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Any real hypersurface M immersed in a complex manifold admits a hyper-
distribution with complex structure induced from the complex structure of the
ambient manifold. On the other hand it is well known that M is endowed with
a pseudo-conformal structure under some restrictions (See Cartan [1], Chern and
Moser [2], Tanaka [7]). In the present paper we shall study hyperdistribution
with complex structure in a manifold of odd dimensions and show that a hyper-
distribution with complex structure determines a pseudo-conformal structure if
it is torsionless and non-degenerate.

First of all, definitions and some properties of almost contact structures will
be recalled in §1 for later use. §2 will be devoted to make clear relation-
ships between a hyperdistribution D with complex structure and almost contact
structures associated with D. We shall prove in §3 some necessary and suffici-
ent conditions for D to be torsionless. In §4 we shall define pseudo-conformal
mappings, transformations and infinitesimal pseudo-conformal transformations and
obtain some of their properties.

§1. Almost contact structures.

In this section, we shall recall definitions and some properties of almost
contact structures for later use. Let M be a differentiable manifold of dimen-
sion 2n+1 (=3) and there be given in M a tensor field f of type (1, 1), a vector
field & and a 1-form @ satisfying

(L.1) [i=—1+0®E, f£=0, fo0=0, 0(5)=1,

where I denotes the identity tensor field of type (1,1) in M.* Then such a
triple (f, &, 6) is called an almost contact structure. We define now tensor fields
S of type (1,2), T of type (0,2), P of type (1,1) and Q of type (0, 1) res-
pectively by

Received December 15, 1976.
*) Manifolds, tensor fields, geometric objects and mappings we consider are as-
sume to be differentiable and of class C* unless otherwise stated.
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DISTRIBUTIONS WITH COMPLEX STRUCTURE 265
SX, V)=07/X, ;Y1=fL/X, YI=/[X /Y14 /20X, Y]4+d0(X, Y)§,
1.2) T(X, V)=dO0(fX, Y)—do(fY, X),
P=—L:f, Q=—L:0,

where L, denotes the operator of Lie derivation with respect to a vector field
Z* The tensor field S thus defined is called the forsion tensor of the almost
contact structure (f, &, #). The tensor field G of type (0, 2) defined by

(1.3) GX, V)=do(fX, Y)
is called the Lew: tensor of (f, &, 6). Then (1.2) implies
(1.4) T(X, V)=G(X, Y)—-G(Y, X).

There are well known identities
(1.5) T(X, Y)=0(S(fX, §)0(Y)—S(X, fY)),
1.6) P(X)=—S(fX, &)

(See Sasaki [5], p.5-2, for example). The following propositions (P,) and (P,)
are also well known (See Sasaki [5], p.5-6, for example):

P S=0 implies T7=0, P=0 and Q=0;
P,) P=0 implies Q=0.

When the condition S=0 is satisfied, the almost contact structure (f, &, 6) is
usually said to be normal.

Denote by f.®, &* and 6, respectively components of f, & and ¢ in each
coordinate neighborhood U of M.** Then the Levi tensor G has components of
the form

(1- 7) Gji:fjk(ak‘gz_aiak>
and the tensor fields S and T have respectively components of the form

Sjih:fjk ak fzh—ftk akfjh_(ajfzk_atf]k)fkh‘['(a] 01_3101)5);’
T,=G;—G,,

1.8)

with respect to local coordinates (x*), where 9,=d/0x

* X, Y, Z, e denote arbitrary differentiable vector fields in M unless other-
wise stated.
**)  The indices h, i, 7, k, | run over the rang {l,---,2n+1} and the summation

convension will be used with respect to this system of indices.
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§ 2. Distributions with complex structure and almost contact structures.

Let there be given a distribution D of dimension 27 in a manifold of
dimension 2n+41 (=3). Suppose there is given a linear transformation Jp : Dp—
Dp for each point P of M, Dp being the value of D at P, in such a way that
Jptv=—v for any vector v belonging to Dp. Moreover assume that for any
differentiable vector field X belonging to D the vector field /X defined by the
correspondence P— Jp Xp, Xp being the value of X at P, is also differentiable.
Thus we have a tensor field J of type (1, 1) in the distribution D if we define J
by the correspondence J: X— JX, X being an arbitrary vector field belonging
to D. Such a tensor field defined in D is called a complex structure in D. The
J just defined in D satisfies J2=—Ip where I, denotes the identity tensor field
of type (1,1) in D. The pair (D, J) or, simply saying, D is called a hyper-
distribution with complex structure J. In the present section, the manifold M of
dimension 2n+1 is assumed to admit a hyperdistribution D with complex
structure J.

Take a vector field £ in a coordinate neighborhood U of M in such a way
that @(§)=1, where D is defined by #=0 in U. Then we can define in U a
tensor field f of type (1, 1) by

¢289) FX=](X=0(X)§)

because X—6@(X)& belongs to D, i.e., because 6(X—0(X)&)=0. Thus we have
an almost contact structure (f, & 6) in U, which will be called an almost contact
structure associated with D wn U.

When the manifold M admitting a hyperdistribution D with complex struc-
ture J is orientable, there are a global 1-form # and a global vector field & such
that D is defined by #=0 and #(£)=1. Thus in such a case there is a global
almost contact structure (f, &, 6) associated with D.

Comming back to the general situation, we put in U #=af with non-vanish-
ing function a defined in U and take a vector field £ in U such that 6(§)=1.
Then we find é=a"(6—fA), where A is a vector field in U such that 6(A4)=0,
i.e., such that A belongs to D. Thus there is in U another almost contact
structure (7, &, @) associated with D, which is defined by

(2.2) f=f—0®A4, &= %(s— FA), O=ad.

We call (2.2) the equations of change of almost contact structures associated
with D. In such a case the two almost contact structures (f, &, 6) and (f, &, &)
are said to be equivalent to each other. Any property (P) of (f, & 6) associated
with D can be considered to endow D with a property if (P) is invariant under
the change (2.2) of associated almost contact structures.
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Denote by S, T anNd ~§,~7“ the tensor fields deﬁnNed~ by (1. 2) respectively in
terms of (f, &, 6) and (f, &, ¢), where (f, & 6) and (f, &, 0) are related to each
other by the change (2.2). Then, using (1.8) and (2.2), we can easily verify

(2.3) S;it=S;*—T; A" —0;L AP L 40,4 Ly . +a; (E"—f* A*)]
+0'L [AhLA 0j+LAf]h+aj (Eh _fkhAk)]:
(2- 4) T‘Ji:aI:Tji—'ﬁj(LAﬁi_'_fzkak)‘l_az (LA0]+fjkak>]:

where S ;" and T“ji are components of S and 7 respectively, A" are components
of A and «, are defined by a;=a™'d;a. We note here that 0(A)=0,A*=0 is
satisfied. Let G and G be the Levi tensors of (f, & 6) and ( 7E respectively.
Then, using (1.7) and (2.2), we obtain

(2- 5) 5;'1:0( I:Gji+f1kalz ﬁi_ﬁjAk(ak 0z—ail9k)—(A kak)ﬂjgz],

where G;; and éﬁ are components of G and G respectively.

Consider a tensor field K (local or global) of type (1, 2) (resp. of type (0, 2))
in M. If K(X, Y)=0 for any vector fields X and Y belonging to D, then we
denote this fact by K=0, (mod ). Let K;* (resp. K;;) be components of K.
Then the condition K=0, (mod#) is represented by K;"=8,A,*+6,B,* (resp.
K;=0,A,+60,B,), where A,* and B,® (resp. A, and B,) are respectively com-
ponents of certain tensor fields. Thus the condition K=0, (mod §) is equivalently
represented by K;;*=0, (mod§,, 8,) (resp. K;;=0, (mod d,, 6,)) in terms of com-
ponents. If two tensor fields K and L of type (1, 2) (resp. of type (0, 2)) satisfy
the condition K—L=0, (mod#), then we denote this fact by A=L, (mod?).
Using such a kind of notations, we see that (2.5) reduces to

(2.6) G=aG (mod 6).

with non-vanishing function «. We now have from (2. 6)

PROPOSITION 2.1. Let D be a hyperdistribution with complex structure in M.
Denote by Gp the restriction of the Levi tensor G to D, where G 1s given by (1.3)
wm terms of an (f, &, 6) associated with D. Then Gp 1s umquely determined up to
a non-vamshing factor a at each powmnt P of M.

By means of Proposition 2.1, the rank r of G, at each point P of M is
independent of the choice of (f, &, 6) associated with D. When r is a constant
independent of points of M, the D is said to be of rank r, where » is necessarily
even. The Gjp or, roughly speaking, G is called the Lev: tensor of D. When Gj
is of maximum rank 2n, the hyperdistribution D is said to be non-degenerate.

Next, the condition S=0, (mod#) implies the condition 7'=0, (mod#) by
means of (1.5). Thus, using (2.3) and (2.4), we see easily that the condition
S=0, (mod #) is equivalent to the condition S=o, (mod #). Hence we now have
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PROPOSITION 2.2. The condition S=0, (mod @) for an almost contact structure
(f, & 6) associated with a hyperdistribution D with complex structure is left in-
variant by the change (2.2) of associated almost contact structures.

Proposition 2.2 means that the condition S=0, (mod #) for an almost contact
structure (f, &, 0) associated with D gives to D itself a property. Thus, if S=0,
(mod ) is satisfied at each point for an associated almost contact structure
(f, &, 0), then D is said to be torsionless. Therefore, if there is at least one
almost contact structure associated with D which is normal, then D is neces-
sarily torsionless.

PROPOSITION 2.3. If a hyperdistribution D with complex structure J 1s tor-
swonless, then the Levt tensor G of D satisfies

GjiEGi] mod(ﬁj, 01)
and
G(JX, JY)=G(X, )

for any vector fields X and Y belonging to D.

Proof. Since S=0, (mod 6) implies 7=0, (mod #), equations (1.2), (1.3) and
(1.8) imply Proposition 2. 3.

Proposition 2.3 shows that for a torsionless hyperdistribution D with com-
plex structure J its Levi tensor Gp is a symmetric tensor field of type (0, 2) in
D and Hermitian with respect to /. We now state a lemma for later use.

LeMMA 2.4. If S=0, (mod @) and P=0 are satisfied for an almost contact
structure (f, &, 0), then S=0, 1. e., (f, &, 6) 1s normal.

Proof. Since S=0, (mod ), we can put S;"=0,A4,"—0,A,”. On the other-
hand, since P=0, we have from (1.6) S(fX, §)=0. Thus substituting S;*=
8,A,*—0,A," into this equation gives A,"f,*=0, which implies A,*=@, A,"&*.
Therefore we obtain S;;"=0, i.e., S=0.

§3. Adapted frames and coframes.

Let there be given a hyperdistribution D with complex structure J in a
manifold M of dimension 2n4-1. Consider an almost contact structure (f, &, 6)
associated with D in each coordinate neighborhood U of M. Let {&, &} be a
field of affine frames in U such that each &, belongs to D.*> Since f&,=J&,
belongs to D, we can put

3.1 1&=I"€a,

*) The indices a, b, ¢, d, ¢ run over the range {l,-.-,2n} and the summation
convension will be used with respect to this system of indices.



DISTRIBUTIONS WITH COMPLEX STRUCTURE 269

where [,° satisfies
]ea]be: 5%

because f2&,=J2§,=—&,. If the frame {§,, &} is suitably taken, the matrix
(/»*) has the following numerical value:

(3.2) a=(% ),

where E denotes the (n, n) unit matrix. Such an affine frame {&;, &} is said to
be adapted to D, if (J,*) has the value given by (3.2) with respect to {&, &}.

Let {&, &} be a frame adapted to D in U. Then components of the Levi
tensor Gp with respect to {§;, & are given by

3.3) Gao=GCp (&, &)=GC(Ee &)
If we now put

3.9 Jao=d0(., &),

then we find

(3.5) Jeo=Jc*Ges

because of G;;=f,*(; 0;—8:0,) which appeared in (1.7).
We t%ke another frame {&;, £} adapted to D in gnother coordinate neigh-
borhood U of M. Then, using (2.2), we obtain in UNU

3.6) E=o (G-, E=UsE.,

where (A)=0 and the matrix (U,?) belongs to the real respresentation of the
complex linear group CL(n), because

(3- 7) ]eaneZ Uea]be-

Thus the structure group of the tangent bundle of M is, as is well known,
reducible to the group of all matrices of the form

6.9 (5 1)

where « is non-zero and (U,*) belongs to the real representation of CL(n).
The equations (2.2), (2.6) and (3.6) imply that

(3- 9) 5cb:a'Uce Ubd Geq

is establishegl in UN 0, Ge being components of the Levi tensor Gp with
respect to {&;, £}.
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Given a frame {&,, &} adapted to D in U, we denote by {#°, 6} the coframe
dual to {&, & in U. That is to say,

3.10) 6°(&)=05, 0%6)=0, 06(&)=0, (&)=L
Such a coframe {#%, 6} is said to be adapted to D in U. We now have

THEOREM 3.1. Let D be a hyperdistribution with complex structure J in a
manifold M of dimension 2n+1 (=3). Then D 1is torsionless if and only 1f in
each coordinate neighborhood U of M any coframe {0%, 6} adapted to D satisfies
the following equations:

dﬁz%]wﬁ”/\ﬁ"—l—ﬁ/\gzi,
(3.11) )
d0°= 5§ 0°NO+ON 62,

¢ and ¢* bewng certain 1-forms in U, where

]cb:—]bc: Jev=Jc Ges,

(3.12)
Gev="GChe, Gcb“fcefbd Gea=0

(i.e., Gy and Jep are hybrid with respect to J,*) and, where

¢cba: _¢boa’
(3.13)
¢cba—jcejbd ¢cda:O, ¢cba +/5° " ¢ced:0

(1. e., dep™ 15 hybrid with respect to wndices ¢, b and pure with respect to indices
a, b).

Proof. The given D is torsionless if and only if S=0, (mod ), i.e., if and
only if S(&,, &)=0, which is equivalent to

Lr&e f&1—fL 18 &1—rLE, f&1+/2[E &]+dO(E., &)=0
or equivalently to
O(Cr&e, fED)+dO (e, £)=0,
0 (Lf%c, f&]—r L/ &1— &, f&]+1 1€, §1)=0.
Since f&,=/,%&,, (3.14) is equivalent to
J tdO(Ee, E=dO0(&,, &),
3.15) JeE Jutd0Ee, Ea)— ] Ja*dO%Ee, &)
=] Ja*d0? (&, E)—d b, £,)=0.

(3.14)
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If we now put

(3.16) Joo=d0(&:, &), Per®=d0%(&e, &),
then we see that (3.15) is equivalent to

]cb—]ce.]bdjed:();

3.17)
A+ T Ja®A®=0, where An*=00*—J"Js" Poa”

The equations (3.16) is equivalent to (3.11). Moreover the first and the second
equations of (3.17) are equivalent to (3.12) and (3.13) respectively. Thus
Theorem 3.1 is proved completely.

Next we have

THEOREM 3.2. Let D be a hyperdistribution with complex structure | 1s a
manifold M of dimension 2n+1 (=3). A frame {&,, &} adapted to D 1s normal,
i.e., an almost contact structure (f, €, 0) associated with D 1s normal wn a coordi-
nate neighborhood U of M, 1f and only i1f its dual coframe {0%, 6} satisfies

dﬁz—é—]ﬁ“/\ﬁ”,
(3.18) 1

dﬁa:§_¢cba6€Aﬁb+¢baﬁ/\ﬂb’
where Jop and ¢e® satisfy (3.12) and (3.13) respectively and, where ¢,* satisfies
(3- 19) ¢ba+]be]da ¢ed:0

(i.e., §p® 18 pure with respect to [,*).

Proof. A frame {§, &} adapted to D, i.e., an almost contact structure
(f, & 0) associated with D is normal if and only if S=0, which is equivalent to

(3.20) S(€e, €)=0 and S(&, §)=0.

The first equation of (3.20) is equivalent to the conclusions (3.11), (3.12) and
(3.13) stated in Theorem 3.1 and the second one of (3.20) is equivalent to

6* (S (€., £))=—0"(fL/&, ED+6°(S*[E, £D=0,
0(SEe £))=d0(&., §)=0,

which reduce respectively to

@.2D Ja® 0% (Lfe, £D+06° (L&, €)=0,

(3.22) d6=0 (mod 6°A 6"



272 SHIGERU ISHIHARA
because 0% f=J,*6¢ and J,*J,*=—0¢. The equation (3.21) is equivalent to
(3.23) 0 +JE T 9t =0, $p*=d0%§, &b).

Thus (3.11), (3.22) and (3.23) imply (3.18) and (3.19), which prove Theorem 3. 2.
Theorem 3.2 just proved was already proved by Kurita [4]. There are other
interesting results closely related to Theorem 3.2 (See, for example, Hsu [3],
Sasaki and Hsu [6]).
Let {&, & be a frame adapted to D and {#% 6} be its dual coframe in a
coordinate neighborhood U of M. We now put®

1 — 1 S
eﬁzﬁ(&ﬁ- vV —=1&,.p), eF:W@:ﬁ_ vV —=1&,4p), e=E;
(3.24) 1 {

(0x— v/ =10""9), @*= 0%+~ —=16""), w=0.

VT V2
Then we have in U a complex frame {es, ez, ¢} adapted to D and a complex
coframe {0%, w?, w} dual to {e, ez, e}. The equation (3.11) stated in Theorem

3.1 reduce to

do=~—=1Gzo" Nof+oNg,
(3.25) _
do*= g7 0" NP+ g*
with respect to a complex coframe adapted to D such that w=6 and &=e.
The equations (3.25) shows that the system of differential equations

0=0, 0*=0 (a=1, -, n)

is completely integrable. That is to say, there is in M a pseudo-conformal
structure if D is non-degenerate. Thus the hyperdistribution D with complex
structure determines a pseudo-conformal structure in M if and only if D is
torsionless and non-degenerate. (See Cartan [1], Chern and Moser [2], Tanaka
[71). Thus we can state

THEOREM 3.3. Let D be a hyperdistribution with complex structure in a
manifold M. Then D determines a pseudo-conformal structure in M if it 1s
torsionless and non-degenerate.

It is known that any real hypersurface M immersed in a complex manifold
admits a hyperdistribution D with complex structure which is naturally induced
in M and that such a D is always torsionless. Hence M admits a pseudo-
conformal structure determined by D if D is non-degenerate (See Cartan [1],
Chern and Moser [2], Tanaka [7], Yano and Ishihara [8]).

*) The indices a, f, 7, 6, ¢ run over the range {1,.--, n} and the summation
convension will be used with respect to this system of indices.
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The equations (3. 18) stated in Theorem 3.2 reduce to
(3.26) do=+v—=1Gzo" N, do"=yNcP,
where
X =7 o +pw

with respect to a complex coframe {w?%, w2, w} adapted to D such that w=6 and
e=&. The second equation of (3.26) shows that the system of differential
equations

w*=0 (a=1, -+, n)

is completely integrable.

§4. Pseudo-conformal mappings.

Let M and ‘M be manifolds admitting hyperdistributions D and ‘D with
complex structure respectively. Let J and ‘J be the complex structures in D
and ‘D respectively. Assume there is a homeomorphism ¢: M —’'M such that,
for any vector field X being tangent to M and belonging to D, ¢+« X belongs to
‘D and ¢4 J='J¢+ holds, where ¢ denotes the differential mapping of ¢. Then
¢ is called a pseudo-conformal mapping. Roughly speaking, ¢ is a pseudo-
conformal mapping if and only if ¢ leaves the hyperdistributions with complex
structure invariant.

Let ¢: M—'M be a pseudo-conformal mapping. Then, taking an almost
contact structure (f, &, #) associated with D in a coordinate neighborhood U of
M, we see that f=¢«f(ps«)?, E=¢+&, =00(¢4)' form an almost contact
structure (f, &, §) associated with ’D in ‘U=¢ (U)(C’M). Thus, taking arbitrarily
an almost contact structure ('f, ‘&, '6) associated with D in ‘U, we obtain in ‘U

@ 0@ 4, E=(=fA), I=a’t

because of (2.2), where « is a non-vanishing function and A a vector field
belonging to ‘D, both defined in ‘U. Conversely, if a homeomorphism ¢: M —
'M satisfies (4.1), then ¢ is a pseudo-conformal mapping. Thus we can state

THEOREM 4.1. The equation (4.1) 1s a necessary and sufficient condition for
a homeomorphism ¢: M —'M to be a pseudo-conformal mapping, where M and
'M are manifolds admitting respectively hyperdistributions D and 'D with complex

structure.

We now have, using (2.6) and (4. 1),
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PROPOSITION 4.2. For a pseudo-conformal mapping ¢: M —'M
4.2) G(X, V)=a'G(¢xX, ¢+Y)

holds for any vector fields X and Y being tangent to M and belonging to D, a
being a non-vamshing function defined wmn ‘U, wheve G and ‘G are the Lewn
tensors of D and 'D respectively.

Taking account of Lemma 4.2, we have from (4.1)

PROPOSITION 4.3. Let M and "M be two manifolds with hyperdistributions D
and 'D with complex structure, respectively. Let there be given a pseudo-conformal
mapping ¢: M —'M. Then 'D 1s torsionless 1f and only if D 1s so also.

When M and ‘M are real hypersurfaces in a complex manifold ]\Z, they
admit respectively hyperdistributions D and ‘D with complex structure which
are induced by their immersions from the complex structure of the ambient
complex manifold M. If §: M— ‘M is a holomorphic transformation of M and
@ (M)='M, then the restriction ¢: M —'M of ¢ to M is a pseudo-conformal
mapping (See Cartan [1], Chern and Moser [2], Tanaka [7], Yano and Ishi-
hara [8]).

When a transformation ¢: M — M of a manifold M admitting a hyper-
distribution D with complex structure is a pseudo-conformal mapping, ¢ is called
a pseudo-conformal transformation of M. Let there be given a vector field X in
a manifold M with hyperdistribution D with complex structure and assume any
local transformation ¢;, (—e<t<e, ¢>0) of M generated by X is always a
pseudo-conformal transformation. Then X is called an infinitesimal pseudo-
conformal transformation or, simply saying, a pseudo-conformal vector in M.
Thus from Theorem 4.1 we have

THEOREM 4.4. A vector field X in a manifold M admitting a hyperdistribu-
tion D with complex structure 1s a pseudo-conformal vector i1f and only if for any
almost contact structure (f, &, 0) associated with D n a coordinate neighborhood
Uof M

4.3) Lyf=—0QV, Lyb=—aé—fV, Ly6=al

are established, where a 1s a function and V a vector field belonging to D, 1.e.,
6(V)=0, both defined in U.

PROPOSITION 4.5. For any pseudo-conformal vector X wm M admitting a
hyperdistribution D with complex structure

4.4) LyG=aG (mod¥6)

1s satisfied, where G denotes the Lewi tensor of D and a 1S a function appearing
w (4. 3).
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Proof. Denote by Gj; components of G. Then, using (4.3), we have

LyGji=Lx[f,%(0,6,—0:6,)]
=Ly f,%)(0:0,—0:0:)+/.*Lx (0, 0,—0:0,)
=—(0,V*)(0,0,—0,0)+af,*(0.0,—0:0,)
+/,%(0, a0,—0,a0,),

from which Ly G=aG, (mod #). This proves Proposition 4. 5.

LEMMA 4.6. Let X be a pseudo-conformal vector in a manifold M admitting
a hyperdistribution D with complex structure. If X belongs to D then G(Y, X)=0
for any vector field Y wn M.

Proof. The last equation of (4.3) reduces to
X70,6,+0, X' 0,=ab,,
where X=X'9/0x*. Next, (X)=0 implies 0, X?0;=—X79,0,. Thus we have
X7(0;0,—0,0,)=ab,,
from which, transvecting f.*%,
X7(0,0,—0,0;) f.*=0.

This is equivalent to G (Y, X)=0.
As a corollary to Lemma 4.6, we have (See Tanaka [7])

THEOREM 4.7. Let X be a pseudo-conformal vector wn a manifold M admai-
ting a hyperdistribution D with complex structure and assume that D 1s torsionless
and non-degenerate. Then, 1f X belongs to D, X vanishes identically.

When for an almost contact structure (f, &, 6) associated with a hyper-
distribution D with complex structure the vector field & is pseudo-conformal, the
structure (f, &, 6) is said to be regular. We now have

LEMMA 4.8. An almost contact structure (f, &, 6) associated with D 1s regular
1f and only 1f P=0 1s satisfied.

Proof. Assume (f, &, 0) is regular. Then substituting X=¢& into (4.3)
gives a=0 and V=0 because of L;£=0. Thus, substituting ¢=0 and V=0 into
(4.3), we have P=—L;f=0 and Q=—L:6=0. Conversely, if we assume P=0
for (f, &, 0), then we have Q=0 as a consequence of the proposition (P,) stated
in §1. Thus L;f=—P=0 and L:0=—Q=0, which are equivalent to the condi-
tion (4.3) with ¢=0 and V=0. Thus (f, &, ) is regular. Hence Lemma 4.8 is
proved.
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As a consequence of Lemmas 2.4 and 4.8, we have

THEOREM 4.9. Let M be a manifold admitting a hyperdistribution D with
complex structure and assume D 1s torsionless. Then an almost contact structure
associated with D 1s normal 1f and only i1f it 1s regular.

(1]

£2]

(3]
[4]

L5]
£6]
[7]
£8]
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