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§ 0. Introduction.

An infinitesimal variation of an invariant (complex) submanifold of a
Kaehlerian manifold which carries it into an invariant submanifold is said to be
complex. An infinitesimal variation is said to be holomorphic when it is complex
and preserves the complex structure on the invariant submanifold. ([1], [4], [5]).
Okumura and two of the present authors [5] proved that an infinitesimal complex
conformal variation of a compact orientable submanifold of a Kaehlerian manifold
is necessarily isometric and holomorphic and derived a necessary and sufficient
condition for a complex variation to be volume-preserving and holomorphic by
using an integral formula.

The main purpose of the present paper is to study infinitesimal variations
of invariant submanifolds of a Sasakian manifold and to prove theorems analog-
ous to those proved in [4] and [5].

In preliminary § 1 we state some properties of invariant submanifolds of a
Sasakian manifold.

In §2, we derive fundamental formulas in the theory of infinitesimal varia-
tions and study invariant variations, that is, infinitesimal variations which carry
an invariant submanifold into an invariant submanifold. In §3 we study
/-preserving variations, that is, invariant variations which preserve the tensor
field fb

a of the Sasakian structure (fb
a, gcb, fb) induced on an invariant sub-

manifold.
In §4 we study invariant conformal variations and prove that an invariant

conformal fiber-preserving variation of a compact orientable invariant submani-
fold of a Sasakian manifold is necessarily isometric and hence /-preserving.
In the last §5 we prove an integral formula concerning invariant variation and
show some of its applications.
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§ 1. Invariant submanifolds of a Sasakian manifold.

Let M2m+1 be a (2m + l)-dimensional Sasakian manifold covered by a system
of coordinate neighborhoods {U xh} and (fl

h

fgji,fl) the set of structure
tensors of M2m+1, where, here and in the sequel, the indices h, i, j , ••• run over
the range {V, 2', •••, (2m+1/}. Then we have

(1.1) Λ'Λ^-δf+ΛΛ ft/S=o, ft

hf=o, ftf=i

and

(1-2) f/λ'gts^gji-fjfr,

fh being the vector field associated with flf that is, fhz=fιgih, gίh being cσn-
travariant metric tensor. We also have

(1.3) V t /
Λ =Λ Λ

and

(1-4) ViA^-gjif+δϊf,,

where Vι denotes the operator of covariant differentiation with respect to gμ.
Let M2n+1 (n<m) be a (2n + l)-dimensional Riemannian manifold covered by

a system of coordinate neighborhoods {V ya) and isometrically immersed in
M2m+1 by the immersion ι M2n+1 -> M2m+1, where, here and in the sequel, the
indices a, b, c, ••• run over the range {1, 2, •••, (2n + l)}. We identify ι(M2n+1)
with M2n+1 and represent the immersion by xh=x\ya). If we put Bb

h=dbx
h

(db=d/dyb), then Bb

h are 2n + l linearly independent vectors of M 2 m + 1 tangent to
M2n+1. Denoting by gcb the Riemannian metric tensor of M2n+1 we have gcb—
gjiBc

JBc

ι since the immersion is isometric. We denote by Cy

h 2(m — n) mutually
orthogonal unit normals to M2n+1, then we have gjiBb

JCy

l=0 and the metric
tensor of the normal bundle of M2n+1 is given by gzy=gjiCz

JCyι=δzy, δzy being
the Kronecker delta, where, here and in the sequel, the indices u, v, x, y, z run
over the range {(2n+2), •••, (2m+1)}.

We denote by Γ% Γ% and Γ%, the Christoffel symbols formed with gjif

those formed with gcb and the components of the connection induced in the
normal bundle of M2n+1, that is,

(1.5) Γ^dcCyt+ΓbBc'Cy*)^, C*h = Cy*gy*gih

respectively, gyx being the contravariant components of the metric tensor of the
normal bundle. Then the van der Waerden-Bortolotti covariant derivatives of
Bb

h and Cy

h are respectively given by
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and

CCy —OC^y -ή-1 Jinc

JL,y —1 cyCχ ,

and the equations of Gauss and Weingarten are respectively

(1.6) !cBb

h=hcb

xC* and lcCv

h=-hc%Ba\

where hcb

x are components of the second fundamental tensors of M2n+1 and
hc

ay = hcb

zgbagzy, gba being contravariant components of the metric tensor of
M2n+1.

Denoting by KkJi

h, Kdcb

a and Kdcy

x the curvature tensors of M 2 m + 1 , M2n+1

and the normal bundle of M2n+1, we have the following equations of Gauss,
Codazzi and Ricci respectively:

(1.7) Kdeb

a=KkJi

hB%&+hd

a

xhcb*--hc

a

xhdb

x,

(1.8) O=Kkjt

hBitlCx

h-(ydhcb

x-Vchdb*)

and

(1.9) Kdey
x=B&Cv*C*h+(hde

x hc\-hee

x hd\),

where Bkdia

h=Bd

kB<?Bb

iB\, Bk

d{l=Bd

kBc>Bb

ι and Bkd=Bd

kBcK
A (2n + l)-dimensional submanifold M2n+1 is called an invariant submanifold

of the Sasakian manifold M2m+1 if the tangent space at each point of M2n+1 is
invariant under the action of fι

h. Thus for an invariant submanifold M 2 n + 1 ,
we have

(1.10) ΛhBb*=fb

aBa\ ΛhCy*=fy

xCx\

fb

a and fy

x being tensor fields of type (1.1) of M2n+1 and the normal bundle of
M2n+1 respectively. Putting fba=fbegea and fyx=fy*ggX, we have fba=fjίBli

a and
fyχ=fjiCy3Cχι a n d consequently

Jba Jab) Jyx Jxy

On the other hand, we put

(1.11) fh=/aBa

h+fCx\

Now applying the operator fh

k to the first equation of (1.10) and using (1.1)
and (1.11), we find

-Bb

k+fb(faBa

k+f*Cx

k)=fb«fe

aBa

k,

where fb=fcgCb, from which

(1.12) fSfea=-δS+fbf
a, fbf

x=0.
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Since M2n+1 is odd dimensional, we see from the first equation of (1.12) that fb

never vanishes and consequently from the second equation of (1.12) we see that
fx=0 and consequently (1.11) becomes

(1.13) fh=faBa\

which shows that fh is tangent to the invariant submanifold. From (1.1), (1.10)
and (1.13) we find

(1.14) fb

af=0, faf
a=l.

Also transvecting (1. 2) with Bc

JBb\ we find

(1.15) fcefb

dged = gcb-fcfb

Equations (1.12), (1.14) and (1.15) show that the invariant submanifold
M2n+1 admits an almost contact metric structure.

Applying the operator fh

k to the second equation of (1.10) and using (1.1)
and (1.13), we find

from which

(1.16) fyzfz

x=-K

From (1. 2), we have

(1. 17) fzVfvUgvu=gzy

and consequently / / defines an almost Hermitian structure in the normal bundle.
Now differentiating (1.13) covariantly along M 2 n + 1 and using (1.3) and (1. 6),

we find

/t*5» = ( V 4 / B ) β β * + / A»β CΛ

from which

(1.18) V6/*=/6«

and

(1.19) hcb*f=0.

Also differentiating the first equation of (1.10) covariantly and substituting (1. 4)
and (1. 6), we find

from which, taking account of (1.10) and (1.13)
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(1.20) VcΛa=-gcbf
a + δϊfb,

(1.21) hcb*fv*=heβ*fb:

From (1.21) we find gcbhcb

yfy

x—Q, from which, fy

x defining an almost
complex structure,

(1.22) gcbhcby=0,

which shows that an invariant submanifold M2n+1 is minimal.
Equations (1.18) and (1. 20) show that the almost contact metric structure

induced on the invariant submanifold is Sasakian.
Differentiating the second equation of (1.10) covariantly, we find

from which, using (1.10) and (1. 21),

(1.23) V c //=0,

which shows that the almost Hermitian structure in the normal bundle is
covariantly constant.

We close this section by preparing some formulas for later use. It is known
that on a Sasakian manifold the following identities are valid :

(1. 24) jKdcbaf
dc=Kbcfa

c+(2n-l)fba,

(1.25) Kbef

(1.26) Kbef=2nfb,

where Kdcba=Kdcb

egea, Kcb=Kecb

e and fdc=gdefe

c. Transvecting (1. 24) with fe

b

and using (1.1), we find

^Kdcbaf
dcfe

b=Kbcfe

bfa

c+(2n--l)(-gea+fefa),

from which, using (1. 25),

\Kac6af%
i=Kea-(Kedf)fa+(2n-l)(-gea+fefa)

or

(1.27) jKdcbef%
e=Kba-(2n-ί)gl)a-Ua.
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§ 2. Infinitesimal variations of invariant submanif olds.

Let Λί2n+1 be a (2?z+l)-dimensional invariant submanifold of a (2m +1)-
dimensional Sasakian manifold M2m+1. We consider an infinitesimal variation of
M2n+1 of M 2 m + 1 given by

(2.1) xh=xh+v\y)ε,

where ε is an infinitesimal. Putting Bb

h=dbx
h, we have

(2.2) Bb

h=Bb*+(dbv
h)e,

which are 2n+l linearly independent vectors tangent to the varied submanifold
at (xh). We displace Bb

h back parallelly from (xh) to (xh), then we have

Bb

h=Bb

h+Γ%(x+vε)v'Bb

ιe.

Thus putting δBb

h=Bb

h-Bb

h, we obtain

(2.3) W=(VfttΛ)e,

neglecting terms of order higher than one with respect to ε, where

(2.4) lbv
h=dbv

h+Γ%Bb3v\

In the sequel we always neglect terms of order higher than one with
respect to ε.

On the other hand, putting

(2.5) vh=vaBa

h+vxCx\

we have

(2.6) Vbv
h=φbv

a-hb

a

xv*)Ba

h+φbv
x+hba*va)Cx

h.

Thus (2. 3) can be written as

(2.7) dBb

h

When the tangent space at a point (xh) of the submanifold and that at the
corresponding point (xh) of the varied submanifold are always parallel, the varia-
tion is said to be parallel [3]. Hence (2. 7) implies

LEMMA 2.1. ([3]) In order for an infinitesimal variation of a submanifold
to be parallel, it is necessary and sufficient that

(2.8)



INFINITESIMAL VARIATIONS 225

We now assume that the infinitesimal variation (2.1) carries an invariant
submanifold into an invariant submanifold and call such a variation an invariant
variation. For an invariant variation, ft

h(x+vε)Bb

ι are linear combinations of
Bb

h and vice versa.
Now we have

fx

h{x+υε)Bb

%

+fb(vaBa

h+vxCx

h)ε-vbf
aBa

hε

where we have used (1.4), (1.13), (2. 2), (2. 4) and (2. 5), and consequently from
(2.6)

(2.9) f

=

+fbv
a-vbf

a}εlBa

where Cx

h denote 2(m — n) mutually orthogonal unit normals to the varied
submanifold and vb=gbav

a. Hence we have, using (1.21),

PROPOSITION 2.2. In order for an infinitesimal variation of an invariant
submanifold to be invariant it is necessary and sufficient that

(2.10) φbv*+hba*va)fv

x-fb<(yev
x+heaxυa)+fbv*=O

or

(2.11) (y>vηfy*-fb

βVev*+fbv*=0.

When vx=0, that is, when the variation vector vh is tangent to the sub-
manifold, the variation is said to be tangential and when va—0, that is, when
the variation vector vh is normal to the submanifold, the variation is said to be
normal [3]. From Proposition 2. 2, we have

COROLLARY 2.3. A tangential variation of an invariant submanifold is
invariant.
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Combining Proposition 2. 2 and Lemma 2.1, we also have

COROLLARY 2.4. In order for a parallel variation of an invariant sub-
manifold to be invariant, it is necessary and sufficient that the variation is
tangential.

Now applying the operator δ to gcb=gjiBc

JBb

l and using δgji=0 and (2.7),
we find

(2.12) δgcb= [Vc vb+Vδ vc-2hcbx v*l ε,

from which

(2.13) δgha=-lΨ

where ψ=gba7a and hba

x=gbegadhedx.
An infinitesimal variation for which δgcb=0 is said to be isometric [1], [3].
We now put

(2.14) Γ^(dcB

and

(2.15) δΓ%=Γ?b-Γ%,

where Γ% are Christoffel symbols of the varied submanifold.

Substituting (2. 2) into (2.14), we find by a straightforward computation

(2.16) δΓ%=ί

from which, using equations of Gauss and Codazzi [3],

(2.17) δΓ%=(lc 7 δ v
a+Kdcb

a vd) ε- [Vc {hbex vx)+lb (hcex v*

An infinitesimal variation of a submanifold for which δΓ%=0 is said to be
affine.

We now prove

LEMMA 2.5. // an infinitesimal variation of an invariant submanifold is
isometric, then we have

(2.18) \

= -(2n-l)va-(f>vb)fa.

Proof. Since an isometric variation is affine, we have from (2.17)

(2.19) VeVft
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from which

which, together with (1. 27), proves the lemma.

§3. Infinitesimal /"-preserving variations.

Suppose that an infinitesimal variation of an invariant submanifold is in-
variant. Then putting

(3.1)

we have, from (2.9),

(3.2) δfb

a=lf

When an infinitesimal invariant variation satisfies δ/b

a:=0, we say that the
invariant variation is f-preserving. From (1.20), (1.21) and (3.2) we have

LEMMA 3.1. In order for an infinitesimal variation to be /-preserving, it is
necessary and sufficient that the variation satisfies (2.10) or (2.11) and

(3.3) (7 tt; )/.β-Λ'(Vew
β)-2AΛt;*/.β+(_/4ι;"-ι;»/B)=0

or equivalently

(3.4) J7/ f t

β-2λΛv*/ α=O,

X denoting the Lie derivation with respect to va.

Now applying the operator δ to fb

afb=0, we find

(δ/b

a)f+/b

a(δf)=0,

from which, substituting (3. 2) and taking account of (1.19),

ίfea ( / * V ^ + ^ - f o / 6 ) / * ] e+Λα (δfb)=O

or, using (1.12) and (1.18)

for a certain function a. On the other hand, applying the operator δ to gcbf
cfb

= 1 and using (2.12)

ίXgcb-2hcbxv
xlfc/bε+2gcb(δfc)f=0,

from which, using (1.19) and the above equation, a=0 and consequently we
have
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(3.5) δfa=(Xfa)ε.

We now define a tensor field Tcb by

(3.6) Tcb=Vcvb-(yeυd)fc%
d-2hcb*vx+fcfb(yevd)fefd

JrfΛfb

eVe)-fΛfceVe)

and prove

LEMMA 3.2. In order for an infinitesimal isometric invariant variation of
an invariant submanifold to be f-preserving, it is necessary and sufficient that

τcb=o.
Proof Suppose that an infinitesimal invariant variation of an invariant

submanifold is /-preserving. Then by Lemma 3.1, we have

φbv
e)fe

a-fb

e(Vev
a)-2hb

e

xv*fe

a+(fbv
a-vbf

a)=0.

Transvecting this with fa

c and taking account of (1.12) and (1.19), we find

(3.7) lbv
c-{levd)fbψ

d-2hb\v*-fe{lbv*)f-fb{Uv«)=Q,

from which, transvecting with / ' ,

ΓVtυ<=f'CJ.υd)Ffd+f,<υ>,

and consequently, using Vcvb+'7l)vc—2hcbxv
x=0 which means that the variation

is isometric,

fe Vc tf= -fc (7, Vd)fe/d+fce Ve .

Thus (3.7) becomes

7»w.-(7ί υάftf'-lhtc* vx+fbfc (7. vd)f'fd

-(f,,eve)fc+(fc

eve)fb=0,

which means T c 6 =0.

Conversely we suppose that T c 6 =0. Then we have

Transvecting this with fb

a and using (1.12), we find

(3.8) C7oVe)fca-CJeVa)fce-2hc

e

xV
xfea+Vafc+fi(Ί
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Transvecting the same equation with fb, we have

(3.9) WcVb)fb+fcWeVd)fefd-fceVe = O.

Therefore substituting (3.9) into (3. 8), we obtain

WcVe)fea-CleVa)fce-2hc

e

xV*fe

a+fcVa-Vcfa = 0.

Thus Lemma 3.1 and this equation prove the lemma.
We next prove

LEMMA 3.3. For an infinitesimal isometric invariant variation of an in-
variant submanifold, we have

(3.10) Tcb+Tbc=0,

(3.11) Tcb+Tedf/fb

d=(Xfc)fb-(Xfb)fc

and

(3.12) Tcb Tcb=2Tb Vc vb-2 Uf) U / ) -4 Ufe) (// vd\

where Tcb=Tedg
ecgdb.

Proof. For an isometric variation, we have from (2.12),

(3.13) T7bva+
T7avb=2hba

xvx,

from which, taking account of (1.19),

(3.14) (V»t;β)/»/«=O.

On the other hand, from (1.21), we have

(3.15) hctl

x=-hed

xfc

efi)

d.

Thus, from the definition (3.6) of Tcb, we see that Tcb+Tbc=0.
On the other hand, using (3.14) and (3.15), we have, by a straightforward

computation,

(3.16) Tedfc

efb

d=(

But

and consequently (3.16) can be written as

-fcXfb+fbXfc.
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Thus, taking account of (3.6) and (3.14), we find (3.11). Finally from the
definition (3. 6) of Tcb and (3.10) we have

TcbTcb=Tcb{Vcvb-(Vevd)fc%
d+fc(fb

eve)-fb(fc

eve)}.

Thus taking account of (3.11) and of

we have

Tcs Tcb=2T<»lc υb-2 Uf) Ufe)-i UΓ) (/.* vΛ)

and consequently the lemma is proved.
Now applying the operator 7C to (3. 6) with (3.14) and using (1.18), (1.20)

and (3.13), we see that

Ψ Tcb=Ψ 7C υ>- j ( 7 e Ve vd - 7 e 7C υ^Γf^-lΨ {hcb* vx)

-v6+(2n+l)(feve)fι,+2n(levd)fefι,
d,

from which, using the Ricci identity and Lemma 2.5,

ΨTcb=2n{(f°υc)f!>-Vo+(Vevd)feft,
d}.

Hence taking account of

fcXfb

c=(fc w.)/»-w»+(7, vc)f%\

we obtain

(3.17) Ψ Teb=2n {fam= ~2n (fύ

cJ:fc).

Thus, substituting (3.12) and (3.17) into the identity:

Ψ(Tcbv
b)=(Ψ Tci,)v»+TcbΨv\

we have

(3.18) Ψ(TebVη=jTcl'T

Now an infinitesimal variation which satisfies Xfb=-afb, a being a certain
function, is said to be fiber-preserving. Thus for a fiber-preserving variation,
we have

from which, if the submanifold is compact orientable we have
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dV being the volume element of M2n+1. Thus we have

PROPOSITION 3. 4. // an infinitesimal isometric invariant variation of a com-
pact onentable invariant submanifold of a Sasakian manifold is fiber-preserving,
then it is f-preserving.

§ 4. Infinitesimal conformal variations.

An infinitesimal variation of a submanifold for which δgcb is proportional to
gcb is said to be conformal. A necessary and sufficient condition for an infini-
tesimal variation (2.1) of a submanifold to be conformal is

(4.1) !cvb+lbvc-2hcb

xυx=2λgcb,

where

(4.2) λ

The purpose of the present section is to prove the following proposition as
a generalization of Proposition 3. 4.

PROPOSITION 4.1. // an infinitesimal conformal invariant variation of a
compact onentable invariant submanifold of a Sasakian manifold is fiber-
preserving, then it is isometric and hence f-preserving.

To prove this proposition we need following lemmas which will be proved
in the same way as in the proofs of Lemmas 3. 2 and 3. 3.

LEMMA 4. 2. In order for an infinitesimal conformal invariant variation of
an invariant submanifold to be f-preserving, it is necessary and sufficient that the
tensor field 'Tch defined by

(4.3) 'Tch=lcvh-(?

vanishes identically.

LEMMA 4.3. For an infinitesimal conformal invariant variation of an in-
variant submanifold we have
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and

(4.4) /Tcb/Tcb=2/Tcblcvb

where 'Tcb=fTedg
ec gdb.

Proof of Proposition 4.1. Differentiating (4.1) covariantly, we have

(4.5) VcltVa + lclaV^lΛhta'

from which, using the Ricci identity,

or, substituting (4. 5),

Taking the skew-symmetric part of this equation with respect to a and b
and making use of the Ricci identity, we find

= -2Ίa{hcb

xvx+λgcb)+21b(hca

xvx+λgca),

or, using (4. 5) and the first Bianchi identity,

Transvecting this with gcb and using he

e

x~0, we find

(4.6) ΨVcva+Kacv
c~2Ψ(hca

xvx)+(2n-l)Vaλ=0.

Now applying the operator Vc to (4.3) and using the Ricci identity, we can
verify that

because of (1.18), (1.20), (4.1) and {levd)fefd=λ.

Substituting (1. 27) into this equation and taking account of (4. 6), we obtain
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Thus we have

Ψl('Teb+(2n-ΐ)λgeb+λfcfb)υbl

from which, substituting (4.4) and using (4.2) with he

Ψί(/Tcb+(2n-l)λgcb+λfcfb)vb2

The variation being conformal and fiber-preserving, from δgcb—2λgcbε and
gebf

cfb=l, we see that δfa=-λfaε, that is, Xfa=-λfa by (3.5). Thus the
above equation becomes

^cί(/Tcb+(2n-l)λgcb+λfcfb)vb-Ji=~/Tcb/Tcb+An2λ2.

Thus if the submanifold is compact and orientable, we have

\l'Teb'Teb+8n2λ2ldV=0,

from which λ=0, and consequently the variation is isometric and hence
/-preserving.

§ 5. An integral formula.

We put

Then, as is shown in Lemma 3.1, an invariant variation of an invariant sub-
manifold is /-preserving if and only if Sb

a=0. We put | |S c δ | |2=S c δS c δ where
SCb=Sc

egeb and Scb=gceSe

b. Then, using (1.19) and (1.21), we obtain by a
straightforward computation,

(5.1) \\Scb\\*
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On the other hand, putting

we have

from which, using (1. 27) and the Ricci identity,

(5.2) %w''=va(ΨVl>Va+Kiav
i)+W>υa\\t-f°t(ye

+2n {felevd)fc

d vc+2fe{ld ve)f/ vc-2n (vev
e)+2n (fev

e)\

Comparing (5.1) with (5.2), we have

+(4n+2){vev
e-(fev

ey+(feVeVd)fd

cvc}-2f*C7dve)fc

dvc

or equivalently

Therefore, assuming that the submanifold is compact orientable, we apply
Green's theorem and obtain

(5.3) \[j\\Scb\\2+va{ΨVbva+Kbav
b-2Ψ(hba

xvx)}

From (2.12) and (2.13) we see that the infinitesimal variation of d V is
given by

(5.4) δdV=(lav
a-ha

a

xv
x)dVε.
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On the other hand it is known [2] that the integral formula

is valid for any vector field va in a compact orientable Riemannian manifold.
From this we have

(5.5) J [va {Ψ Vδ va+Kta v>-2V> (hba* V χ ) + V . (AΛ v*)}

Comparing (5.3) with (5.5) and taking account of he

e

x=0, we have

or using Se

e=gedSed=0,

(5.6)

Now, when we have δfa=(Xfa)ε=0, we say that the variation is strictly
fiber-preserving. From (5. 6) we have

PROPOSITION 5.1. In order for an infinitesimal strictly fiber-preserving
invariant variation of a compact orientable invariant submanifold of a Sasakian
manifold to be isometric, it is necessary and sufficient that the variation is
volume-preserving and f-preserving.

Now if an infinitesimal variation is affine we have from (2.19) Vc(Veϊ/)=0,
since he

e

x=0. Thus Vβi;e=const. and consequently if the submanifold is compact
we have Vei;

e=0. Thus from Proposition 5.1, we have

PROPOSITION 5.2. A strictly fiber-preserving invariant variation of a compact
orientable submanifold of a Sasakian manifold is isometric if and only if the
variation is affine and f-preserving.
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Remark. From (5.6) we see that if a fiber-preserving variation of a sub-

manifold is conformal, then λ=0 and S c δ=0. This gives another proof of

Proposition 4.1.
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