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1. We say that a meromorphic function F(z) has a non-trivial factorization
with left factor f(z) and right factor g(z), if

M F(z)=f(g(2),

where f(z) is a non-linear meromorphic function and g(z) is a non-linear entire
function (g(z) may be meromorphic when f(z) is a rational function). F(z) is
said to be prime, if it has no non-trivial factorization, i.e. if (1) implies that either
f(2) or g(z) is linear. F(z) is said to be pseudo-prime, if (1) implies either f(z)
or g(z) is not transcendental. Further, we say that an entire function F(z) is
E-prime (E-pseudo-prime), if it is prime (pseudo-prime) for entire functions f(z)
and g(z) in (1).

Recently Urabe-Yang [6] proved the E-primeness of F™(z) (n=0, 1, 2, ),
where

F(z)———gz(e’—l)ezzdz

0

and the author [4] proved the E-primeness of F™(z),
F(z):S:(ez—l)e’kdz, (k=3 : an integer).

Further in their papers they made a study of the factorization of F‘®(z), where
F(z) is an entire function of the form

F@={ (H(2e+ (@) " 2dz,

where Hj(z) (£0), y=1, 2, are entire functions of order less than one and P(z) is

a polynomial of degree not lower than two.
The purpose of this paper is to improve and to complement their results.

And in § 5 we shall prove the primeness of entire functions F™(z), n=0, 1, 2, ---,
where
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F(z)=S:{Pl(z)ez-l—Pz(z)}e"’dz (k=3: an integer)

with two polynomials P,(z) and P,(z) which are not identically zero.

2. For our purpose we need several lemmas

Lemma 1 (cf. [3; pp. 117-118]). Let a,(z) be entwre functions of order at
most p, giz) also entwre functions and gfz)—gz) (#k) transcendental entire
Sunctions or polynomals of degree higher than p. Then the identity relation

n
Jg a(2)e?i”=qa(z)

holds only when alz)=a,(z)= -+ =a,(2)=0.

From Proposition 2 in Ozawa [5] and the argument in [5, p. 331] we deduce
the following Lemma 2 and Lemma 3.

LEMMA 2. Let F(z) be a transcendental entire function which admits a fac-
torization f(g(z)) with a meromorphic (not entwre) function f(z) and an entire
Sfunction g(z). Then we have

f=f(2)/(z—a),  flla)#0, glz)=ate ),

where fi(z) 1s an entire function, L(z) a non-constant entwre function, a a complex
number and n a posihve nteger.

LEMMA 3. Let F(z) be a transcendental entire function which admits a fac-
torization f(g(z)) with a non-linear rational function (not a polynomial) f(z) and
a transcendental meromorphic function g(z). Then we have

Fz)=Q(p+e"®)e ™™, Q(B)+0,

where Q(z) 1s a polynomial, M(z) a non-constant entire function, B a complex
number and m a positive integer.

LEMMA 4 (Clunie [1]). Let f(z) and g(z) be two transcendental entire func-
tions. Then

. T(r, f(g)
171210 T(r,

LEMMA 5 (Goldstein [2]). Let F(z) be an entire function of finite order such
that 6(a, F)=1 for some a#oo. Then F(z) 1s E-pseudo-prime.

=00,

From the reasoning in the proof of Theorem 3 in [4] we deduce that

LEMMA 6. Let {a,} be non-vanishing zeros of e*—az”, where a 1s a non-zero
constant and p is an integer. Then there 1s an integer N such that {a,} satisfy
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{ Rea,=n, cosb,=loglal+pulogr,,
Im a,=7,sin0,=a-+pd,+(—1)2x[v/2]

for all y=N, where a,=r,e"%, a=|a|e**(0=£6,<2z, 0=Za<27) and [x] 1s the
greatest integer not exceeding x.

3. Now we shall prove

THEOREM 1. Let P(z) be a polynomial of degree k (k=2) and H\(z) and Hy(z)
two entive functions which are of orvder less than one and are not identically zero.
The entwre function F(z2)={H\(z)e’+ Hy(z)}e"® has a non-trinal factorization if
and only if there are a complex number a and an wnteger m such that the following
identities

3.1 P(z+a)—P(—z+a)=—z+mm
and
(3.2) H(z+a)e*—(—1)"Hy(—z+a)=0

hold. Then the non-trivial factorization of F(z) 1s F(z)=f(A(z—a)*+B), where
f(z) 1s an entwre function and A (#+0) and B are constants.

Proof. Assume that F(z) has a non-trivial factorization f(g(z)).

(I) Suppose that f(z) and g(z) are entire. Then from the reasoning in proof
of Theorem 2 in [4] we deduce that g(z) is a polynomial of degree two. Put
g(z)=A(z—a)*+ B (A+0) and w=z—a. Then F(w+a)=f(Aw*+ B) and consequently
Flw+a)=F(—w+a). Hence we have

(3.3) {H(w+a)e® o+ Hy(w+a)}ef W -Pwta
={H(—w+a)e " *+ H(—w+a)}.

If deg {P(w+a)—P(—w+a)} =2, then Lemma 1 implies that H(w-+a)=
Hy(w+a)=0, which contradicts our assumptions H,(z)#0 and H,(z)%0. Hence
we put P(w+a)—P(—w-+a)=aw+p. If a—1, then Lemma 1 yields that H,=0
or H,=0, which is a contradiction. Hence we have a=—1. Then (3.3) reduces to

{How+a)eP— H(—w+a)ee -+ H(w+a)e* ’— Hy( —w+a)=0.
Again using Lemma 1 we have
H (w-+a)e’—H(—w+a)e*=0 and H(w+a)e* '—H(—w+a)=0.

Therefore, using H,==0, we obtain (3.1) and (3.2).
(II) Suppose that f(z) is meromorphic (not entire) and g(z) is entire. Then
Lemma 2 implies that
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F@)=e @ f(a+e"®),  fila)#0,

where f,(z) is an entire function, L(z) a non-constant entire function, & a complex
number and n a positive integer. Since F(z)={H,(2)e*+ Hy(z)}eF® has an infinite
number of zeros the exponent of convergence of which is one, fi(z) has a zero
and L(z) is linear, that is, L(z)=7z+0 (y#0). Hence we have

(HL(2)e -+ H2)} 7O M= f(a+or**9)

Since deg{P(z)+nyz+nd} =2 and a-+e"**° is transcendental, the argument in (I)
implies that f,(z) is linear. Hence it follows from Lemma 1 that H(z)e*+ Hy(z)
=0, that is, H,=H,=0, which is a contradiction.

(IIT) Suppose that f(z) is non-linear rational and g(z) is meromorphic. Then
Lemma 3 implies that

F@=em™oQ(a+e"®),  Q(B)*0,

where Q(z) is a polynomial, M(z) a non-constant entire function, 8 a complex
number and m a positive integer. Hence we can apply the same reasoning as in

(ID and we arrive at a contradiction.
Thus if F(z) has a non-trivial factorization, then (3.1) and (3.2) hold.

Conversely, assume that (3.1) and (3.2) hold. Then we have
{H\(w-+a)e+*+ H(w+a)} ePw+®
={H(—w+a)e "+ H(—w-+a)}ef ¥+,

Putting G(w)={H,(w-+a)e***+ H(w+a)} £ **®, we have Gw)=G(—w). And so
G(w) is an even function. Hence there is an entire function f(w) such that G(w)
=f(w?). Since F(w+a)=G(w), we obtain F(z)=f((z—a)?), which is a desired non-
trivial factorization of F(z).

Thus the proof of Theorem 1 is complete.

4. Next we shall prove

THEOREM 2. Let P(z) be a polynomial of degree k (k=3) and H(z) and Hy(z)
two entirve functions which are of order less than one and are not identically zero.
Suppose that all but a finite number of zeros of Hyz)e’-+Hy(z) are simple and
theve are two positive numbers K and N, satisfying

4.1 jEﬂ 1/lafa,—a)| =K

for all I=ZN,, where {a;}7 are non-vanishing zeros of Hy(z)e*+Hy(z). The entire
function

F(z)=S: (H(2)e*+ Hy2)} P dz



FACTORIZATION OF ENTIRE FUNCTIONS 281

has a non-trivial factorization if and only 1f there are a complex number a and
an integer m such that the following indentities

4.2) P(z4+a)—P(—z+a)=—z+mm
and
4.3) H(z+a)e*+H(—1)"Hy(—z+a)=0

hold. Then the non-trivial factorization of F(z) is F(z)=f(A(z—a)*+B), where
f(z) is an entire function and A(+#0) and B are constants.

Proof. Assume that F(z) has a non-trivial factorization f(g(z)).

(I) Suppose that f(z) and g(z) are entire. Then from the reasoning in proof
of Theorem 1 in [4] we deduce that g(z) is a polynomial of degree two. Put
g(z2)=A(z—a)*+B(A+0) and w=z—a. Then F(w+a)=f(Aw?*+ B) and consequently
F'(w+a)=—F'(—w-+a). Hence we have

44 {H(w+a)e? *+ Hy(w—+a)} el wter-P-wta
=—{H(—wta)e "+ H(—w+a}.

Hence as in (I) of the proof of our Theorem 1 we deduce from (4.4) that (4.2)
and (4.3) hold.

(II) Suppose that f(z) is meromorphic (not entire) and g(z) is entire. Then
Lemma 2 implies that

F(2)=e M@ f (a+el®), fila)#0,

where f,(z) is an entire function, L(z) a non-constant entire function, « a complex
number and n a positive integer. Since F(z) is of finite order, we deduce from
Lemma 4 that a+eX® is of finite order, that is, L(z) is a polynomial. It follows
that

(4.5) {H\(2)e*+Hy(2)} " @=F'(z)=L"(2)e "L f,(e*®) ,

where fy(z)=—nf\(a+z)+zf/(a+z). Since F’'(z) has an infinite number of zeros,
f+«(z) is a non-constant entire function. (4.5) yields that

(46) (H(2)er+ H2)/ L'(2)} eF hEd= £(o10)

If deg{P(z)+nL(z)} <1, then deg P(z)=deg L(z)=3. Hence the function in left
hand side of (4.6) is of order not greater than one and the function in right hand
side of (4.6) is of order not less than three, which is untenable. If deg {P(2)+
nL(2)} =2, then the function has a maximal deficiency at zero. Hence Lemma 5
implies that f)(z) is a polynomial. Put fy(z)=a,z"™+ -+ +a,z+a, (a,#0). Then
we have

{Hl(z)e’—l—Hz(z)} eP(z)+nL(z):L/(Z) {amemL(Z)+ vee +aleL(Z)+do}.
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However using Lemma 1 we have H,(z)=0, which is a contradiction.
(IlT) Suppose that f(z) is non-linear rational and g(z) is meromorphic. Then
Lemma 3 implies that

F(2)=e ™ ®Q(p+e"®),  Q(B)=0,

where Q(z) is a polynomial, M(z) a non-constant entire function, 8 a complex
number and m a positive integer. Hence as in (II) we arrive at a contradiction.
Thus if F(z) has a non-trivial factorization, then (4.2) and (4.3) hold.
Conversely, assume that (4.2) and (4.3) hold. Then we have (4.4). Hence
Gw)={H,(w+a)e***+ Hy(w+a)} £ **® is an odd function. Therefore there is an
entire function G*(w) such that G(w)=wG*(w?). Put

f@= " GHae

Then we have 2f(z2)=G*(z) and f(a*)=0. Since F/(w+a)=Gw)=wG*w?), we
obtain F(z)=f((z—a)?), which is a desired non-trivial factorization of F(z).
Thus the proof of Theorem 2 is complete.

5. Finally, as an application of our Theorem 1 and Theorem 2, we shall
give prime entire functions.

THEOREM 3. Let P(z) be a polynomial of degree k(k=3) such that if k is
odd, P(z) is arbitrary and if k1s even, P(z)=a,z* (a,#0). Let Py(z) and P,(z) be
two polynomials which are not identically zero. Then all F*™(z), n=0, 1, 2, ---,
are prime, where

F(Z):S: {Py(2)e*+Py(2)} " @dz .

Proof. Since P(z) is a polynomial of degree %k (k=3) and P,(z) and P.(z) are
two polynomials which are not identically zero, we have F™(z)= {P;.(z)e*+
P, (2)}eF®, where P.,(z) and P,,(z) are polynomials which are not identically
zero. Further it is clear that P(z) does not satisfy (3.1). Hence we deduce from
our Theorem 1 that all F*™(z), n=1, 2, --+, are prime.

It is clear that all but a finite number of zeros of P,(z)e*+P,(z) are simple
and P(z) does not satisfy (4.2). Hence the primeness of F(z) follows from our
Theorem 2 if we show that the zeros {b;} of Pi(z)e’+ Py(z) satisfy (4.1).

Now we prove that {b;} satisfy (4.1). It follows that there is a positive
number R, such that

Py(z) . M

P % 1+A@), A §|7]
hold for all z&Q2={z; |z| >R,}, where a is a non-zero complex number, g an
integer and M a positive number. Let {a,} be zeros of ¢*—az”. Since Lemma 6
valids for {a,} and we have
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Re b,=p, cos ¢;=log |a| +p log p,+log |1+ A(p,e'%9)]|

for b,=p,e’?7€£2, we may assume, without loss of generality, that

(5.1) |[Rea,|<zlogr, and |Reb;|<zlogp,, a, b;ef

with |p¢]|<z. Put n(r)=(c log r)/r with 7c<2¢ and
Ci={z=rexpil(z/2)—n(r); r>R,},
Co={z=rexpi(z/2)+5(r); r>R,},
Co={z=rexpi((3x/2)—n(r)); r>R},

Ci={z=rexpi(3r/2)+n(); r>R}
and
I'y,={z=a,+x+1y; | x| <30 log |a,l|}.

We claim that for any >0, if R, is sufficiently large, the equation P,(z)e’-+Py(2)
=0, that is, e—az*(1+A(z))=0 has only one solution in £,C2 and has no solu-
tion in 2—\U0,, where £, is a domain bounded by four curves C, C,, [ 5, and
I'_;, when v is even, that is, Ima,>0 and by C, C,, I's, and ['_;, when v is
odd, that is, Ima,<0. We may assume that Ima,>0. On C, we have

lgg |laz#/e?| = 111301 lazA(z)/e?| =0,
and consequently, if R, is sufficiently large,
(5.2) ler—az*| > |az"A(z)| for all zeC,NL2.
Since z+y¢>0, we also have on C,
lim |¢*/(az*)| = lim |az"A(2)/(az")| =0,
and consequently
(5.3) le*—az*| > |az*A(z)| for all zeC,n\02.

We choose y arbitrarily such that 0=|y|<2r—0 and fix it. For z=a,+x+1y
el’,,, we have

[(x+1y)/a,| <|3c log |a,| +2x|/|a,| =0  (v—o0)

and |1—e¢"""| =sind. Further since e®*—aa,”=0, if R, is sufficiently large, we
have
|e*—az*| =(sin d)|a| | a,|#*? for zel',,NQ2.

On the other hand we have

laztA(z)| <2M|alla,|#? for zel',,NQ2.
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Hence, if R, is sufficiently large and d<|y| =<2z —0, we have

(54)

|e*—az*| > |az"A(z)| for all zel',,N2.

Therefore using Rouché’s theorem and taking (5.1) into account, we conclude
from (5.2), (5.3) and (5.4) that the equation P(z)e*+Py(z)=0, that is, e—az*(1+
A(z))=0 has only one solution in £2,C£2 and no solution in 2—\U%,. Hence,
since {a,} satisfy (4.1), the zeros {b;} of P(z)e’+P,(z) satisfy (4.1).

Thus the proof of Theorem 3 is complete.

Remark. An example in Remark 2 of [4] implies that our Theorem 3 is not
true in the case when k=2,
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