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§0. Introduction.

An infinitesimal variation of an invariant (complex) submanifold of a
Kaehlerian manifold which carries it into an invariant submanifold is said to be
complex. An infinitesimal variation is said to be holomorphic when it is complex
and preserves the complex structure on the invariant submanifold. ([1], (47, [5]).
Okumura and two of the present authors [5] proved that an infinitesimal complex
conformal variation of a compact orientable submanifold of a Kaehlerian manifold
is necessarily isometric and holomorphic and derived a necessary and sufficient
condition for a complex variation to be volume-preserving and holomorphic by
using an integral formula.

The main purpose of the present paper is to study infinitesimal variations
of invariant submanifolds of a Sasakian manifold and to prove theorems analog-
ous to those proved in [4] and [5].

In preliminary §1 we state some properties of invariant submanifolds of a
Sasakian manifold.

In §2, we derive fundamental formulas in the theory of infinitesimal varia-
tions and study invariant variations, that is, infinitesimal variations which carry
an invariant submanifold into an invariant submanifold. In §3 we study
f-preserving variations, that is, invariant variations which preserve the tensor
field f,* of the Sasakian structure (f,% g, f») induced on an invariant sub-
manifold.

In §4 we study invariant conformal variations and prove that an invariant
conformal fiber-preserving variation of a compact orientable invariant submani-
fold of a Sasakian manifold is necessarily isometric and hence f-preserving.
In the last §5 we prove an integral formula concerning invariant variation and
show some of its applications.
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§1. Invariant submanifolds of a Sasakian manifold.

Let M?*™*! be a (2m-+1)-dimensional Sasakian manifold covered by a system
of coordinate neighborhoods {U; x"*} and (f.*, g, f.) the set of structure
tensors of M?®™*! where, here and in the sequel, the indices 4, i, j, -+ run over
the range {1/, 2/, ---, 2m+1)’}. Then we have

(.1 frft==aot+f " fifi'=0, fi* =0, fif'=1
and
(1.2) L gw=gi—1r

f* being the vector field associated with f,, that is, f*=f, g%, g®* being con-
travariant metric tensor. We also have

(1 3) vth:fzh
and
(1 4) V]flh:—g”fh—{—ﬁgbf“

where V, denotes the operator of covariant differentiation with respect to gj;.

Let M?"*! (n<m) be a (2n+1)-dimensional Riemannian manifold covered by
a system of coordinate neighborhoods {V; y° and isometrically immersed in
M?®*™* by the immersion 1; M?***— M?™*! where, here and in the sequel, the
indices a, b, c, --- run over the range {1, 2, ---, @n+1)}. We identify 1(M?"*)
with M?***! and represent the immersion by x"=x"*(y%. If we put B,"=d,x"
(0,=0/0y"), then B,"” are 2n-+1 linearly independent vectors of M?™*! tangent to
M?®***. Denoting by g., the Riemannian metric tensor of M?"*! we have g.,=
g;: BB, since the immersion is isometric. We denote by C,* 2(m—n) mutually
orthogonal unit normals to M?®**!, then we have g;;B,’C,*=0 and the metric
tensor of the normal bundle of M?"** is given by g,,=g;;C’C,*=0,,, 0., being
the Kronecker delta, where, here and in the sequel, the indices u, v, x, y, z run
over the range {(2n-+2), ---, @m+1)}.

We denote by I'%, I'%, and Iz, the Christoffel symbols formed with g,;,
those formed with g, and the components of the connection induced in the
normal bundle of M?"*!, that is,

(1.5) I'g=0:C,"+I'; B C) Chy CTa=Cylg" gin

respectively, g¥® being the contravariant components of the metric tensor of the
normal bundle. Then the van der Waerden-Bortolotti covariant derivatives of
B," and C,™ are respectively given by

VcBthBCB(,h—I-F}‘ch’ B,,’—-F‘JbBa"
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and
v.C,"=0.C,"+1"; B Cr =15, C,,

and the equations of Gauss and Weingarten are respectively
(1.6) V.B,"=h,*C,» and V.C,*=-—h,, B.",

where h.,” are components of the second fundamental tensors of Af?""! and
hy=h'g"g,,, g° being contravariant components of the metric tensor of
M2n+1.

Denoting by K", Ki,* and Kg.,® the curvature tensors of M?*™*!, M*»*t
and the normal bundle of M?®*"*!, we have the following equations of Gauss,
Codazzi and Ricci respectively :

1.7 Kaop* =K " BE+ha®s ho®—he®s hay®,
(1.8 0=K,;," BEiC*, — (Vg hep® =N has®)
and

1.9) Kuey®=BEC, C%+(ha" hely—hee™ haty),

where BYi2=B,*B’B,'B%,, Bii—=B.* B, B," and Bk=B.*B.

A (2n+1)-dimensional submanifold M?**! is called an invariant submanifold
of the Sasakian manifold AM?®*™*' if the tangent space at each point of A***! is
invariant under the action of f,*. Thus for an invariant submanifold A72"*,

we have
(1.10) fIBy=f"B.", [MCr=f,"C.",

/»* and f,” being tensor fields of type (1.1) of M**** and the normal bundle of
M#»+t respectively. Putting foo=/,"gea and f,5=/,g:2, We have fo,=1; Bji and
fye=1;:Cy? C;* and consequently

fba:_faby fyz:-fzy-

On the other hand, we put
(1.11) fr=f*B 1 C,"

Now applying the operator f,* to the first equation of (1.10) and using (1.1)
and (1.11), we find

_Bbk"l’fb (faBak ‘[‘fx cxk):fbefeaBaky
where f,=f°g.;, from which

(L.12) fo'fet=—08+1o S fof"=0.
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Since M*"** is odd dimensional, we see from the first equation of (1.12) that f,
never vanishes and consequently from the second equation of (1.12) we see that
f*=0 and consequently (1.11) becomes

(1.13) fr*=f2B,",

which shows that /" is tangent to the invariant submanifold. From (1.1), (1.10)
and (1.13) we find

(1 14) fbafb:(): fa =1

Also transvecting (1.2) with B/B,', we find

(1.15) F o gea=geo—fefs-

Equations (1.12), (1.14) and (1.15) show that the invariant submanifold
M?"*1 admits an almost contact metric structure.

Applying the operator f,* to the second equation of (1.10) and using (1.1)
and (1.13), we find

__Cy k:fyzfzx Czk’

from which

(1.16) frfE=—a;
From (1.2), we have

(1.17) I fy 8vu=8zy

and consequently f,” defines an almost Hermitian structure in the normal bundle.
Now differentiating (1.13) covariantly along M?2"*! and using (1.3) and (1.6),
we find

ftthlz(vbfa)Bah—l_fa hoo® Ci",

from which

(1.18) Vo fo=f"
and

(1.19) hep*f°=0.

Also differentiating the first equation of (1.10) covariantly and substituting (1. 4)
and (1.6), we find

(’_‘gjifh + 55’f1) ng‘l‘fthhcbx Czl:(vcfba) Bah +fbehcez C:ch;
from which, taking account of (1.10) and (1.13)
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(1- 20) vcfba:—gcbfa+5gfb;
(1.21) heo"fy "= hee™fo.

From (1.21) we find g®h.'f,*=0, from which, f,® defining an almost
complex structure,

1.22) g%he?=0,

which shows that an invariant submanifold M?"*! is minimal.

Equations (1.18) and (1.20) show that the almost contact metric structure
induced on the invariant submanifold is Sasakian.

Differentiating the second equation of (1.10) covariantly, we find

(—giifh+ B?ft) By Cyz_fzhhcay Ba2=<vcfyx) th_fyxhcazBah;
from which, using (1.10) and (1.21),
(].. 23) chy‘r_—.o,

which shows that the almost Hermitian structure in the normal bundle is
covariantly constant.

We close this section by preparing some formulas for later use. It is known
that on a Sasakian manifold the following identities are valid :

1
(1. 24) '_2—chbafdc:Kbcfac+(2n—]-)fba:
(1 25) Kbefae‘l_Kaefbe:Oy
(1.26) Ky fe=2nf,,

where Kieoa=Kae’Gea, Kev=Keer® and f*=g?®f,°. Transvecting (1l.24) with f,°
and using (1. 1), we find

2 Ko PSP = Ko [ =1~ guarb £,

from which, using (1. 25),
1
E‘chbafdcfeb:Kea_(Kedfd)fa+(2n_1)(_gea+fefa)
or

1
(1.27) o Kacre f*fa'= Koa=(2n=1) gra—fo fo-
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§ 2. Infinitesimal variations of invariant submanifolds.

Let M®***' be a (2n-+1)-dimensional invariant submanifold of a (2m+1)-
dimensional Sasakian manifold M?*™*!, We consider an infinitesimal variation of
M2 of M*™*! given by

2.1 Fr=x"+v"(y)e,
where ¢ is an infinitesimal. Putting B,"=d, %", we have
2.2) Bbh:Bbh+(ab vM)e,

which are 2n-+41 linearly independent vectors tangent to the varied submanifold
at (x*). We displace B,* back parallelly from (%*) to (x*), then we have

Byr=Byn 4TI (x+ve) v’ Byle.
Thus putting BBb":ﬁ,,"—Bb", we obtain
2.3) 0By =(Vpv")e,
neglecting terms of order higher than one with respect to e, where
2.4) Vovt =0, 0" +1"% By v*.

In the sequel we always neglect terms of order higher than one with
respect to e.
On the other hand, putting

(2. 5) V' =v"B,*+v*C",
we have
(2. 6) Vb v":——(Vb ve— hbaz UI)B ah +(Vb UI+ h(;az 'l)a') Czh.

Thus (2.3) can be written as
2.7 0By =[(Vsv*—hp?;0%) B +(Vo "+ hpo*v*) C;" ] €.

When the tangent space at a point (x*) of the submanifold and that at the
corresponding point (%*) of the varied submanifold are always parallel, the varia-
tion is said to be parallel [3]. Hence (2.7) implies

LEMMA 2.1. ([3]) In order for an infinutesimal variation of a submanifold
to be parallel, 1t 1s necessary and sufficient that

(2. 8) vax—%— hba’v‘zz .
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We now assume that the infinitesimal variation (2.1) carries an invariant
submanifold into an invariant submanifold and call such a variation an nvariant
variation. For an invariant variation, f,*(x-+ve)B,* are linear combinations of
B,* and vice versa.

Now we have

£ (x+ve) By
=[f"+v’0,/."e][By'+0sv'e]
=By [T T f P — g P00 f ] Byle+ [, O ve
= £’ B — £, (0o v™)e+ £, (@ v+ 1% By v')e—f,2 I %1 B e
4+ B0 CM)e—vy foB o e
=f*Bo "+ [,  Vyvie— f12 Vo v e+( fo0* —vy f2) Bo"e+f,v° Cole,

where we have used (1.4), (1.13), (2.2), (2.4) and (2.5), and consequently from
(2.6)

(2.9 fi" (x+ve) By
=L+ { e (Vov*—hys %)= fof (Ve v — ho® 2 0%)
+fov—vo €] Bo"
+ (Vo 0"+ hoa? v%) £, "= (Ve v+ hea® v®)+ fo07]1 e,

where C,* denote 2(m—n) mutually orthogonal unit normals to the varied
submanifold and v,=g,,v*. Hence we have, using (1.21),

PROPOSITION 2.2. In order for an nfinitesimal variation of an wnvariant
submanifold to be wnvariant it 1s necessary and sufficient that

(2~ 10) (Vb vY4-hp? va)fyx_fbe (Vv heo” Ua) +fov'=
or
(2.11) (Vo0¥) 5= fo* Vev®+ fov7=0.

When v®=0, that is, when the variation vector v* is tangent to the sub-
manifold, the variation is said to be fangential and when v®=0, that is, when
the variation vector v* is normal to the submanifold, the variation is said to be
normal [3]. From Proposition 2.2, we have

COROLLARY 2.3. A tangential variation of an wnvaniant submanifold 1s
mvariant.
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Combining Proposition 2.2 and Lemma 2.1, we also have

COROLLARY 2.4. In order for a parallel variation of an wmvariant sub-
manifold to be invariant, it is mecessary and sufficient that the variation 1is
tangential.

Now applying the operator ¢ to g,=g;; B/ B,* and using dg;;=0 and (2.7),
we find

(2 12) Bgcb:[Vc UtV Ve—2hcp5 0] &,
from which
(2.13) 0gte=—[Vlpe4Vay®—2h% p?]¢,

where V°=g% V¥, and h%*,=g%g%%h,q,.
An infinitesimal variation for which dg.,=0 is said to be isometric [1], [3].
We now put

(2.14) 4=, By*+ 1" (%) BB, B,
and
(2.15) org=re—rs,

where I"% are Christoffel symbols of the varied submanifold.
Substituting (2.2) into (2.14), we find by a straightforward computation

(2.16) 0I'G=[(V.Vov?+ K ;" v*B) By + heo” (V2 vzt ha®sv9)]e,

from which, using equations of Gauss and Codazzi [3],

2.17) 0=V Vov®+Kaep® v9) €[V (hoez V7)) + Vo (heoz %)
_Ve(hcbzvz)] geas.
An infinitesimal variation of a submanifold for which 6/'%=0 is said to be
affine.

We now prove

LEMMA 2.5. If an wnfimitesunal vanation of an wnvarnant submanifold 1s
isometric, then we have

1
2

:_(27"_1) Ua—(fb Ub)fa-
Proof. Since an isometric variation is affine, we have from (2.17)

(2 19) vc vb Ua+chba Ud—vc (hbaz Ux)_vb<hcaz Uz)+va (hcbz vx):()’

(2 18) gw vc vb Ua.+ I{dcebfaefdcvb—zve<heaz UJ:)
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from which
gCD vc vb Vg +Kda. p?—2V¢ (heaz Ux):()l

which, together with (1.27), proves the lemma.

§3. Infinitesimal f-preserving variations.

Suppose that an infinitesimal variation of an invariant submanifold is in-
variant. Then putting

3.1 fzh (x+wve) B-bz:(faa‘i‘afba)gah;
we have, from (2.9),
(3- 2) 5fba:[fea (Vb Ve—hys Uz)_fbe (Vev®—h®, 'UI)“{'(fb Ua—Ubfa)] g,

When an infinitesimal invariant variation satisfies 0df,*=0, we say that the
invariant variation is f-preserving. From (1.20), (1.21) and (3.2) we have

LEMMA 3.1. In order for an wnfinitesumal varation to be f-preserving, if 1s
necessary and sufficient that the variation satisfies (2.10) or (2.11) and

(3.3) (Vov®) fo*—fo* (Ve v®) =284, v’fe“+(f1, Ve —v, f*)=0
or equivalently
(3.4) Lfp*—=2hy v7 [ =0,
L denoting the Lie derivation with respect to v
Now applying the operator ¢ to f,*/°=0, we find
(0/:5) P+ fo® (0f%)=0,
from which, substituting (3.2) and taking account of (1.19),
Lt (fO V) +0t = (v, f°) f* e+ fo* (0/")=0
or, using (1.12) and (1.18)
oft=LLi*+af*]e

for a certain function a. On the other hand, applying the operator 6 to g.,f°/°
=1 and using (2.12)

[«Egcb'—2hcb:c vI] fcf05+2gcb (5fc)fb:0,

from which, using (1.19) and the above equation, «=0 and consequently we
have
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(3.5) ofe=(Lf"e.
We now define a tensor field T, by
(3 6) ch:vc vb”—(ve vd)fcefbdﬂz}lcbz Vg +fc fb (ve vd)fefd

+fc (fbe Ue)—fb(fceve)
and prove

LEMMA 3.2. In order for an nfinitesimal isometric invariant variation of
an wnvariant submanifold to be f-preserving, it is necessary and sufficient that
ch:O.

Proof. Suppose that an infinitesimal invariant variation of an invariant
submanifold is f-preserving. Then by Lemma 3.1, we have

(Vs Ue)fea—fbe (Vev®)—2hy°s szea‘f‘(fo Ua—vbfa)zo-
Transvecting this with f,° and taking account of (1.12) and (1.19), we find

@.7 Vo' =(Veva) [o°f4—2hs¢ o 07— fo (Vo 0%) fo—fo (fe£19)=0,
from which, transvecting with f?,
feVev=f(Veva)foft+fef o5,

and consequently, using V.v,+V,v.—2h¢-v°=0 which means that the variation
is isometric,

J Vv =—fe (V) [+ fv.
Thus (3.7) becomes
Vove—(Veva) fo° fo* —2hoc” va+fo fe (Veva) £
—(fo*ve) fet(fetve) fo=0,
which means T,,=0.
Conversely we suppose that T.,=0. Then we have
Vv +(Vev®) f°f " —2he s v* 4+ fo P (Veva) fOF
—(fev) [P —=(fe ) fe=0.
Transvecting this with f,* and using (l.12), we find
(3.8 (Vev) [t —(Vev®) fof—2he*a v o+ 00 fot fa (Vev®) fo°f
—fe [ (fev)=0.
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Transvecting the same equation with f;, we have
3.9 (Vev®) fotfe(Veva) fof ¢ —fetv.=0.
Therefore substituting (3.9) into (3.8), we obtain
(Vev®) fo —(Nev®) feo—2h 5 V7 fo o+ fov*—v, f2=0.

Thus Lemma 3.1 and this equation prove the lemma.
We next prove

LEMMA 3.3. For an wnfinitesimal 1sometric nvanant vanation of an wn-
variant submanifold, we have

(3.10) Tep+The=0,

(3.11) TootTea f [ =(Lf) fo—(LSo) fe

and

3.12) T Toy=2T N, v,—2(Lf%) (Lf)—4 (L) (fva),

where TO=T,; g% g".
Proof. For an isometric variation, we have from (2.12),
(3.13) Vovat+Vavs=2hpa" Vs,
from which, taking account of (1.19),
(3.14) (Vyva) o e=0.
On the other hand, from (1.21), we have
(3.15) hes™=—Hheg "¢ 1%

Thus, from the definition (3.6) of T.,, we see that T.y+T5.=0.
On the other hand, using (3.14) and (3.15), we have, by a straightforward
computation,

3. 16) Tea fcefbdz(ve vd)fcefbd—vc v (Ve ve)fefb+(ve Vb)fefc +2he" Vg

But
—Cszvefeb+fevb V¢

and consequently (3.16) can be written as
Tedfcefbd: —{Vev,—(V, Ud)fcefbd'—thbI vt fe (fbe Ve)—fs (fce Ve)}
—feLfvtfoLSe.



230 KENTARO YANO, U-HANG KI AND JIN SUK PAK

Thus, taking account of (3.6) and (3.14), we find (3.11). Finally from the
definition (3.6) of T and (3.10) we have

T Toy=T*{Vevo—(Veva) fo*fo+ e (fo*ve) = fo (fe Vo))
Thus taking account of (3.11) and of
Teoo f*=—Lfo=—FThe,
we have
T Tepy=2TVv,—2(Lf)Lf)—4(LF) (felva)

and consequently the lemma is proved.
Now applying the operator V¢ to (3.6) with (3.14) and using (1.18), (1.20)
and (3.13), we see that

Ve L=V Tty 5 (T Veva =T Ve ) f 2T (hr?02)

—vy+@n+1)(fve) fo+2n (Veva) f°1o?,
from which, using the Ricci identity and Lemma 2.5,
Ve To=2n{(fve) fo—vs+(Veva) f 1} .
Hence taking account of
feLff=(Fve) fo—vo+(Veve) fo1",
we obtain
(3.17) Ve To=2n(feLf)=—2n(fo’ Lfe).
Thus, substituting (3.12) and (3.17) into the identity :
V(T v")=(V° Tep) "+ Tep Vo172,

we have

(18 Ve(Turh)= 4 T Tt (LFILLIF2+ (LI filva).

Now an infinitesimal variation which satisfies £f°=af’ a being a certain
function, is said to be jiber-preserving. Thus for a fiber-preserving variation,
we have

4 b 1 ch 2
v (chv ):7T ch""'“ s

from which, if the submanifold is compact orientable we have
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S[-;— T Tata’|dV=0,
dV being the volume element of M?"*!, Thus we have

PROPOSITION 3.4. If an wnfimtesunal 1sometric mvariant vanation of a com-
pact ornentable wvarant submanifold of a Sasakian manifold 1s fiber-preserving,
then 1t 1s f-preserving.

§4. Infinitesimal conformal variations.

An infinitesimal variation of a submanifold for which Jg., is proportional to
g is said to be comformal. A necessary and sufficient condition for an infini-
tesimal variation (2.1) of a submanifold to be conformal is

(4. 1) Vc vb—I—vac——thb’” UIZZchb,
where
(4.2) 2=1/@2n+1))(Vov*—hefv7).

The purpose of the present section is to prove the following proposition as
a generalization of Proposition 3. 4.

ProposITION 4. 1. If an wnfinutesumal conformal mmvarant vanation of a
compact onentable wmvarniant submanifold of a Sasakian manifold is fiber-
preserving, then it 1s 1sometric and hence f-preserving.

To prove this proposition we need following lemmas which will be proved
in the same way as in the proofs of Lemmas 3.2 and 3.3.

LEMMA 4.2. [In order for an wnfintesimal conformal wmvarnant vanation of
an wmvarant submanifold to be f-preserving, it 1s necessary and sufficient that the
tensor field 'T., defined by

4.3) "Ter=Vcvo—(Neva) fe°fo* —2hes va—fe fo(Ve va)ff*
+fc (fbeve)—fb (fceve)

vanishes identically.

LeEMMA 4.3. For an infinitesimal conformal wnvariant variation of an wn-
variant submanifold we have

"Tes+' Toe=0,
,ch+l Tedfcefbd:(ffc)fb_(ffb)fc—zzfcfb
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and

4.4 IT Toy=2' TN v0,—2(Lf)(LSfe)
—4(Lf) ([ va)+ 241 (LS,

where 'T®='T,, g% g*.

Proof of Proposition 4.1. Differentiating (4.1) covariantly, we have
(4 5) vc vb Ua+vc va vb:‘zvc (hbaxv.z"’_Zgba):
from which, using the Ricci identity,

A VotV Vevy—Keana v4=2V;(hpa” Ux“"‘nga) ’

or, substituting (4.5),
VeVova—VoVov,— K apa V=2V (Mypa® vz +2G5a)—2V o (hep® v+ 2Gch)

Taking the skew-symmetric part of this equation with respect to a and b
and making use of the Ricci identity, we find

Ve Vove—Ve Vo vyt Kapea v+ Kacog v+ Kepaq v°
=2V, (hes* v2+2800) +2V5 (hea® Vot A8ca),
or, using (4.5) and the first Bianchi identity,
Ve Vova—Koaea v =V (hoa® Vo +2800) Vo (hea® o+ 28ca)
Vo (her® v2+28c0)

Transvecting this with g and using h.%,=0, we find
4.6) VeVevo+ Koo v*—2V(heo®v,)+2n—1)V,2=0.

Now applying the operator V¢ to (4.3) and using the Ricci identity, we can
verify that

T T T et Kewa® [ 00— 27 (hes® 02— (V) . fy =0
+@n+1D(fve) fut2n (Veva) £

because of (1.18), (1.20), (4.1) and (V.v,) féf¢=A.
Substituting (1.27) into this equation and taking account of (4.6), we obtain

VC[/ ch+2 (n_l) chb"l“zfcfb]: _anbc-ffc-
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Thus we have
V(' Tep+(2n—1) Ageo+Af fo) V"]
=—2n(f,*v") Lfe+['To+Cn—1)Ageo+2Af: fo] V0,
from which, substituting (4.4) and using (4.2) with h.%,=0,

V(' Tert+@2n—1) Ages+2fe f5)v"]

= ! T Ty At 2o (L FNL L2 (0 D (LS fi v

(LS.

The variation being conformal and fiber-preserving, from d6g.,=21g.¢ and
Zeo ff°=1, we see that §/*=—2f%, that is, £f*=—2f* by (3.5). Thus the
above equation becomes

VoL Tort @n—1) Aot 272 [ 0"]= 5 T ToptAn* e,

Thus if the submanifold is compact and orientable, we have
S[' T Ty +- 807271 d V=0,

from which A=0, and consequently the variation is isometric and hence
Jf-preserving.

§5. An integral formula.
We put
Sp*=(v°) fo*—fo* (Ve v*)—21,°% Ve (fov®—vp ).

Then, as is shown in Lemma 3.1, an invariant variation of an invariant sub-
manifold is f-preserving if and only if S,°=0. We put [Se||?=S:S® where
Seo=S:°g» and S®=g°S,%. Then, using (1.19) and (1.21), we obtain by a
straightforward computation,

5.1 1Seo =2V vo]|*—~8 (heq® v2) Vev 2 +4 2oy v, ||?
—I(Vsve) P =V evs) £IP—=27 (Ve v°) (Vo va) fo*
+2(FV,1°) 320, +2(FeVve) foP 4+ 20, 02 —2 (f, v%)%
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On the other hand, putting
W=V v va—f** (Vove) fev*+(f v (feve),
we have
Vo w'=(VVy00) v+ [ Vo vallP— 7 (Ve Vo va) v°fe® — £ (Ve v®) (Vo va) fo©
+2n(f*Veva) £l v°+27*(Vave) fo? v'+Cn+1) (fevo)*—(vev),
from which, using (1.27) and the Ricci identity,
(5.2) Vo w’=v" (V2 V04 Kpa )+ [V, 06 12— £ (Ve v%) (Vo va) £
F2n(feVva) f20°+27(Vave) et v°—2n (0. 09)+2n (fev9)

Comparing (5.1) with (5. 2), we have

[1Sel*=2V"w,—20% (V* Vo 04+ Kpo v°) =8 (oo™ v2) VP02 +4] he® v, |?
+@Un+2) e v —(fev )2+ Vv favet =21 (N qve) fe20°
—I(Vove) £I*=I(Vevs) £217,

or equivalently

[1Seoll2=2V (wy—2hpa% vz v*)—20% [V° V0o + Kpo v°—2V° (hpe " v2)]
—2(h, V) (Ve vy +Vyv.—2he" v,)
—lILfllP=Lf P =4 (n+D(LS) fe va-

Therefore, assuming that the submanifold is compact orientable, we apply
Green’s theorem and obtain

6.9 ([F 1Sl 0 (T Vovat Kot =27 (haa? )
+(h6b1/ vy) (vc Ub+vb UC_thbx vz)

T L ul LI+ 2 (D (L1 St vV =0.

From (2.12) and (2.13) we see that the infinitesimal variation of dV is
given by

(5.4) 0dV=N,v*—h,*;v")dVe.
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On the other hand it is known [2] that the integral formula
[ [o# (9o v Koa 0 5 10 et Vol = (Tt 0 V=0

is valid for any vector field v® in a compact orientable Riemannian manifold.
From this we have

(5.5) [ [0 17 Do vat Koa 0 =292 (ha? 0.)+ Va (v}
o 1T vt Tty 2 e [Tt v (V50"
(R, vY) (To vy Vs vc—thb’v,)]stO.

Comparing (5.3) with (5.5) and taking account of 4.%,=0, we have

([0Sl =19 0+ Ty v =20 v+ 2 (T

+lLfP L 24 (n+1)(LfO) fo? Ud]d V=0,
or using S,t=g?S,;=0,

(5.6) S[llvc VotV ve—2hey™ Val> = 1Ses + v2/C2n+1) (Vo v?) geo®
1Ll LS+ 4D ES) o va [ V=0,

Now, when we have Jf*=(Lf*)e=0, we say that the variation is strictly
fiber-preserving. From (5.6) we have

PrOPOSITION 5.1. In order for an nfimitesimal strictly fiber-preserving
invariant variation of a compact orientable invariant submanifold of a Sasakian
manifold to be isometric, it is necessary and sufficient that the wvanation 1is
volume-preserving and f-preserving.

Now if an infinitesimal variation is affine we have from (2.19) V.(V.v%)=0,
since h.%,=0. Thus V,v®=const. and consequently if the submanifold is compact
we have V,v°=0. Thus from Proposition 5.1, we have

PROPOSITION 5.2. A strictly fiber-preserving wnvariant variation of a compact
orientable submanifold of a Sasakian manifold 1s 1sometric 1f and only 1f the
variation is affine and f-preserving.
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Remark. From (5.6) we see that if a fiber-preserving variation of a sub-
manifold is conformal, then A=0 and S,,=0. This gives another proof of

Proposition 4. 1.

[1]
(2]
[3]
[4]
[5]
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