A NOTE ON ENDOMORPHISM RINGS OF ABELIAN VARIETIES OVER FINITE FIELDS

By Tetsuo Nakamura

Let p be a prime and let A be a simple abelian variety over a finite field k with p^{a} elements. In this note we ask some sufficient conditions that the endomorphism ring of A over k is maximal at p. Our result includes the first part of theorem 5.3 in Waterhouse [5]. The related facts should be referred to [5].
\S 1. Let $\operatorname{End}_{k}(A)$ be the ring of k-endomorphisms of a simple abelian variety A over a finite field k with p^{a} elements. We shall always assume that $\operatorname{End}_{k}(A)$ is commutative. Then there exist a $C M$ field E and an isomorphism $i_{A}: E \rightarrow$ $\operatorname{End}_{k}(A) \otimes \boldsymbol{Q}$. Let $R=l_{A}{ }^{-1}\left(\operatorname{End}_{k}(A)\right)$ and let K be the totally real subfield of index 2 in E. Let f_{A} be the Frobenius endomorphism of A over k and put $\pi=\imath_{A}{ }^{-1}\left(f_{A}\right)$. Then π is a Weil p^{a}-number, i. e. an algebraic integer such that $|\pi|^{2}=p^{a}$ in all embeddings of $E=\boldsymbol{Q}(\pi)$ into \boldsymbol{C}. Let w be a place of K above p and v be a place of E with $v \mid w$. Then we have the following three cases;
(1) $v(\pi)=0$ or $v(\pi)=v\left(p^{a}\right)$.
(2) $v(\pi)=v\left(p^{a} \pi^{-1}\right)$.
(3) $v(\pi) \neq v\left(p^{a} \pi^{-1}\right)$ and $0<v(\pi)<v\left(p^{a}\right)$.

We call that w is of type (1) (resp., (2), (3)) if v satisfies (1) (resp., (2), (3)). This is independent of the choice of v with $v \mid w$. Let K_{w} be the completion of K at w and let

$$
\begin{aligned}
G_{w} & =\left(G_{1,0}\right)^{\left[K_{w}: \boldsymbol{Q}_{p]}\right.}, \text { if } w \text { is of type (1), } \\
& =\left(G_{1,1}\right)^{\left[K_{w}: \boldsymbol{Q}_{p]}\right.}, \text { if } w \text { is of type (2), } \\
& =G_{s, t}+G_{t, s}, \text { if } w \text { is of type (3), }
\end{aligned}
$$

where $s=s(w)=\left[K_{w}: \boldsymbol{Q}_{p}\right] v(\pi) / v\left(p^{a}\right)$ and $t=t(w)=\left[K_{w}: \boldsymbol{Q}_{p}\right] v^{\prime}(\pi) / v^{\prime}\left(p^{a}\right)$ with the other place v^{\prime} of E above w. Then the formal group \hat{A} of A is isogenous to $\sum_{w \mid p} G_{w}$ (over the algebraic closure of k.) (cf. Manin [1], Chap. IV).

Now let $T_{p} A$ be the Dieudonné module of \hat{A}. Let $W=W(k)$ be the ring of Witt vectors over k and σ the automorphism of W induced by the Frobenius

[^0]automorphism $x \rightarrow x^{p}$ of k. Let $\mathcal{A}=W[F, V]$ be the (non-commutative) ring defined by the relations $F V=V F=p, F \lambda=\lambda^{\sigma} F$ and $\lambda V=V \lambda^{\sigma}$ for $\lambda \in W$. Then $T_{p} A$ is a left \mathcal{A}-module, W-free of rank $2 \operatorname{dim}(A)$. It is a well known result of Tate that
$$
\operatorname{End}_{k}(A) \otimes \boldsymbol{Z}_{p} \cong \operatorname{End}_{-l} T_{p} A
$$

Assume further that
(*) R contains the maximal order O_{K} of K.
Then as $T_{p} A$ is a module over $O_{K} \otimes \boldsymbol{Z}_{p}=\underset{w \nmid p}{\oplus} O_{K_{w}}$, we have the corresponding decomposition $T_{p} A=\underset{w p p}{\oplus} T_{w}$, where $O_{K_{w}}$ is the ring of integers of K_{w}. We see that T_{w} is a Dieudonné module whose corresponding formal group is isogenous to G_{w}.
§ 2. Theorem 1. Let the notations be as in §1. We assume (*) and the followings, for each w of type (2), K_{w} is an unramified extension over \boldsymbol{Q}_{p} of odd degree and $F T_{w}=V T_{w}$, and for each w of type (3), $F^{t(w)} T_{w} \subset V^{s(w)} T_{w}(s a y s(w)$ $<t(w)$.$) . Then R$ is maximal at p, i.e. $R \otimes \boldsymbol{Z}_{p}$ is the maximal order of $E \otimes \boldsymbol{Q}_{p}$.

Proof. Let L be the quotient field of $W=W(k)$, i. e. L is the unramified extension over \boldsymbol{Q}_{p}, of degree a. Put $\mathscr{B}=L \otimes_{w} \mathcal{A}=L[F, V]=L\left[F, F^{-1}\right]$. Let $\underset{v \mid p}{\oplus} E_{v}$ be the decomposition of $E_{p}=E \otimes \boldsymbol{Q}_{p}$ into fields. On $L \otimes_{\boldsymbol{Q}_{p}} E_{p}=\bigoplus_{v \mid p}\left(L \otimes_{\boldsymbol{Q}_{p}} E_{v}\right)$ we have L acting by left multiplication and E_{p} by right multiplication. Let f_{v} be the residue degree of $E_{v} / \boldsymbol{Q}_{p}$. Put $g_{v}=\left(f_{v}, a\right)$. Then $L E_{v}$ has degree a / g_{v} over E_{v} and $L \otimes E_{v}$ is a sum of g_{v} copies of the composite extension:

$$
\begin{gathered}
L \otimes E_{v} \cong L E_{v} \oplus \cdots \oplus L E_{v} \\
\omega \otimes \beta \longrightarrow\left\langle\omega \beta, \omega^{\sigma} \beta, \cdots, \omega^{\sigma g-1} \beta\right\rangle .
\end{gathered}
$$

We define the action of σ on $L \otimes E_{v}$ by acting on the L-factor. Then for $\left\langle x_{1}, \cdots, x_{g_{v}}\right\rangle \in \oplus L E_{v}$, we have $\sigma\left\langle x_{1}, \cdots, x_{g_{v}}\right\rangle=\left\langle x_{2}, \cdots, x_{g_{v}}, \tau\left(x_{1}\right)\right\rangle$, where $\tau=\sigma^{g_{v}}$ is the Frobenius automorphism of $L E_{v} / E_{v}$. Now we can choose $u \in L \otimes E_{v}$ with $N_{L \otimes E_{v} / E_{v}}(u)=\pi$, where N is the norm map. Define $F=u \sigma$. Then $F \lambda=\lambda^{\sigma} F$ for all $\lambda \in L$, and $F^{a}=\pi$. Thus we have constructed an operation of \mathscr{B} on $L \otimes E_{v}$ and hence on $L \otimes E_{p}$. Then as a \mathcal{B}-module

$$
V_{p} A=T_{p} A \otimes_{W} L \cong L \otimes E_{p} .
$$

(For details of the above facts, see Chap. 5, [5].) As $T_{p} A$ is an A-invariant lattice in $V_{p} A$, we may suppose that $T_{p} A$ is an \mathcal{A}-invariant lattice in $L \otimes E_{p}$. Then T_{w} is a lattice in $L \otimes_{\boldsymbol{e}_{p}} E_{w} \subset L \otimes E_{p}$, where $E_{w}=E \otimes_{K} K_{w}$. Let R_{w} $=\operatorname{End}_{\substack{ }}\left(T_{w}\right)$, then we clearly have

$$
R \otimes Z_{p}=\underset{w \backslash p}{\oplus} R_{w} .
$$

Now we claim that each R_{w} is the maximal order of E_{w}.
(i) The case that w is of type (1). Then w splits in E / K. Since $\pi-p^{a} \pi^{-1}$
is a unit, we see that $O_{K_{w}}[\pi]$ is maximal. As $R_{w} \supset O_{K_{w}}[\pi], R_{w}$ is maximal.
(ii) The case that w is of type (3). Then w also splits in E / K into v and $v^{\prime} ; L \otimes_{\boldsymbol{Q}_{p}} E_{w}=\left(L \otimes_{\boldsymbol{Q}_{p}} E_{v}\right) \oplus\left(L \otimes_{\boldsymbol{Q}_{p}} E_{v^{\prime}}\right)$. Take $\alpha, \alpha^{\prime} \in L E_{v}$ such that $N_{L E_{v}}(\alpha)=\pi$ and $N_{L E_{v}}\left(\alpha^{\prime}\right)=p^{a} \pi^{-1}$. We can put $F=\left(\langle 1, \cdots, 1, \alpha\rangle+\left\langle 1, \cdots 1, \alpha^{\prime}\right\rangle\right) \sigma$ on $\left(L \otimes E_{v}\right)$ $\oplus\left(L \otimes E_{v^{\prime}}\right)$. Say $v(\pi)<v^{\prime}(\pi)=v\left(p^{a} \pi^{-1}\right)$, then $s=\left[K_{w}: Q_{p}\right] v(\pi) / v\left(p^{a}\right)$ and $t=$ $\left[K_{w}: Q_{p}\right] v^{\prime}(\pi) / v\left(p^{a}\right)$. Since T_{w} is a $W \otimes O_{K_{w}}$-module, we have a decomposition $T_{w}=\sum_{i=1}^{g} T_{\imath}$, corresponding to the decomposition $W \otimes_{{ }_{2 p}} O_{K_{w}}=\oplus W O_{K_{w}}\left(g=g_{v}\right)$. As $T_{w} \otimes_{z_{p}} \boldsymbol{Q}_{p}=L \otimes_{\boldsymbol{a}_{p}} E_{w}$, we have $T_{\imath} \otimes_{z_{p}} \boldsymbol{Q}_{p} \cong L K_{w} \otimes_{k} E\left(\cong L E_{v} \oplus L E_{v^{\prime}}\right)$. Thus T_{\imath} is a $W O_{K_{w}}$ free module of rank 2 and $W\left[F^{g}, V^{g}\right]$-invariant. As a $W O_{K_{w}}$-module it has a basis of the form $\left(\lambda^{n_{2}}, 0\right),\left(\mu_{2}, \lambda^{m_{i}}\right)$ with $\mu_{\imath}=0$ or $v\left(\mu_{\imath}\right)<n_{\imath}$, where λ is a prime element of $O_{K_{w}}$. From the assumption we have that $V^{-s} F^{t} T_{w}=p^{-s} F^{s+t} T_{w}$ $\subset T_{w}$; hence for each $\imath, p^{-s} F^{s+\iota} T_{i} \subset T_{\imath}$. Now $p^{-s} F^{s+\ell}$ operates on T_{2} by $\left(\delta, \delta^{\prime}\right) \tau^{h}$, where $\delta=\alpha \cdot \alpha^{-} \cdots \alpha^{t h-1} / p^{s}, \delta^{\prime}=\alpha^{\prime} \cdot \alpha^{\prime} \cdots \alpha^{\prime-h-1} / p^{s}$ and $h=(s+t) / g$. Then $p^{-s} F^{s+t}$ $\left(\mu_{2}, \lambda^{m_{i}}\right)=\left(\partial \tau^{n}\left(\mu_{2}\right), \delta^{\prime} \lambda^{m_{i}}\right)=\xi\left(\lambda^{n_{2}}, 0\right)+\eta\left(\mu_{2}, \lambda^{m_{i}}\right)$ for some $\xi, \eta \in W O_{K_{w}}$; hence $\xi \lambda^{n_{2}}$ $=\delta \tau^{h}\left(\mu_{2}\right)-\partial^{\prime} \mu_{2}$. Now $v(\alpha)=v(\pi) /(a / g)=(g s v(p)) /(s+t)$, hence $v(\delta)=0$ and $v\left(\delta^{\prime}\right)>0$; this implies $\mu_{2}=0$. Thus each T_{2} has a basis of the form ($\left.\lambda^{n_{2}}, 0\right),\left(0, \lambda^{m_{2}}\right)$ over $W O_{K_{w}}$. This shows that R_{w} is maximal.
(iii) The case that w is of type (2). As $K_{w} / \boldsymbol{Q}_{p}$ is an unramified extension of odd degree and $\operatorname{End}_{k}(A)$ is commutative, w does not split in E / K. Let v be the place of E above w. Suppose first that E_{v} is unramified. As $2 v(\pi)=a, a$ is even and hence g_{v} is also even. Now $F T_{w}=V T_{w}$ implies that $V^{-1} F T_{w}=p^{-1} F^{2} T_{w}$ $=T_{w}$ and so $p^{-(a / 2)} F^{a} T_{w}=T_{w}$. This shows that $R_{w} \ni p^{-(a / 2)} \pi$. Since $p^{-(a / 2)} \pi$ is a unit in R_{w}, there exists a unit u_{1} in $W \otimes R_{w}$ with $N_{W \otimes R_{w} / R_{w}}\left(u_{1}\right)=p^{-(a / 2)} \pi$ (cf. Prop. 7.3 and the proof of theorem 7.4 in [5], p. 554.). Put $u_{2}=\langle 1, p, 1, p, \cdots, 1, p\rangle$ $\in L \otimes E_{v}$. Then $u_{2} \sigma\left(u_{2}\right)=p$ and $N_{L \otimes E_{v} / E_{v}}\left(u_{1} u_{2}\right)=\pi$. Now we can put $F=\left(u_{1} u_{2}\right) \sigma$. Since T_{w} is $W \otimes R_{w}$-invariant, we have $u_{1} T_{w}=T_{w}$. As $W \otimes R_{w}$ is invariant under σ, we also have that $\sigma^{\jmath}\left(u_{1}\right) T_{w}=T_{w}\left(\jmath=1,2, \cdots\right.$.). As $g^{\prime}=g / 2$ is odd, we have

$$
p^{-\left(g^{\prime}-1\right) / 2} F^{g^{\prime}} T_{w}=F\left(p^{-1} F^{2}\right)^{\left(g^{\prime}-1\right) / 2} T_{w}=F T_{w} \subset T_{w} .
$$

It follows, by the definition of u_{1}, u_{2} and F, that $u_{2} \sigma^{g^{\prime}}\left(T_{w}\right) \subset T_{w}$. As in case (ii) we have a decomposition $T_{w}=\underset{\imath}{\oplus} T_{\imath}$, corresponding to $W \otimes O_{K_{w}}=\oplus W O_{K_{w}}$. Here T_{\imath} is invariant under $F^{g^{\prime}}$; hence $u_{2} \sigma^{g^{\prime}}\left(T_{\imath}\right) \subset T_{\imath}$. As a $W O_{K_{w}}$-module T_{\imath} has a basis of the form ($p^{n_{2}}, 0$), ($\left.\mu_{2}, p^{m_{2}}\right)$ with $\mu_{2}=0$ or $v\left(\mu_{2}\right)<n_{2} . u_{2} \sigma^{g^{\prime}}$ operates on T_{2} by

$$
u_{2} \sigma^{g^{\prime}}\left(x_{1}, x_{g^{\prime}+1}\right)=\left(x_{g^{\prime}+1}, p \tau\left(x_{1}\right)\right), \quad \text { for } \quad\left(x_{1}, x_{g^{\prime}+1}\right) \in T_{2} .
$$

Then applying the same argument as in the proof of theorem 5.3 in [5], p. 548, we see that $\mu_{\imath}=0$; hence $T_{w}=\oplus T_{\imath}$ is invariant under the maximal order of E_{v}.

Suppose next E_{v} is ramified over K_{w}. Choose an $\alpha \in L E_{v}$ with $N_{L E_{v} / E_{v}}(\alpha)=\pi$, then we can put $F=\langle 1, \cdots, 1, \alpha\rangle \sigma$. We extend v to $L E_{v}$ naturally. As $g=g_{v}$ is odd, we have from the assumption

$$
p^{-(g-1) / 2} F^{g} T_{w}=F\left(p^{-1} F^{2}\right)^{(g-1) / 2} T_{w}=F T_{w} \subset T_{w} .
$$

As $F^{g}=\langle\alpha, \cdots, \alpha\rangle \sigma^{g}$ and $v(\alpha)=g$, we see that $p^{-(g-1) / 2} F^{g}=\langle\lambda, \cdots \lambda\rangle \sigma^{g}$, where $\lambda=p^{-(g-1) / 2} \alpha$ and $v(\lambda)=1$. Now decompose T_{w} into $\oplus T_{\nu}$, corresponding to $W \otimes O_{K_{w}}$ $=\oplus W O_{K_{w}} . \quad T_{2}$ is invariant under F^{g} and has a basis of the form $p^{n_{2}}, \mu_{2}+p^{m_{2}} c$ with $\mu_{i} \in W O_{K_{w}}, \mu_{i}=0$ or $w\left(\mu_{2}\right)<n_{i}$, where c is a prime element of E_{v}. Then we can also apply the argument in the proof of theorem 5.3 in [5] and we see that T_{w} is invariant under the maximal order of E_{v}. Therefore $R \otimes \boldsymbol{Z}_{p}=\oplus R_{w}$ is maximal and the proof is completed.

REMARK. If $R_{w}=\operatorname{End}_{\mathcal{u}}\left(T_{w}\right)$ is maximal, we can write out the condition of a base of T_{w} (cf. p. 545 in [5]). Hence if R_{w} is maximal for a place w of K, of type (3), it is easy to show, by a direct calculation, that $F^{t(w)} T_{w} \subset V^{s(w)} T_{w}$.

Corollary. Let $\alpha_{p}=\operatorname{Spec} k[x] /\left(x^{p}\right)$ be as in [2], I.2-11. Assume that \hat{A} is usogenous to $\left(G_{1,0}\right)^{m}+\left(G_{1,1}\right)^{n}$ for some m, n and $a(A)\left(=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, A\right)\right)=n$. Assume further (*) and that for each place w of K of type (2), K_{w} is an unramified extension of odd degree over \boldsymbol{Q}_{p}. Then R is maximal at p. (For the property of $a(A), c f .[2],[3],[4]$.

Proof. Put $T=\Sigma T_{w}$, where the sum is taken over all w of type (2). Since $a(A)=\operatorname{dim}_{k} T /(F, V) T$ and $n=\operatorname{dim}_{k} T / F T=\operatorname{dim}_{k} T / V T$, we have that $(F, V) T=F T$ $=V T$. Hence our conclusion is obvious by theorem 1 .

REMARK. This corollary is a result which includes the first part of theorem 5.3 in [5], p. 548 (a result due to Shimura) ; assume that $R\left(\cong \operatorname{End}_{k}(A)\right)$ is commutative and contains the maximal order of K. Assume also that p splits completely in K. Then R is maximal at p.

For, in this case, it is easy to see that $\hat{A} \sim\left(G_{1,0}\right)^{m}+\left(G_{1,1}\right)^{n}$ for some m, n, and, for each w of type (2), $T_{w}=G_{1,1}$; hence $a\left(T_{w}\right)=1$ and therefore $a(A)=n$.
§ 3. Lemma. Let M be a finite extension of \boldsymbol{Q}_{p} and N be a quadratic extension of M. Let O_{M} and O_{N} be the maximal orders in M and N, respectively, and λ be a prime element of O_{M}. Let R be an order in O_{N} containing O_{M}. Then there exists a non-negative integer n such that $R=O_{M}+\lambda^{n} O_{N}$.

Proof. Let c be an element in O_{N} such that $O_{N}=O_{M}[c]$. Then $R \cap c O_{M}$ $=c \lambda^{n} O_{M}$ for some $n \geqq 0$. We see that

$$
R=O_{M}+c \lambda^{n} O_{M}=O_{M}+\lambda^{n} O_{N} .
$$

Let π be a Weil p^{a}-number such that its corresponding abelian varieties have commutative endomorphism rings and an isogeny type $\left(G_{1,0}\right)^{m}+\left(G_{1,1}\right)^{n},(n>0)$ for thier formal groups. Put $E=\boldsymbol{Q}(\pi)$ and let K be the totally real subfield of E of index 2. We assume that, for each place w of K of type (2), $K_{w} / \boldsymbol{Q}_{p}$ is unramified of odd degree. (cf. the corollary of theorem 1.)

Theorem 2. Let π be as above. Assume, for each place w of type (2), w is ramified in E. Put $f_{w}=\left[K_{w}: \boldsymbol{Q}_{p}\right]$ and $g_{w}=\left(a, f_{w}\right)$. Let R be an order in O_{E}
containing $O_{K}[\pi]$. Then R is an endomorphism ring of an abelian variety corresponding to π if and only $\imath f$, for each w of type (2), R_{w} contains $O_{K_{w}}+p_{w}^{r} O_{E_{v}}$, where v is the place of E with $v \mid w$ and $r_{w}=\left(g_{w}-1\right) / 2$.

Proof. By Porism 4.3 in [5] we only need to consider the situation at p. We make $V=L \otimes_{a_{p}} E_{p}$ a \mathscr{B}-module as in the proof of theorem 1. The condition of R being an endomorphism ring is that there exists an \mathcal{A}-invariant W-lattice T in V such that $\operatorname{End}_{\mathscr{A}} T=R \otimes \boldsymbol{Z}_{p}$. Let T be an \mathcal{A}-invariant W-lattice in V such that $\operatorname{End}_{\mathfrak{l}} T \supset O_{K}$. Then T can be decomposed as $T={\underset{w / p}{ } T_{w} \text {. (cf. §1) By }}_{\text {. }}$ the proof of theorem 1, End ${ }_{\mathfrak{A}}\left(T_{w}\right)$ is maximal at each place w of type (1). Next let w be of type (2). Let c be a prime element in E_{v}. Then $O_{E_{v}}=O_{K_{w}}[c]$. Let α be an element in $L E_{v}$ such that $N_{L E_{v} / E_{v}}(\alpha)=\pi$. Write $\alpha=d+b c$ with $b, d \in W O_{K_{w}}$. We see that $v(\alpha)=g_{w}=v(b)+1$ and $v(b)<v(d)$. Put $g=g_{w}$ and $r=r_{w}$. Then $v(b)=2 r$.

Put $F=\langle 1, \cdots, 1, \alpha\rangle \sigma$ on $L \otimes_{a_{p}} E_{w}$ with $E_{w}=K_{w} \otimes_{K} E=E_{v}$. We have a decomposition $T_{w}=\underset{\iota=1}{g} T_{\imath}$, corresponding to the decomposition $W \otimes O_{K_{w}}=\oplus W O_{K_{w}}$. (cf. the proof of theorem 1) T_{\imath} are F^{g}-invariant $W O_{K_{w}}$-lattice in $L E_{v}$. Then, for $x \in O_{E_{v}}$

$$
x \in \operatorname{End}_{\iota}\left(T_{w}\right) \Leftrightarrow x T_{i} \subset T_{\imath}, \quad \text { for all } \quad \imath \text {. }
$$

Now write $\mathcal{E}\left(T_{\imath}\right)=\left\{x \in O_{E_{v}} \mid x T_{\imath} \subset T_{i}\right\}$. We may assume that T_{\imath} has a basis $\left\{1, \mu+p^{m} c\right\}$, where $\mu=0$ or $v(\mu)<0\left(\mu \in L K_{w}\right)$. Write $c^{2}=h_{1} c+h_{2}$ with $h_{1}, h_{2} \in O_{K_{w}}$. Then $v\left(h_{1}\right) \geqq v\left(h_{2}\right)=2$.

We have

$$
\begin{aligned}
F^{g}\left(\mu+p^{m} c\right) & =(d+b c)\left(\mu^{\tau}+p^{m} c\right) \\
& =\left(d \mu^{\tau}+b p^{m} h_{2}\right)+\left(d p^{m}+b \mu^{\tau}+b p^{m} h_{1}\right) c \\
& =(\delta \mu+\eta)+\delta p^{m} c, \quad\left(\tau=\sigma^{g}\right) .
\end{aligned}
$$

for some $\delta, \eta \in W O_{K_{w}}$. Hence $\delta=d+b \mu^{-} p^{-m}+b h_{1}$ and $\delta \mu+\eta=d \mu^{\tau}+b p^{m} h_{2}$. If $\mu \neq 0$ and $v(\mu) \leqq 2 m$, then $v(\delta)=v(b)-2 m+v(\mu) \leqq v(b)$. Hence $v(\delta \mu)<\min \left\{v\left(d \mu^{\tau}\right), v\left(b p^{m} h_{2}\right)\right\}$. This shows that $\delta \mu$ is integral. Therefore we have $v(b) \geqq 2 m-2 v(\mu)$. If $v(\mu)>2 m$, then $v(\delta) \geqq v(b)+2$ and $v\left(b p^{m} h_{2}\right)<\min \left\{v(\delta \mu), v\left(d \mu^{T}\right)\right\}$. Therefore we have $v(b)$ $\geqq-2(m+1)$. If $\mu=0$, we also have $v(b) \geqq-2(m+1)$. On the other hand, we have the following; if $v(\mu) \leqq 2 m, \mathcal{E}\left(T_{\imath}\right)=O_{K_{w}}+p^{m-v(\mu)} O_{E_{v}}$ and if $v(\mu)>2 m$ or $\mu=0$, then $\mathcal{E}\left(T_{\imath}\right)=O_{K_{w}}+p^{-m-1} O_{E_{v}}$. As this will be proved by direct computation with almost the same argument as above, we omit its proof. Consequently, we have $\mathcal{E}\left(T_{2}\right)$ $\supset O_{K_{w}}+p^{r} O_{E_{v}}$. Hence $\operatorname{End}_{\mathfrak{l}}\left(T_{w}\right)=\bigcap_{i} \mathcal{E}\left(T_{\imath}\right) \supset O_{K_{v}}+p^{r} O_{E_{v}}$.

Now let $S=O_{K_{w}}+p^{t} O_{E_{v}}(t \leqq r)$ be an order in $O_{E_{v}}$ containing $O_{K_{w}}+p^{r} O_{E_{v}}$. Then $W S=W O_{K_{w}}+p^{t} W O_{E_{v}}$ in $L E_{v}$. Put $T_{r+1-s}=W O_{K_{w}}+p^{t-s} W O_{E_{v}}$ and $T_{r+1+s}=p^{s} T_{r+1-s}$ for $0 \leqq s \leqq r$. Here we consider that $T_{r+1-s}=W O_{E_{v}}$ if $t \leqq s$. Let $T=\underset{\imath=1}{g} T_{\imath}$ in
$L \otimes E_{w}=\oplus L E_{v}$. For $\left\langle x_{1}, x_{2}, \cdots, x_{g}\right\rangle \in T$ with $x_{i} \in T_{i}(\imath=1, \cdots, g)$, we have

$$
F\left\langle x_{1}, x_{2}, \cdots, x_{g}\right\rangle=\left\langle x_{2}, x_{3}, \cdots, x_{g}, \alpha x_{1}{ }^{-}\right\rangle
$$

and

$$
V\left\langle x_{1}, x_{2}, \cdots, x_{g}\right\rangle=\left\langle p\left(\alpha^{-1} x_{g}\right)^{)^{-1}}, p x_{1}, \cdots, p x_{g-1}\right\rangle .
$$

Now we have the following relations;

$$
\begin{aligned}
& T_{1} \supset T_{2} \supset \cdots \supset T_{g-1} \supset T_{g} \supset \alpha T_{1}, \quad p T_{1} \subset T_{2}, \quad p T_{2} \subset T_{3}, \cdots, \\
& p T_{g} \subset \alpha T_{1}, \quad T_{1}=W O_{E_{v}} \quad \text { and } \quad T_{2}=T_{2} \text { for all } \imath .
\end{aligned}
$$

It is easy to see that T is \mathcal{A}-invariant and $E_{n d} T=S$. Our assertion now follows immediately from these facts.

Proposition 1. Let π be as stated just before theorem 2. Let A be an abelian variety corresponding to π such that $R=\operatorname{End}_{k}(A)$ contains O_{K}. Let w be of type (2) such that w is unramified in E. Then the localization R_{w} of R at w contams $O_{K_{w}}+p^{g-1} O_{E_{v}}$, where $g=\left(\left[K_{w}: Q_{p}\right], a\right)$.

Proof. Let $\langle\rho\rangle=\operatorname{Gal}\left(E_{v} / K_{w}\right)$ and $T=T_{p} A$. Let $T_{w}, T_{\imath}, \alpha, \mathcal{E}\left(T_{\imath}\right)$ be as in the proof of theorem 2. Then $R_{w}=\operatorname{End}_{\iota} T_{w} . T_{\imath}$ are $W\left[F^{g}, V^{g}\right]$-invariant, $W O_{K_{w}}$ lattice in $L K_{w} \otimes_{K} E$. Let $\left(p^{n}, 0\right),\left(\mu, p^{m}\right)$ be a $W O_{K_{w}}$-basis of T_{v}, where $\mu=0$ or $v(\mu)<n$. $\mu=0$ implies that $\mathcal{E}\left(T_{2}\right)$ is maximal. Suppose $\mu \neq 0$. We have

$$
\begin{aligned}
F^{g}\left(\mu, p^{m}\right) & =(1, \alpha) \tau\left(\mu, p^{m}\right)=\left(p^{m}, \mu^{-} \alpha\right) \\
& =\delta\left(p^{n}, 0\right)+\eta\left(\mu, p^{m}\right)=\left(\delta p^{n}+\eta \mu, \eta^{-} p^{m}\right)
\end{aligned}
$$

for some $\delta, \eta \in W O_{K_{w}} .\left(\tau=\sigma^{g}\right)$ Therefore $p^{m}=\delta p^{n}+p^{-m} \alpha^{--1} \mu^{2}$. If $n>m$, then m $=-m+2 v(\mu)+v(\alpha)$. As $v(\alpha)=g$ is odd, we must have $n \leqq m$. Then $p^{m-n}=\delta$ $+p^{-m-n} \alpha^{--1} \mu^{2}$ shows that $v(\alpha) \geqq m+n-2 v(\mu)>n-v(\mu)$. On the other hand, for $x \in O_{E_{v}}$

$$
\begin{aligned}
x T_{2} \subset T_{2} & \Leftrightarrow\left(x \mu, x p^{m}\right)=\left(\delta p^{n}+\eta \mu, \eta^{=} p^{m}\right) \\
& \text { for some } \delta, \eta \in W O_{K_{w}} . \\
& \Leftrightarrow v\left(x-x^{\rho}\right) \geqq n-v(\mu) \\
& \Leftrightarrow x \in O_{K_{w}}+p^{n-v(\mu)} O_{E_{v}} .
\end{aligned}
$$

Therefore $\mathcal{E}\left(T_{\imath}\right)=O_{K_{w}}+p^{n-v(\mu)} O_{E_{v}} \supset O_{K_{w}}+p^{g-1} O_{E_{v}}$; as $R_{w}=\bigcap_{2} \mathcal{E}\left(T_{2}\right)$, this completes our proof.

Corollary. Let π be as above. If, for each w of type (2), a and $\left[K_{w}: \boldsymbol{Q}_{p}\right]$ are relatively prime, then $R=\operatorname{End}_{k}(A)$ containing O_{K} is maximal at p.

This follows at once from theorem 2 and proposition 1.

REMARK. This corollary also contains theorem 5.3 in [5]. For, in that case, $\left[K_{w}: \boldsymbol{Q}_{p}\right]=1$ for all w.

Example. Let β be a root of $f(x)=4 x^{4}+13 x^{3}-20 x-8=0 . f(x)$ has four real roots in the interval $(-2 \sqrt{2}, 2 \sqrt{2}) .4^{3} f(x)=(4 x)^{4}+13(4 x)^{3}-20 \times 4^{2}(4 x)-8 \times 4^{3}$ shows that $f(x)$ has a root $\xi / 4$ in \boldsymbol{Q}_{2} with a unit $\boldsymbol{\xi}$ in \boldsymbol{Q}_{2}. Put $g(x)=f(x) /(4 x-\xi)$. Then $g(x) \in \boldsymbol{Z}_{2}[x]$ and $\left(1 / 2^{3}\right) g(2 x) \equiv x^{3}+x+1(\bmod 2)$. This shows that $g(x)$ is irreducible over \boldsymbol{Q}_{2} and has a root in the cubic unramified extension of \boldsymbol{Q}_{2}. Since $f(x) \equiv 0(\bmod 7)$ has no root in $\boldsymbol{Z} / 7 \boldsymbol{Z}$, we see that $f(x)$ is irreducible over \boldsymbol{Q}. Therefore there are two places w_{1}, w_{2} above 2 in $K=\boldsymbol{Q}(\beta)$ giving $w_{1}(\beta)=-2$ and $w_{2}(\beta)=1$. We have $K_{w_{1}}=\boldsymbol{Q}_{2}$ and $K_{w_{2}}$ is the cubic unramified extension of \boldsymbol{Q}_{2}. Let π be a root of $x^{2}-4 \beta x+2^{5}=0 . \pi$ is a Weil 2^{5}-number. w_{1} splits in $E=\boldsymbol{Q}(\pi)$ and, since $(x / 4)^{2}-\beta(x / 4)+2$ is Eisenstein in $K_{w_{2}}, w_{2}$ is ramified in $E . \pi$ has a formal structure $G_{1,0}+\left(G_{1,1}\right)^{3}$ and a commutative endomorphism algebra. So π satisfies the condition of the above corollary. Therefore an endomorphism ring containing O_{K} is maximal at p.

For a supersingular abelian variety A over k (i. e. $\hat{A} \sim\left(G_{1,1}\right)^{m}$ with $m=\operatorname{dim}(A)$, cf. [4]), we have the following :

Proposition 2. Let a be even and put $a^{\prime}=a / 2$. Let A be a simple supersingular abelian variety over k such that $R\left(\cong \operatorname{End}_{k}(A)\right)$ is commutative. Assume that $F^{a^{\prime}} T_{p} A=V^{a^{\prime}} T_{p} A$. Then R is maximal at p.

Proof. Let π be the Weil number of A over k. Then $\pi=p^{a^{\prime}} \zeta$, where ζ is a n-th root of 1 for some n. Since $V^{-a^{\prime}} F^{a^{\prime}}=p^{-a^{\prime}} F^{a}=p^{-a^{\prime}} \pi=\zeta$, we have $\zeta T_{p} A$ $=T_{p} A$. In $E \otimes \boldsymbol{Q}_{p}, \zeta \in E=Q(\pi)$ generates the maximal order over \boldsymbol{Z}_{p}. Therfore R is maximal at p.

References

[1] Mavin, Yu. I., The theory of commutative formal groups over fields of finite characteristic, Russian Math. Surv. 18 (6) (1963) 1-83.
[2] Oort, F., Commutative group schemes, Lect. N. Math. 15, Sprınger-Verlag (1966).
[3] Oort, F., Isogenies of formal groups, Proc. Konın. Neder. Akad. Wet. 78 (1975) 391-400.
[4] Oort, F., Which surfaces are products of elliptic curves?, Math. Ann. 214 (1975) 35-47.
[5] Waterhouse, W.C., Abelian varieties over finite fields, Ann. scient. Éc. Norm. Sup. 2 (1969) 521-560.

Department of Mathematics, College of General Education, Tôhoke University

[^0]: Received October 13, 1977.

