A NOTE ON ENDOMORPHISM RINGS OF ABELIAN VARIETIES OVER FINITE FIELDS

By Tetsuo Nakamura

Let p be a prime and let A be a simple abelian variety over a finite field k with p^{a} elements. In this note we ask some sufficient conditions that the endomorphism ring of A over k is maximal at p. Our result includes the first part of theorem 5.3 in Waterhouse [5]. The related facts should be referred to [5].

§1. Let $\operatorname{End}_k(A)$ be the ring of k-endomorphisms of a simple abelian variety A over a finite field k with p^a elements. We shall always assume that $\operatorname{End}_k(A)$ is commutative. Then there exist a CM field E and an isomorphism $i_A: E \to \operatorname{End}_k(A) \otimes Q$. Let $R = \iota_A^{-1}(\operatorname{End}_k(A))$ and let K be the totally real subfield of index 2 in E. Let f_A be the Frobenius endomorphism of A over k and put $\pi = \iota_A^{-1}(f_A)$. Then π is a Weil p^a -number, i.e. an algebraic integer such that $|\pi|^2 = p^a$ in all embeddings of $E = Q(\pi)$ into C. Let w be a place of K above p and v be a place of E with $v \mid w$. Then we have the following three cases;

(1) $v(\pi) = 0$ or $v(\pi) = v(p^a)$.

(2)
$$v(\pi) = v(p^a \pi^{-1})$$
.

(3) $v(\pi) \neq v(p^a \pi^{-1})$ and $0 < v(\pi) < v(p^a)$.

We call that w is of type (1) (resp., (2), (3)) if v satisfies (1) (resp., (2), (3)). This is independent of the choice of v with v|w. Let K_w be the completion of K at w and let

$$\begin{split} G_w &= (G_{1,0})^{[K_w; \boldsymbol{q}_p]}, & \text{if } w \text{ is of type (1),} \\ &= (G_{1,1})^{[K_w; \boldsymbol{q}_p]}, & \text{if } w \text{ is of type (2),} \\ &= G_{s,t} + G_{t,s}, & \text{if } w \text{ is of type (3),} \end{split}$$

where $s=s(w)=[K_w: Q_p]v(\pi)/v(p^a)$ and $t=t(w)=[K_w: Q_p]v'(\pi)/v'(p^a)$ with the other place v' of E above w. Then the formal group \hat{A} of A is isogenous to $\sum_{w|p} G_w$ (over the algebraic closure of k.) (cf. Manin [1], Chap. IV).

Now let T_pA be the Dieudonné module of \hat{A} . Let W = W(k) be the ring of Witt vectors over k and σ the automorphism of W induced by the Frobenius

Received October 13, 1977.

TETSUO NAKAMURA

automorphism $x \to x^p$ of k. Let $\mathcal{A}=W[F, V]$ be the (non-commutative) ring defined by the relations FV=VF=p, $F\lambda=\lambda^{\sigma}F$ and $\lambda V=V\lambda^{\sigma}$ for $\lambda \in W$. Then T_pA is a left \mathcal{A} -module, W-free of rank 2 dim (A). It is a well known result of Tate that

$$\operatorname{End}_{k}(A) \otimes \mathbb{Z}_{p} \cong \operatorname{End}_{\mathcal{A}} T_{p}A.$$

Assume further that

(*) R contains the maximal order O_K of K.

Then as T_pA is a module over $O_K \otimes \mathbb{Z}_p = \bigoplus_{w \mid p} O_{K_w}$, we have the corresponding decomposition $T_pA = \bigoplus_{w \mid p} T_w$, where O_{K_w} is the ring of integers of K_w . We see that T_w is a Dieudonné module whose corresponding formal group is isogenous to G_w .

§2. THEOREM 1. Let the notations be as in §1. We assume (*) and the followings, for each w of type (2), K_w is an unramified extension over Q_p of odd degree and $FT_w = VT_w$, and for each w of type (3), $F^{t(w)}T_w \subset V^{s(w)}T_w(say s(w) < t(w))$. Then R is maximal at p, i.e. $R \otimes \mathbb{Z}_p$ is the maximal order of $E \otimes \mathbb{Q}_p$.

Proof. Let L be the quotient field of W=W(k), i.e. L is the unramified extension over Q_p , of degree a. Put $\mathscr{B}=L\otimes_W\mathscr{A}=L[F, V]=L[F, F^{-1}]$. Let $\bigoplus_{v\mid p} E_v$ be the decomposition of $E_p=E\otimes Q_p$ into fields. On $L\otimes_{q_p}E_p=\bigoplus_{v\mid p}(L\otimes_{q_p}E_v)$ we have L acting by left multiplication and E_p by right multiplication. Let f_v be the residue degree of E_v/Q_p . Put $g_v=(f_v, a)$. Then LE_v has degree a/g_v over E_v and $L\otimes E_v$ is a sum of g_v copies of the composite extension:

$$L \otimes E_v \cong LE_v \oplus \cdots \oplus LE_v .$$
$$\omega \otimes \beta \longrightarrow \langle \omega\beta, \, \omega^{\sigma}\beta, \, \cdots, \, \omega^{\sigma g^{-1}}\beta \rangle .$$

We define the action of σ on $L \otimes E_v$ by acting on the *L*-factor. Then for $\langle x_1, \dots, x_{g_v} \rangle \in \bigoplus LE_v$, we have $\sigma \langle x_1, \dots, x_{g_v} \rangle = \langle x_2, \dots, x_{g_v}, \tau(x_1) \rangle$, where $\tau = \sigma^{g_v}$ is the Frobenius automorphism of LE_v/E_v . Now we can choose $u \in L \otimes E_v$ with $N_{L \otimes E_v/E_v}(u) = \pi$, where *N* is the norm map. Define $F = u\sigma$. Then $F\lambda = \lambda^{\sigma}F$ for all $\lambda \in L$, and $F^a = \pi$. Thus we have constructed an operation of \mathcal{B} on $L \otimes E_v$ and hence on $L \otimes E_v$. Then as a \mathcal{B} -module

$$V_p A = T_p A \otimes_W L \cong L \otimes E_p$$
.

(For details of the above facts, see Chap. 5, [5].) As T_pA is an \mathcal{A} -invariant lattice in V_pA , we may suppose that T_pA is an \mathcal{A} -invariant lattice in $L \otimes E_p$. Then T_w is a lattice in $L \otimes e_p E_w \subset L \otimes E_p$, where $E_w = E \otimes_{\kappa} K_w$. Let $R_w = \operatorname{End}_{\mathcal{A}}(T_w)$, then we clearly have

$$R \otimes Z_p = \bigoplus_{w \mid p} R_w$$
.

Now we claim that each R_w is the maximal order of E_w .

(i) The case that w is of type (1). Then w splits in E/K. Since $\pi - p^a \pi^{-1}$

is a unit, we see that $O_{K_w}[\pi]$ is maximal. As $R_w \supset O_{K_w}[\pi]$, R_w is maximal.

(ii) The case that w is of type (3). Then w also splits in E/K into v and v'; $L \otimes_{q_p} E_w = (L \otimes_{q_p} E_v) \oplus (L \otimes_{q_p} E_v)$. Take $\alpha, \alpha' \in LE_v$ such that $N_{LE_v}(\alpha) = \pi$ and $N_{LE_v}(\alpha') = p^a \pi^{-1}$. We can put $F = (\langle 1, \dots, 1, \alpha \rangle + \langle 1, \dots, 1, \alpha' \rangle)\sigma$ on $(L \otimes E_v)$ $\oplus (L \otimes E_v)$. Say $v(\pi) < v'(\pi) = v(p^a \pi^{-1})$, then $s = [K_w : Q_p]v(\pi)/v(p^a)$ and $t = [K_w : Q_p]v(\pi)/v(p^a)$. Since T_w is a $W \otimes O_{K_w}$ -module, we have a decomposition $T_w = \frac{g}{i+1} T_i$, corresponding to the decomposition $W \otimes_{z_p} O_{K_w} = \oplus W O_{K_w}(g = g_v)$. As $T_w \otimes_{z_p} Q_p = L \otimes_{q_p} E_w$, we have $T_i \otimes_{z_p} Q_p \cong LK_w \otimes_k E(\cong LE_v \oplus LE_v)$. Thus T_i is a $W \otimes_{K_w}$ -free module of rank 2 and $W[F^g, V^g]$ -invariant. As a $W \otimes_{K_w}$ -module it has a basis of the form $(\lambda^{n_i}, 0), (\mu_i, \lambda^{m_i})$ with $\mu_i = 0$ or $v(\mu_i) < n_i$, where λ is a prime element of O_{K_w} . From the assumption we have that $V^{-s}F^tT_w = p^{-s}F^{s+t}T_w$ $\subset T_w$; hence for each i, $p^{-s}F^{s+t}T_i \subset T_i$. Now $p^{-s}F^{s+t}$ operates on T_i by $(\delta, \delta')\tau^h$, where $\delta = \alpha \cdot \alpha^{-\tau} \cdots \alpha^{\tau^{h-1}}/p^s, \delta' = \alpha' \cdot \alpha' \cdots \alpha'^{\tau^{h-1}}/p^s$ and h = (s+t)/g. Then $p^{-s}F^{s+t}$ $(\mu_i, \lambda^{m_i}) = (\delta \tau^h(\mu_i), \delta'\lambda^{m_i}) = \xi(\lambda^{n_i}, 0) + \eta(\mu_i, \lambda^{m_i})$ for some $\xi, \eta \in WO_{K_w}$; hence $\xi\lambda^{n_i} = \delta \tau^h(\mu_i) - \delta'\mu_i$. Now $v(\alpha) = v(\pi)/(a/g) = (gsv(p))/(s+t)$, hence $v(\delta) = 0$ and $v(\delta') > 0$; this implies $\mu_i = 0$. Thus each T_i has a basis of the form $(\lambda^{n_i}, 0), (0, \lambda^{m_i})$ over WO_{K_w} . This shows that R_w is maximal.

(iii) The case that w is of type (2). As K_w/Q_p is an unramified extension of odd degree and $\operatorname{End}_k(A)$ is commutative, w does not split in E/K. Let v be the place of E above w. Suppose first that E_v is unramified. As $2v(\pi)=a$, a is even and hence g_v is also even. Now $FT_w=VT_w$ implies that $V^{-1}FT_w=p^{-1}F^2T_w$ $=T_w$ and so $p^{-(a/2)}F^aT_w=T_w$. This shows that $R_w \ni p^{-(a/2)}\pi$. Since $p^{-(a/2)}\pi$ is a unit in R_w , there exists a unit u_1 in $W \otimes R_w$ with $N_{W \otimes R_w/R_w}(u_1)=p^{-(a/2)}\pi$ (cf. Prop. 7.3 and the proof of theorem 7.4 in [5], p. 554.). Put $u_2=\langle 1, p, 1, p, \cdots, 1, p \rangle \in L \otimes E_v$. Then $u_2\sigma(u_2)=p$ and $N_{L \otimes E_v/E_v}(u_1u_2)=\pi$. Now we can put $F=\langle u_1u_2\rangle\sigma$. Since T_w is $W \otimes R_w$ -invariant, we have $u_1T_w=T_w$. As $W \otimes R_w$ is invariant under σ , we also have that $\sigma'(u_1)T_w=T_w(j=1, 2, \cdots)$. As g'=g/2 is odd, we have

$$p^{-(g'-1)/2}F^{g'}T_w = F(p^{-1}F^2)^{(g'-1)/2}T_w = FT_w \subset T_w$$
.

It follows, by the definition of u_1, u_2 and F, that $u_2\sigma^{g'}(T_w) \subset T_w$. As in case (ii) we have a decomposition $T_w = \bigoplus_i T_i$, corresponding to $W \otimes O_{K_w} = \bigoplus WO_{K_w}$. Here T_i is invariant under $F^{g'}$; hence $u_2\sigma^{g'}(T_i) \subset T_i$. As a WO_{K_w} -module T_i has a basis of the form $(p^{n_i}, 0), (\mu_i, p^{m_i})$ with $\mu_i = 0$ or $v(\mu_i) < n_i$. $u_2\sigma^{g'}$ operates on T_i by

$$u_2 \sigma^{g'}(x_1, x_{g'+1}) = (x_{g'+1}, p\tau(x_1)), \quad \text{for} \quad (x_1, x_{g'+1}) \in T_i.$$

Then applying the same argument as in the proof of theorem 5.3 in [5], p. 548, we see that $\mu_i=0$; hence $T_w=\oplus T_i$ is invariant under the maximal order of E_v .

Suppose next E_v is ramified over K_w . Choose an $\alpha \in LE_v$ with $N_{LE_v/E_v}(\alpha) = \pi$, then we can put $F = \langle 1, \dots, 1, \alpha \rangle \sigma$. We extend v to LE_v naturally. As $g = g_v$ is odd, we have from the assumption

$$p^{-(g-1)/2}F^gT_w = F(p^{-1}F^2)^{(g-1)/2}T_w = FT_w \subset T_w$$
.

TETSUO NAKAMURA

As $F^{g} = \langle \alpha, \dots, \alpha \rangle \sigma^{g}$ and $v(\alpha) = g$, we see that $p^{-(g-1)/2}F^{g} = \langle \lambda, \dots \lambda \rangle \sigma^{g}$, where $\lambda = p^{-(g-1)/2}\alpha$ and $v(\lambda) = 1$. Now decompose T_{w} into $\bigoplus T_{i}$, corresponding to $W \otimes O_{K_{w}}$ $= \bigoplus WO_{K_{w}}$. T_{i} is invariant under F^{g} and has a basis of the form $p^{n_{i}}$, $\mu_{i} + p^{m_{i}}c$ with $\mu_{i} \in WO_{K_{w}}$, $\mu_{i} = 0$ or $w(\mu_{i}) < n_{i}$, where c is a prime element of E_{v} . Then we can also apply the argument in the proof of theorem 5.3 in [5] and we see that T_{w} is invariant under the maximal order of E_{v} . Therefore $R \otimes \mathbb{Z}_{p} = \bigoplus R_{w}$ is maximal and the proof is completed.

REMARK. If $R_w = \text{End}_{\mathcal{A}}(T_w)$ is maximal, we can write out the condition of a base of T_w (cf. p. 545 in [5]). Hence if R_w is maximal for a place w of K, of type (3), it is easy to show, by a direct calculation, that $F^{\iota(w)}T_w \subset V^{\mathfrak{s}(w)}T_w$.

COROLLARY. Let $\alpha_p = \operatorname{Spec} k[x]/(x^p)$ be as in [2], I.2-11. Assume that \tilde{A} is isogenous to $(G_{1,0})^m + (G_{1,1})^n$ for some m, n and $a(A)(=\dim_k \operatorname{Hom}(\alpha_p, A))=n$. Assume further (*) and that for each place w of K of type (2), K_w is an unramified extension of odd degree over Q_p . Then R is maximal at p. (For the property of a(A), cf. [2], [3], [4].)

Proof. Put $T=\sum T_w$, where the sum is taken over all w of type (2). Since $a(A)=\dim_k T/(F, V)T$ and $n=\dim_k T/FT=\dim_k T/VT$, we have that (F, V)T=FT=VT. Hence our conclusion is obvious by theorem 1.

REMARK. This corollary is a result which includes the first part of theorem 5.3 in [5], p. 548 (a result due to Shimura); assume that $R(\cong \operatorname{End}_k(A))$ is commutative and contains the maximal order of K. Assume also that p splits completely in K. Then R is maximal at p.

For, in this case, it is easy to see that $\hat{A} \sim (G_{1,0})^m + (G_{1,1})^n$ for some *m*, *n*, and, for each *w* of type (2), $T_w = G_{1,1}$; hence $a(T_w) = 1$ and therefore a(A) = n.

§3. LEMMA. Let M be a finite extension of Q_p and N be a quadratic extension of M. Let O_M and O_N be the maximal orders in M and N, respectively, and λ be a prime element of O_M . Let R be an order in O_N containing O_M . Then there exists a non-negative integer n such that $R=O_M+\lambda^n O_N$.

Proof. Let c be an element in O_N such that $O_N = O_M[c]$. Then $R \cap cO_M = c\lambda^n O_M$ for some $n \ge 0$. We see that

$$R = O_M + c\lambda^n O_M = O_M + \lambda^n O_N.$$

Let π be a Weil p^a -number such that its corresponding abelian varieties have commutative endomorphism rings and an isogeny type $(G_{1,0})^m + (G_{1,1})^n$, (n>0) for thier formal groups. Put $E=Q(\pi)$ and let K be the totally real subfield of E of index 2. We assume that, for each place w of K of type (2), K_w/Q_p is unramified of odd degree. (cf. the corollary of theorem 1.)

THEOREM 2. Let π be as above. Assume, for each place w of type (2), w is ramified in E. Put $f_w = [K_w : Q_p]$ and $g_w = (a, f_w)$. Let R be an order in O_E

containing $O_K[\pi]$. Then R is an endomorphism ring of an abelian variety corresponding to π if and only if, for each w of type (2), R_w contains $O_{K_w} + p^r_w O_{E_v}$, where v is the place of E with v|w and $r_w = (g_w - 1)/2$.

Proof. By Porism 4.3 in [5] we only need to consider the situation at p. We make $V=L\otimes_{q_p}E_p$ a \mathscr{B} -module as in the proof of theorem 1. The condition of R being an endomorphism ring is that there exists an \mathscr{A} -invariant W-lattice T in V such that $\operatorname{End}_{\mathscr{A}}T=R\otimes \mathbb{Z}_p$. Let T be an \mathscr{A} -invariant W-lattice in Vsuch that $\operatorname{End}_{\mathscr{A}}T\supset O_K$. Then T can be decomposed as $T=\bigoplus_{w\mid p}T_w$. (cf. §1) By the proof of theorem 1, $\operatorname{End}_{\mathscr{A}}(T_w)$ is maximal at each place w of type (1). Next let w be of type (2). Let c be a prime element in E_v . Then $O_{E_0}=O_{K_w}[c]$. Let α be an element in LE_v such that $N_{LE_v/E_v}(\alpha)=\pi$. Write $\alpha=d+bc$ with $b, d\in WO_{K_w}$. We see that $v(\alpha)=g_w=v(b)+1$ and v(b)<v(d). Put $g=g_w$ and $r=r_w$. Then v(b)=2r.

Put $F = \langle 1, \dots, 1, \alpha \rangle \sigma$ on $L \otimes_{q_p} E_w$ with $E_w = K_w \otimes_K E = E_v$. We have a decomposition $T_w = \bigoplus_{i=1}^{g} T_i$, corresponding to the decomposition $W \otimes O_{K_w} = \bigoplus WO_{K_w}$. (cf. the proof of theorem 1) T_i are F^g -invariant WO_{K_w} -lattice in LE_v . Then, for $x \in O_{E_v}$

 $x \in \operatorname{End}_{\mathcal{A}}(T_w) \Leftrightarrow xT_i \subset T_i$, for all ι .

Now write $\mathcal{C}(T_i) = \{x \in O_{E_v} | xT_i \subset T_i\}$. We may assume that T_i has a basis $\{1, \mu + p^m c\}$, where $\mu = 0$ or $v(\mu) < 0$ ($\mu \in LK_w$). Write $c^2 = h_1 c + h_2$ with $h_1, h_2 \in O_{K_w}$. Then $v(h_1) \ge v(h_2) = 2$.

We have

$$F^{g}(\mu + p^{m}c) = (d + bc)(\mu^{\tau} + p^{m}c)$$
$$= (d\mu^{\tau} + bp^{m}h_{2}) + (dp^{m} + b\mu^{\tau} + bp^{m}h_{1})c$$
$$= (\delta\mu + \eta) + \delta p^{m}c, \qquad (\tau = \sigma^{g}).$$

for some δ , $\eta \in WO_{K_w}$. Hence $\delta = d + b\mu^{-}p^{-m} + bh_1$ and $\delta\mu + \eta = d\mu^{\tau} + bp^{m}h_2$. If $\mu \neq 0$ and $v(\mu) \leq 2m$, then $v(\delta) = v(b) - 2m + v(\mu) \leq v(b)$. Hence $v(\delta\mu) < \min\{v(d\mu^{\tau}), v(bp^{m}h_2)\}$. This shows that $\delta\mu$ is integral. Therefore we have $v(b) \geq 2m - 2v(\mu)$. If $v(\mu) > 2m$, then $v(\delta) \geq v(b) + 2$ and $v(bp^{m}h_2) < \min\{v(\delta\mu), v(d\mu^{\tau})\}$. Therefore we have $v(b) \geq -2(m+1)$. If $\mu = 0$, we also have $v(b) \geq -2(m+1)$. On the other hand, we have the following; if $v(\mu) \leq 2m$, $\mathcal{E}(T_i) = O_{K_w} + p^{m-v(\mu)}O_{E_v}$ and if $v(\mu) > 2m$ or $\mu = 0$, then $\mathcal{E}(T_i) = O_{K_w} + p^{-m-1}O_{E_v}$. As this will be proved by direct computation with almost the same argument as above, we omit its proof. Consequently, we have $\mathcal{E}(T_i) = O_{K_w} + p^r O_{E_v}$.

Now let $S=O_{K_w}+p^tO_{E_v}(t\leq r)$ be an order in O_{E_v} containing $O_{K_w}+p^rO_{E_v}$. Then $WS=WO_{K_w}+p^tWO_{E_v}$ in LE_v . Put $T_{r+1-s}=WO_{K_w}+p^{t-s}WO_{E_v}$ and $T_{r+1+s}=p^sT_{r+1-s}$ for $0\leq s\leq r$. Here we consider that $T_{r+1-s}=WO_{E_v}$ if $t\leq s$. Let $T=\bigoplus_{i=1}^g T_i$ in

TETSUO NAKAMURA

 $L \otimes E_w = \bigoplus LE_v$. For $\langle x_1, x_2, \dots, x_g \rangle \in T$ with $x_i \in T_i (i=1, \dots, g)$, we have

$$F\langle x_1, x_2, \cdots, x_g \rangle = \langle x_2, x_3, \cdots, x_g, \alpha x_1^{\tau} \rangle$$

and

$$V\langle x_1, x_2, \cdots, x_g \rangle = \langle p(\alpha^{-1}x_g)^{c-1}, px_1, \cdots, px_{g-1} \rangle.$$

Now we have the following relations;

$$T_1 \supset T_2 \supset \cdots \supset T_{g-1} \supset T_g \supset \alpha T_1, \quad pT_1 \subset T_2, \quad pT_2 \subset T_3, \cdots,$$

$$pT_g \subset \alpha T_1, \quad T_1 = WO_{E_y} \text{ and } \quad T_i = T_i \text{ for all } i.$$

It is easy to see that T is \mathcal{A} -invariant and $\operatorname{End}_{\mathcal{A}} T=S$. Our assertion now follows immediately from these facts.

PROPOSITION 1. Let π be as stated just before theorem 2. Let A be an abelian variety corresponding to π such that $R=\operatorname{End}_k(A)$ contains O_K . Let w be of type (2) such that w is unramified in E. Then the localization R_w of R at w contains $O_{K_w} + p^{g-1}O_{E_v}$, where $g=([K_w: Q_p], a)$.

Proof. Let $\langle \rho \rangle = \text{Gal}(E_v/K_w)$ and $T = T_p A$. Let T_w , T_i , α , $\mathcal{E}(T_i)$ be as in the proof of theorem 2. Then $R_w = \text{End}_{\mathcal{A}} T_w$. T_i are $W[F^g, V^g]$ -invariant, WO_{K_w} -lattice in $LK_w \otimes_K E$. Let $(p^n, 0), (\mu, p^m)$ be a WO_{K_w} -basis of T_i , where $\mu = 0$ or $v(\mu) < n$. $\mu = 0$ implies that $\mathcal{E}(T_i)$ is maximal. Suppose $\mu \neq 0$. We have

$$\begin{aligned} F^{\mathfrak{g}}(\mu, p^{\mathfrak{m}}) &= (1, \alpha) \tau(\mu, p^{\mathfrak{m}}) = (p^{\mathfrak{m}}, \mu^{\mathfrak{r}} \alpha) \\ &= \delta(p^{\mathfrak{n}}, 0) + \eta(\mu, p^{\mathfrak{m}}) = (\delta p^{\mathfrak{n}} + \eta \mu, \eta^{\mathfrak{r}} p^{\mathfrak{m}}) \end{aligned}$$

for some δ , $\eta \in WO_{K_w}$. $(\tau = \sigma^g)$ Therefore $p^m = \delta p^n + p^{-m} \alpha^{\tau^{-1}} \mu^2$. If n > m, then $m = -m + 2v(\mu) + v(\alpha)$. As $v(\alpha) = g$ is odd, we must have $n \le m$. Then $p^{m-n} = \delta + p^{-m-n} \alpha^{\tau^{-1}} \mu^2$ shows that $v(\alpha) \ge m + n - 2v(\mu) > n - v(\mu)$. On the other hand, for $x \in O_{E_v}$

$$xT_{i} \subset T_{i} \Leftrightarrow (x\mu, xp^{m}) = (\delta p^{n} + \eta \mu, \eta^{-} p^{m})$$

for some $\delta, \eta \in WO_{K_{w}}$.
 $\Leftrightarrow v(x - x^{\rho}) \ge n - v(\mu)$
 $\Leftrightarrow x \in O_{K_{w}} + p^{n - v(\mu)}O_{E_{v}}$.

Therefore $\mathcal{E}(T_i) = O_{K_w} + p^{n-v(\mu)}O_{E_v} \supset O_{K_w} + p^{g-1}O_{E_v}$; as $R_w = \bigcap_i \mathcal{E}(T_i)$, this completes our proof.

COROLLARY. Let π be as above. If, for each w of type (2), a and $[K_w : Q_p]$ are relatively prime, then $R = \operatorname{End}_k(A)$ containing O_K is maximal at p.

This follows at once from theorem 2 and proposition 1.

128

REMARK. This corollary also contains theorem 5.3 in [5]. For, in that case, $[K_w: Q_p]=1$ for all w.

EXAMPLE. Let β be a root of $f(x)=4x^4+13x^3-20x-8=0$. f(x) has four real roots in the interval $(-2\sqrt{2}, 2\sqrt{2})$. $4^3f(x)=(4x)^4+13(4x)^3-20\times 4^2(4x)-8\times 4^3$ shows that f(x) has a root $\xi/4$ in Q_2 with a unit ξ in Q_2 . Put $g(x)=f(x)/(4x-\xi)$. Then $g(x)\in \mathbb{Z}_2[x]$ and $(1/2^3)g(2x)\equiv x^3+x+1 \pmod{2}$. This shows that g(x) is irreducible over Q_2 and has a root in the cubic unramified extension of Q_2 . Since $f(x)\equiv 0 \pmod{7}$ has no root in $\mathbb{Z}/7\mathbb{Z}$, we see that f(x) is irreducible over Q. Therefore there are two places w_1, w_2 above 2 in $K=Q(\beta)$ giving $w_1(\beta)=-2$ and $w_2(\beta)=1$. We have $K_{w_1}=Q_2$ and K_{w_2} is the cubic unramified extension of Q_2 . Let π be a root of $x^2-4\beta x+2^5=0$. π is a Weil 2⁵-number. w_1 splits in $E=Q(\pi)$ and, since $(x/4)^2-\beta(x/4)+2$ is Eisenstein in K_{w_2}, w_2 is ramified in E. π has a formal structure $G_{1,0}+(G_{1,1})^3$ and a commutative endomorphism algebra. So π satisfies the condition of the above corollary. Therefore an endomorphism ring containing O_K is maximal at p.

For a supersingular abelian variety A over k (i. e. $\hat{A} \sim (G_{1,1})^m$ with $m = \dim(A)$, cf. [4]), we have the following:

PROPOSITION 2. Let a be even and put a'=a/2. Let A be a simple supersingular abelian variety over k such that $R(\cong \operatorname{End}_k(A))$ is commutative. Assume that $F^{a'}T_pA = V^{a'}T_pA$. Then R is maximal at p.

Proof. Let π be the Weil number of A over k. Then $\pi = p^{a'}\zeta$, where ζ is a *n*-th root of 1 for some *n*. Since $V^{-a'}F^{a'} = p^{-a'}F^a = p^{-a'}\pi = \zeta$, we have $\zeta T_p A = T_p A$. In $E \otimes \mathbf{Q}_p$, $\zeta \in E = Q(\pi)$ generates the maximal order over \mathbf{Z}_p . Therfore R is maximal at p.

References

- [1] MANIN, YU. I., The theory of commutative formal groups over fields of finite characteristic, Russian Math. Surv. 18 (6) (1963) 1-83.
- [2] OORT, F., Commutative group schemes, Lect. N. Math. 15, Springer-Verlag (1966).
- [3] OORT, F., Isogenies of formal groups, Proc. Konin. Neder. Akad. Wet. 78 (1975) 391-400.
- [4] OORT, F., Which surfaces are products of elliptic curves?, Math. Ann. 214 (1975) 35-47.
- [5] WATERHOUSE, W.C., Abelian varieties over finite fields, Ann. scient. Éc. Norm. Sup. 2 (1939) 521-560.

DEPARTMENT OF MATHEMATICS, College of General Education, Tôhoku University