh%-hϊyh
υ

ιx)=0,

(4.8) Έ(hυ

ιxh\%-hυ

ιyhΐx)=--(c-l)(δυxδwy-δυyδwx).
i 4

Moreover, using (3.11), we have

(AQ) y» (Uλ UV _Uλ Uv \ — Γ\
\'Lzχnzy 'hynzxj — v >

(4.10) Σ

PROPOSITION 4.4. Let M be an (n+X)-dimensιonal (n>ϊ) anti-mvamant sub-
manifold of a Sasakian space form M2m+1 (c) and the connection D induced in the
normal bundle to M be pseudo-flat. Then, if M is contact umbilical with respect
to ev* for some index v, then c—— 3.

Proof. If M is contact umbilical with respect to eυ*, then h°xy is of the form

χy = — (Σ hυ

zz)δ
xy. Moreover, using (3.11), we have

Z J \'Lιx'Lιy ι^ιy'ιιx) — ^υx^wy Vυyυwx

From this and (4.8) we find c—— 3.
For each index a, the second fundamental form will be represented by a

symmetric (n + 1, ?ί + l)-matrix Aa = (hfj) composed of its components. Following
such notations, we have from (3.11)

) I O O ί O O

Hx. for all x ,
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" 0

0

v 0

o

Hi

• 0 ^

Aλ— \ Hλ , for all λ,

where Ha=^(hxy) are symmetric (n, n)-matrices.

LEMMA 4.5. Let M be an (n+ϊ)-dimensιonal anti-invariant submamfold of a
Sasakian space form M2m+1 (c) (cΦ—3). If the connection D is pseudo-flat, then
M is contact umbilical with respect to all eλ.

Proof From (4.9) we obtain HλHμ=HμHλ and HχH^Hflχ for all λ and μ.
Therefore we can choose a local field of orthonormal frames with respect to
which Hλ and all Hχ are simultaneously diagonal i. e.,

(4.11)

Putting x=l and v=y in the first equation of (4.9) and using (3.11) and (4.11),
we find

(4.12) (hλ

n-hyy)hϊjy=0.

On the other hand, putting v=x = l and w — yφl in (4.10) and using (3.11) and
(4.11), we have

(4.13) \h\ι — hly)hly=—-τ-(c+ό).

Since cφ— 3, (4.13) implies hyyφ0 (y=2, •••, n). From this fact and (4.12) we
find that hλ

n=hly for all λ. Thus M is contact umbilical with respect to all ex.
This proves Lemma 4.5.

LEMMA 4.6. Let M be an (n+ΐ)-dimensιonal anti-invariant submamfold of a
Sasakian space form M2m+1 (c) (cΦ—3). If the connection D is pseudo-flat, then

- 0

1

0

o

1

Λii

0 ... o *

' h ι

> Ax —

ί °
0

. 0

0

hit

• 0

(4.14) = — £ - Σ (Tr Aλ)
2(δxzδyw—δxwδyz).

Proof. Lemma 4.5 implies hλ

xy = — (Tr Aλ)δxy for all λ. Therefore (4.3) im-

plies (4.14).

PROPOSITION 4.7. Let M be an (n+l)-dimensιonal (n^3) anti-invariant sub-
mamfold of a Sasakian space form M2m+1 (c) (cΦ—3). If the connection D induced
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in the normal bundle to M is pseudo-flat, then M is locally a Riemanman direct
product MnxM1, where Mn is of constant curvature, and M1 is a 1-dimensιonal
subspace generated by ξ.

Proof. Since n ^ 3 , (4.14) implies that Σ (Tr Aλ)
2 is constant. Therefore

Proposition 4.7 is proved by means of Lemma 3.1.
If M is minimal, then Ύτ Aχ=Q for all λ. Thus Lemma 4.5 and (4.2) imply

immediately

PROPOSITION 4.8. Let M be an (n+l)-dimensιonal anti-invariant minimal sub-
manifold of a Sasakian space form M2m+1 (c) (cΦ—3). Then the connection D in-
duced in the normal bundle to M is flat if and only if the connection D is pseudo-
flat.

Moreover, Corollary 4.3 and Proposition 4.8 imply immediately

COROLLARY 4.9. Let M be an (n+ϊ)-dimensιonal anti-invarmnt minimal sub-
manifold of a Sasakian space form M2m+1 (c) (cΦ—3). If the connection D induced
in the normal bundle to M is pseudo-flat, then M is flat.

§ 5. Pseudo-parallel mean curvature vector.

Using the results obtain in the previous section, we have

THEOREM 1. Let M be an (n+ϊ)-dimensιonal (n^3) anti-invariant submanifold
of a Sasakian space form M2m+1 (c) (cφ— 3) with pseudo-parallel mean curvature
vector. If the connection D induced in the normal bundle to M is pseudo-flat,
then there is in M2m+1 (c) a totally geodesic and invariant submanifold M2n+1 (c)
of dimension 2?z+l in such a way that M is immersed in M2n+1 (c) as aflat anti-
invanant submanifold.

Proof. (3.23) implies that Σ (Tr Aa)
2 is constant because the mean curvature

α

vector is pseudo-parallel. Since n ^ 3 , (4.14) implies that Σ (Tr Aλ)
2 is constant.

On the other hand, from (3.8), (3.24) and (4.14), we have

(5.1) ^^ΈiTr Aλ)
2=±?ι(n-l)(c+3)+Σ(Tr Aa)

2- Σ (AS,)2.
n λ 4 a a,x,y

Moreover, using (3.11), we find that the square of the length of the second
fundamental form of M is constant, i. e., Σ (h?j)2 is constaant. From this we

a, i, j

have

(5.2) Σ (Λ?,*)2+ Σ hfjΔhf^Δ Σ (hfj)2=0.
a, ι,j.k ' a, i, j Z a, ι,j

On the other hand the mean curvature vector is pseudo-parallel and the connec-
tion D is pseudo-flat. Thus (3.11), (3.19), (3.22) and (4.6) imply
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"VΛ ha Λha "S^ CΎr Δ ^2J_ "V* U U pr
2_i llτjLlnιj— 2-J \ *• * f*-λ) Γ 2-i ^yz'^wx^-yzw

a, i, j " " X a, x, y, z, w

l X^ La La JDx O >ΓΛ u Dα
I /-j '<- iz' LxιIvyzy " >£—/ ίLxylvx*y0 •

a,ι, x, y , z a, x, y

Moreover, substituting (4.14) into (5.3), we obtain by using (3.11) and (5.2),

(5.4) Σ (h?Jkγ= ί -Σ(Tr^) 2 ( Σ (n(hxy)
2-hϊrh«y)-n)

a, i, j, k n λ a , x, y

+ 2 Σ {hλ

vyγ,
λ , x, y

from which

a,x,y,z n2 λ x, y,z

= — V Σ (Tr Aλγ Σ ( Σ (A5»-A w) + Σ (/ί^)2),
72 ^ 2 a;<</ xψ-y

by means of Lemma 4.5 and (3.21).
Since cΦ— 3 by assumption, Proposition 4.4 implies Yj(hz

xx—hzyy)
2>§. Thus

(5.5) implies Tr ̂ = 0 for all λ which mean that Aλ—0 for all λ. And from (5.5)
we see that /z^—O, i.e., that the second fundamental form of M is pseudo-
parallel. Since Λλ=0 for all λ, (3.20) implies hΐJθ=0. Therefore the second
fundamental form of M is parallel. Moreover, since ^ = 0 for all λ, Lemma 4.6
and (4.6) imply that M is flat. From the arguments above, taking account of a
fundamental theorem in the theory of submanifolds, we see that M is an anti-
invariant submanifold immersed in some totally geodesic and (2n+l)-d_imensional
submanifold fί2n+1 (c) of M2m+1 (c) (see § 6). And the submanifold M2n+1 (c) is
invariant (see § 6). Thus Theorem 1 is proved.

In Theorem 1, the case where n=2, that is, where M is 3-dimensional, is
excluded. However, the same conclusions will be established even if n=2,
provided that M is compact. To establish this fact, we now prove

THEOREM 2. Let M be a compact (n+ϊ)-dimensιonaί (n>2) anti-invanant sub-
manifold of a Sasakian space form M2m+1 (c) (cΦ—3) with pseudo-parallel mean
curvature vector. If the connection D induced in the normal bundle to M is pseudo-
flat, then there is in M2m+1 (c) a totally geodesic and invariant submanifold M2n+1 (c)
of dimension 2n+l in such a way that M is immersed in M2n+1 (c) as a flat anti-
invanant submanifold.

Proof. Since M is compact, we have

ί Σ (hΐJky*ι=- \ Σ ft?,JΛ,v i,
J M a, i, j, k J M a, i, j

where *1 denotes the volume element of M. Using this formula, we can prove
Theorem 2 by a same way as taken to prove Theorem 1.
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In the proof of Theorem 1, the following Corollary 5.1 has already been
proved.

COROLLARY 5.1. Let M be an (n-\-ϊ)-dimensιonal (n^3) anti-invariant sub-
manifold of a Sasakian space form M2m+1 (c) (cΦ—3) with pseudo-flat normal con-
nection. Then following notions {a), (b), (c), (d) are equivalent to each other: (a)
the mean curvature vector is pseudo-parallel, (b) the mean curvature vector is
parallel, (c) the second fundamental form is pseudo-parallel, {d) the second funda-
mental form is parallel.

Theorem 1 and (4.2) imply immediatelly

COROLLARY 5.2. Let M be an (n+1)-dimensional (n^3) anti-invariant sub-
manifold of a Sasakian space form M2m+1 (c) icφ— 3) with pseudo-parallel mean
curvature vector. Then the connection D induced in the normal bundle to M is
flat if and only if the connection D is pseudo-flat.

Remark. By Theorem 2, if M is compact, Corollaries 5.1 and 5.2 hold even
for n=2.

We shall now study submanifolds of a Sasakian space form M 2 m + 1 (c) in the
case where c=— 3.

PROPOSITION 5.3. Let M be an (n-\-ϊ)-dimensιonal (w^3) anti-invariant sub-
manifold of a Sasakian space form M 2 m + 1 (—3) with pseudo-parallel mean curvature
vector and with pseudo-flat normal connection. If M is contact umbilical with
respect to all eχ, then M is either a flat anti-invariant submanifold immersed in
some totally geodesic and (2n-f 1)-dimensional submanifold M2n+1 (—3) of M2m+1 (—3),
or a totally contact umbilical submanifold.

Proof. From the assumption and Lemma 4.2 we have the equation (4.14).
Therefore the equation (5.5) holds. Thus we have either Tr Λλ=0 for all λ, or
Σ ( Σ (h%χ—hz

yyy-\-n Σ (hlyY)=0. In this step, we can prove the following fact
z x<y xΦy

by the same way as taken to prove Theorem 1: M is flat and immersed in
some totally geodesic and (2n+l)-dimensional submanifold M2n+1 (—3) of M2m+1

(—3) as an anti-invariant submanifold, when T r ^ ^ O for all λ. When
Σ ( Σ ( f e - / ϊ y 2 + n Σ ( f e y ) 2 ) = O , h*xx=h\v, h%y=Q(xΦy) hold and hence M is

2 x<y XΦy

contact umbilical with respect to each ez*. Therefore, in this cace, M is a
totally contact umbilical. Thus Proposition 5.3 is proved completely.

Remark. If in Proposition 5.3 M is totally contact umbilical, then (3.11)
implies Hz=0 for all z.

THEOREM 3. Let M be an (n-\-l)-dimensιonal anti-invariant submanifold of a
Sasakian space form M2m+1 (c). // the second fundamental form is parallel, then
Mis an anti-invariant submanifold immersed in some totally geodesic and (2n+l)-
dimensional submanifold M2n+1 (c) of M2m+1 (c).
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Proof. From Lemma 3.2, (3.3) and (3.5) we have ωί*=—ωί= — hίιω
ι=0, which

and (3.12) imply hλ

ιjk=0. From these and a fundamental theorem in the theory
of submanifolds, we have our assertion.

Using Lemma 4.1, we have the following Theorem 4 from Corollary 4.3 by
the same way as taken in the proof of Theorem 3.

THEOREM 4. Let M be an (n-{-l)-dimensιonal anti-invariant submanifold of a
Sasakian space form M2m+1 (c). If the connection D induced in the normal bundle
to M is flat, then M is a flat anti-invariant submanifold immersed in some totally

iesic and (2n+1)-dimensional submanifold M2n+ί (c) of M 2 m + 1 (c).

According to a theorem due to Yano and Kon (see [7], p. 100), Theorem 2
and Corollaries 5.1, 5.2 imply

THEOREM 5. Let M be an (n-\-l)-dimensιonal (n>2) compact onentable anti-
invar xant submanifold with pseudo-parallel mean curvature vector of S2m+1. If the
connection D induced in the normal bundle to M is pseudo-flat, then

M=S1(r1)X .- xS\rn+1)

immersed in an S2n+1 which is totally geodesic in S2m+1, where r\+ ••• +r2

n+1 = l.

§ 6. Axiom of 0-holomorphic planes.

Let M be a (2n+l)-dimensional Sasakian manifold with structure tensors
(φ, ξ, η, g) covered by a system of coordinate neighborhoods {U, x1}. (In this
section, indices i, j , k, I, p, q, r, s, t run over the range {1, •••, 2n+l} and the
summation convention is used with respect to this system of indices.)

We assume that a Sasakian manifold M admits the axiom of ^-holomorphic
(2r+l)-planes; that is, for each point p of M and any (2r+l)-dimensional φ-
holomorphic subspace S of TP(M), Kr<n, there exists a (2r+l)-dimensional
totally geodesic submanifold N passing through p and satisfying TP(N)=S,
where we mean a 0-holomorphic subspace 5 by a subspace of TV(M) satisfying
φSdS. Since rank φ is 2n, the subspace S contains the structure vector field
ξ of the ambient manifold. Thus, by assumption, there is a (2r+l)-dimensional
totally geodesic submanifold TV passing through this point p and being tangent
to given subspace 5. If we represent such a submanifold TV by parametric
equations

(β.l) χι=χKya),

where {ya} are local coordinates in TV, (In this section, the indices a, b, c, d run
over the range {1, •••, 2r+l} and the summation convention is used with respect
to this system of indices.) then the fact that the submanifold TV is totally
geodesic is represented by the equations
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d2xτ f i X dx3 dxk f c \ dxx

( , dyadyb + l ; kl dya dyh \a bl dy

where j , \ and \ , \ are the Christoffel symbols formed with the Riemannian
[j kj la m

metric tensor gτj of the ambient manifold M and the naturally induced Rieman-
dxι dxJ

nian metric tensor gab—gιj-^—^-—^—b- of the submanifold N respectively.

The integrability condition of the differential equation (6.2) is

where K)kt and R%cd are the curvature tensors of the ambient manifold M and
the submanifold N respectively, and Ba

ι—dxι/dya.
We first assume that M satisfies the axiom of 0-holomorphic 3-planes. Take

arbitrarily a unit vector field v tangent to N. If we put B1=φv, B2=φ2v, then
we have by (6.3)

from which

or equivalently

(P. Ui\t (ΛL t T/~ Λ \ s I 1

where KlJt[=K}tlglk and φsi=φs

kgιk. Transvecting (6.5)' with ζ\ we get γ=0.
On the other hand, transvecting (6.5)/ with vι, we obtain β=0, because Kιjti and
φij are skew-symmetric with respect to i and j .

If we put

_ a — a

C~~ \\φv\\2 ~~ (gsι-rjsηι)vsvι '

then we have from (6.5)

from which

= 2c(gsίφJ

ιJrgljφs

ι-irgJsφιι-7]s7}ίφJ

ι-ηίηjφs

ι-7}J7}sφιi).

Transvecting this with φk

s, we obtain

(6.6) -2KUι-2KtkJ+φι

tφk'Kit3+φjtφk9KUι--δι

xgkJ--δJ

tgkl
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On the other hand, we get easily by using the Ricci identity

:=-Kjki+2(δk

ιglJ-~δι

ιgkJ)
JrδL

ι7}jηk-δk

ι7]jηι+2φkίφJ

ι.

Using the equations above and taking the skew-symmetric part with respect to
the indices k and / in (β.β), we get

(6.7) ^KUi^

Conversely, if the curvature tensor has the above form (6.7), it is easily
seen that (6.3) is satisfied. Hence we have proved

THEOREM 6. A Sasakian manifold is of constant φ-sechonal curvature if and
only if the manifold satisfies the axiom of φ-holomorphic 3-planes.

If a Sasakian manifold satisfies the axiom of ^-holomorphic (2r-hl)-planes,
then it satisfies the axiom of ^-holomorphic 3-planes and hence it is of constant
^-sectional curvature. Therefore we obtain

THEOREM 7. A Sasakian manifold is of constant φ-sectional curvature if and
only if the manifold satisfies the axiom of φ-holomorphic {2rJrl)-planes.

In the proof of Theorem 7, we have implicitly used the following Theorem 8.

THEOREM 8. Let N be a (2r+l)-dimensional totally geodesic submamfold of a
Sasakian manifold M2n+1. If N is φ-holomorphic at one point p, then N is in-
variant.

Proof. The van der Waerden-Bortolotti covariant derivative of ηtCx

τ (see
[5]), where Cx

ι is a unit normal vector field. From (2.5) we have

Because of the initial condition (ηiCx

i)p=(φijBa

ιCx

j)p=O the relation rjiCx

l=
φijBa

ιCx

J=0 holds indentically on N. This equation shows that N is invariant.
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