A CHARACTERIZATION OF THE COSINE FUNCTION BY THE VALUE DISTRIBUTION

By Mitsuru Ozawa

1. Baker [1] has shown the following characterization of the exponential function.

If $f(z)$ is a transcendental entire function for which every value is linearly distributed, then with constants a, b, c,

$$
f(z)=a e^{b z}+c .
$$

Recently Kobayashi [3] has beautifully given a generalization of Baker's result. His main results may be stated in the following two theorems.

Theorem A. Let $f(z)$ be a transcendental entire function. Assume that there are three distinct finite complex numbers a, and three distinct straight lines l, in the complex plane on which all the solutions of $f(z)=a$, lie $(j=1,2,3)$. Assume further that $f(z)$ has a finite deficient value other than a_{1}, a_{2} and a_{3}. Then $f(z)=P(\exp A z)$ with a quadratic polynomıal P and a non-zero constant A.

Theorem B. Let $f(z)$ be a transcendental entire function. Assume that there is an unbounded sequence $\left\{w_{n}\right\}$ so that each w_{n} is a linearly distributed value of $f(z)$. Then

$$
f(z)=P(\exp A z)
$$

with a quadratıc polynomial P and a non-zero constant A.
In this paper we shall give a characterization of the cosine function by the value distribution. Our form is of Baker's type. We need a deeper analysis for any extension of Kobayashi's type and this is just an open problem.

ThEOREM 1. Let $f(z)$ be a transcendental entire function, real for real z, of finte order. Assume that, for every real number w satisfying $w \geqq w_{0}$ or $w \leqq-w_{0}$, $f(z)=w$ has ts roots on two stravght lines $l_{w 1}, l_{w 2}$ being parallel to the real axis and that, for every real number w satisfying $|w|<w_{0}, f(z)=w$ has its roots on two stravght lines $l_{w 1}, l_{w 2}$. Then $f(z)=A \cos (B z+C)+D$ with real constants A, B, C, $D, A B \neq 0$.

[^0]Theorem 2. Let $f(z)$ be a transcendental entire functıon, real for real z. Assume that $f(z)=w$ has either only non-real roots or only real roots for an arbitrary real number w. Then $f(z)=A \cos (B z+C)+D$ with real constants A, B, C, $D, A B \neq 0$.

In this theorem we cannot omit the reality of $f(z)$. However we have the following slightly extended theorem.

Theorem 2'. Let $f(z)$ be a transcendental entire function, having only real zeros and only real one-points. Assume that $f(z)=w$ has either only non-real roots or only real roots for an arbitrary real number w. Then $f(z)$ has one of the following three forms:

1) $f(z)=\frac{\sin (\xi z+\eta) e^{i\left(\hat{\xi} z+\eta_{1}\right)}}{\sin \left(\eta-\eta_{1}\right)}, \quad\left(\sin \left(\eta-\eta_{1}\right) \neq 0\right)$
ξ, η, η_{1} : real constants,
2) $f(z)=\frac{\sin p(\xi z+\eta) e^{i(p-1)(\xi z+\eta)}}{\sin (\xi z+\eta)}$.

$$
p: \text { an integer }(\neq 0,1), \quad \xi, \eta: \text { real constants, }
$$

3) $f(z)=A \cos (B z+C)+D$,

$$
A, B, C, D: \text { real, } A B \neq 0
$$

Theorem 3. Let $f(z)$ be a transcendental entire function, real for real z. Assume that $f(z)$ has only real zeros and only real one-points. Assume further that, for every real $w, f(z)=w$ has either only non-negative real roots or only non-real roots except only one negatuve root or only non-real roots. Then

$$
f(z)=A \cos B \sqrt{z}+D
$$

with real $A, B, D, A B \neq 0,|D| \leqq|A|,|1-D| \leqq|A|$.
2. Lemmas. We need several known results.

Lemma 1. [2]. Let $f(z)$ be an entire function having only real zeros and real one-points. Then the order of $f(z)$ does not exceed one. If "real" is replaced by "positve", the order of $f(z)$ does not exceed $1 / 2$.

Lemma 2. [2]. Let $f(z)$ be a real enture function whose zeros and the one-points are all real. Then all the roots of $f(z)=h$ with real h in $[0,1]$ are real.

Lemma 3. [2]. Let $f(z)$ be an entire function. Assume that there exists an unbounded sequence $\left\{w_{\nu}\right\}$ such that all the roots of the equations $f(z)=w_{\nu} \quad(\nu=1$, $2,3, \cdots$) be real. Then $f(z)$ is a quadratic polynomial.

Lemma 4. [2]. Let $f(z)$ be an entrre functoon which has only real zeros and real one-points. Assume that $f(z)$ is not real for real z. Then $f(z)$ is one of the following two forms:

$$
\text { i) } f(z)=\frac{\sin (\xi z+\eta) e^{i\left(\xi z+\eta_{1}\right)}}{\sin \left(\eta-\eta_{1}\right)} \quad\left(\sin \left(\eta-\eta_{1}\right) \neq 0\right)
$$

where ξ, η, and η_{1} are real constants,
ii) $f(z)=\frac{\sin p(\xi z+\eta) e^{i(p-1)(\hat{\xi} z+\eta)}}{\sin (\xi z+\eta)}$,
where $p(\neq 0,1)$ is an integer and ξ, η are real constants.
Lemma 5. [3]. Let $f(z)$ be an entire function of finte lower order. If all the zeros of $f(z)(f(z)-1)$ lie in the strip $|\Im z| \leqq h$, the order of $f(z)$ is at most one.
3. Proof of Theorem 2. Let E be the set of real numbers w for which $f(z)=w$ has only real roots and F the one for which $f(z)=w$ has no real root. By Lemma $3 E$ is bounded and hence $F \neq \phi$. Evidently $f(0)$ and $f(\epsilon)$ are real for a real number ϵ. Hence $f(z)=f(0)$ and $f(z)=f(\epsilon)$ have only real roots by our assumption. Hence Lemma 1 implies that $f(z)$ is of order at most one. By Lemma $2 E$ is a closed interval $\left[w_{*}, w^{*}\right], w_{*}<w^{*}$. Let $\left\{x_{j}\right\}$ be the set of (real) roots of $f(z)=w^{*}$. Let x move the open interval ($x_{j}-\epsilon, x_{j}+\epsilon$) along the real axis. Then $f(x)$ moves from $f\left(x_{j}-\epsilon\right)$ to $f\left(x_{j}\right)=w^{*}$ and then turns back from w^{*} to $f(x,+\epsilon)$. $f(x)$ cannot traverse w^{*}. Hence x_{ρ} is a multiple root of $f(z)=w^{*}$ of even order. The same holds for w_{*}. Hence

$$
\begin{aligned}
& f(z)-w^{*}=g(z)^{2}, \\
& f(z)-w_{*}=h(z)^{2} .
\end{aligned}
$$

Thus

$$
(g(z)-h(z))(g(z)+h(z))=w_{*}-w^{*} \neq 0
$$

which shows that

$$
\begin{aligned}
& h(z)-g(z)=\sqrt{w^{*}-w_{*}} e^{i(b z+c)} \\
& h(z)+g(z)=\sqrt{w^{*}-w_{*}} e^{-i(b z+c)}
\end{aligned}
$$

Hence

$$
f(z)=\frac{w^{*}+w_{*}}{2}+\frac{w^{*}-w_{*}}{2} \cos 2(b z+c)
$$

with real b, c. This is the desired result.
If the reality of $f(z)$ is omitted in this theorem, the result is not true. Let us consider the function i) in Lemma 4. For this function $f(z)$ and for a real number w

$$
f(z)=w
$$

can be solved and with $u=\xi z+\eta, x=\eta_{1}-\eta$

$$
\begin{aligned}
& 2 u=- \imath \\
& \cos x \log \left(1-4 w \sin ^{2} x+4 w^{2} \sin ^{2} x\right)+\theta+2 p \pi+\left(\eta-\eta_{1}\right), \\
&=(1-4 w) \sin x \\
&\left.\sin ^{2} x+4 w^{2} \sin ^{2} x\right)^{1 / 2} e^{i \theta}
\end{aligned}
$$

Hence for $w \neq 0,1 f(z)=w$ has only non-real roots and for $w=0$ or $w=1$ $f(z)=w$ has only real roots.

Similarly we have the same fact for the function ii) in Lemma 4.
4. Proof of Theorem 3. Let us put $F(z)=f\left(z^{2}\right)$. Then $F(z)$ satisfies the assumption in Theorem 2. Hence $F(z)=A \cos (B z+C)+D$. Further $F(z)$ is real for purely imaginary z. Hence $C=0$. Evidently $|D| \leqq|A|,|1-D| \leqq|A|$, since $f(z)$ has only real zeros and real ones.
5. Proof of Theorem 1. Firstly by Lemma 5 the order of f is at most one. Again by Lemma 3 for $w \geqq w_{1}$ and $w \leqq-w_{1} l_{w 1} \neq l_{w 2}$. By the reality of $f(z)$

$$
f(z)-w=C e^{A z} \Pi\left(1-\frac{z}{\bar{b}_{j}}\right) e^{z / \bar{b}_{\jmath}} \Pi\left(1-\frac{z}{b_{\jmath}}\right) e^{z / b_{j}}
$$

with real C and A. Further $\mathfrak{\Im} \bar{b}_{j}=\alpha_{w 1}=-\alpha_{w 2}=\Im b_{\jmath}$. Hence for real y

$$
\begin{aligned}
& \log |f(\imath y)-w| \\
&=\log |C|+\frac{1}{2} \Sigma \log \left(1+\frac{2\left(\Re b_{j}\right)^{2}-2 \alpha^{2}{ }_{w 1}}{\left|b_{j}\right|^{4}} y^{2}+\frac{y^{4}}{\left|b_{j}\right|^{4}}\right) \\
& \quad \geqq \log |C|+\frac{1}{2} \sum_{|j| \geqq n_{0}} \log \left(1+\frac{y^{4}}{\left|b_{j}\right|^{4}}\right)-\frac{K}{2} \log \frac{y^{4}}{\left|\alpha_{w 1}\right|^{4}}
\end{aligned}
$$

Here for $|j| \geqq n_{0} 2\left(\Re b_{j}\right)^{2}-2 \alpha_{w 1}^{2} \geqq 0$. The above inequality holds for sufficiently large y^{4}. Now consider

$$
L(z)=\prod_{|j| \geqslant n_{0}}\left(1+\frac{z}{\left|b_{j}\right|^{4}}\right), \quad \sum \frac{1}{\left|b_{j}\right|^{2}}<\infty
$$

For this function the maximum modulus $M(r, L)=L(r)$. Further $\log M(r, L) /$ $\log r \rightarrow \infty$ as $r \rightarrow \infty$. Therefore $\log |f(i y)-w| \rightarrow \infty$ as $y \rightarrow \pm \infty$ and so $|f(\imath y)|$ $\rightarrow \infty$ as $y \rightarrow \pm \infty$. Now the Lindelöf-Iversen-Gross theorem [4] implies

$$
|f(z)| \rightarrow \infty
$$

uniformly as $|z| \rightarrow \infty$ in $|\arg z-\pi / 2| \leqq \pi / 2-\delta$ or in $|\arg z-3 \pi / 2| \leqq \pi / 2-\delta$ for every $\delta>0$.

For every real w there occur five possibilities on $l_{w 1}, l_{w 2}$: 1) $l_{w 1} \equiv l_{w_{2}}$ and $l_{w_{1}}$ coincides with the real axis, 2) $l_{w_{1}} \neq l_{w_{2}}$ but $l_{w_{1}}, l_{w_{2}}$ are parallel to the real axis, 3) $l_{w_{1}}$ coincides with the real axis and $l_{w_{2}}$ is perpendicular to the real axis, 4) both of $l_{w 1}, l_{w 2}$ are perpendicular to the real axis, and 5) $l_{w 1}, l_{w 2}$ intesect at a real point and have inclinations $m,-m$ respectively. Here $0<m<\infty$.

Suppose that 4) occurs. Then on $l_{w_{1}}, l_{w 2}$ there are only finitely many w-points of $f(z)$. Hence $f(z)=w+P e^{a z}$, where P is a real polynomial and a is a real non-zero constant. In this case it is easy to show that there are infinitely many roots of $f(z)=\tilde{w}$ for $\tilde{w} \neq w$ in the direction of the imaginary axis. This is absurd. Hence 4) does not occur. Similarly 5) does not occur either. If 3) occurs, there are only finitely many w-points of $f(z)$ on $l_{w 2}$. Of course in this case there are at least two non-real w-points of $f(z)$ on $l_{w_{2}}$, since, if not, 1) appears instead of 3).

Let E be the set of real numbers for which 1) occurs, F the one for which 2) occurs, and D the one for which 3) occurs. For w satisfying $|w|>w_{0}$ either 1) or 2) occurs. However by Lemma 3 the case 1) does not occur for any unbounded sequence $\left\{w_{n}\right\}$. Therefore F covers two unbounded parts of the real axis. Since $f(z)=f(0)$ has at least one real root $0, E \cup D \neq \phi$ and is a bounded closed set. Let $\left\{w_{*}, w^{*}\right\}$ be the connected component of $E \cup D$ containing $f(0)$. Firstly $E \cup D=\left[w_{*}, w^{*}\right]$. Indeed $\{f(x)\}$ for real x is connected and $\{f(x)\} \subset$ $E \cup D$ and further for every $w \in E \cup D$ there is a real number x such that $f(x)$ $=w$. Next we shall prove that $w_{*}, w^{*} \in E$. Suppose that $w^{*} \in D$. Evidently w^{*} is an end-point of F, that is, $w \in F$ if $w>w^{*}$. Let $\left\{x_{j}\right\}$ and $\left\{z_{s}\right\}$ be the sets of real roots and of non-real roots of $f(z)=w^{*}$, respectively. As in the proof of Theorem $2 x_{1}$ is a multiple root of $f(z)=w^{*}$ of even order. Thus for every $w_{1} \in F, w^{*}<w_{1}<w^{*}-\delta$ for a sufficiently small $\delta>0, f(z)=w_{1}$ has two complex roots around all the x_{j}. Hence we have two $l_{w_{11}}, l_{w_{12}}$ which are parallel to the real axis. If $\delta \rightarrow 0, l_{w_{1} 1}, l_{w_{1} 2}$ tend to the real axis. $f(z)=w_{1}$ has no other root which does not lie on $l_{w_{11}}, l_{w_{12}}$. However every small neighborhood of z_{s} corresponds to some neighborhood of w^{*}. Hence there must exist a point z_{s}^{\prime} such that $f\left(z_{s}^{\prime}\right)=w_{1}$. z_{s}^{\prime} does not lie on $l_{w_{1} 1}, l_{w_{12}}$. This is a contradiction. This shows that $w^{*} \in E$. The same holds for w_{*}. Further $f(z)=w^{*}$
and $f(z)=w_{*}$ have only real roots of even order. Thus we have the desired result as in the proof of Theorem 2.

Theorem 2 does not hold without the reality of $f(z)$. Let us start from the second function in Lemma 4 with $p=3$. Let us put $u=\xi z+\eta$ and $x=\exp (2 i u)$. For $f(z)=w$ we have $x^{3}-w x+w-1=0 . \quad x=1$ does not give any root of the original equation. Therefore

$$
x=\frac{-1 \pm \sqrt{4 w-3}}{2} .
$$

This gives the roots

$$
u=-\frac{i}{2} \log \frac{\sqrt{4 w-3-1}}{2}+q \pi
$$

and

$$
u=-\frac{i}{2} \log \frac{\sqrt{4 w-3+1}}{2}+\frac{\pi}{2}+q \pi
$$

with integers $q=0, \pm 1, \cdots$. For $w=1$, the first members are disappeared. Except for $w=0$ and $w=1$, and $f(z)=w$ has roots lying on two distinct straight lines which are parallel to the real axis.

References

[1] BAKER I.N., Entire functions with linearly distributed values, Math. Zeits., 86 (1964), 263-267.
[2] Edrei A., Meromorphic functions with three radially distributed values, Trans. Amer. Math. Soc., 78 (1955), 276-293.
[3] Kobayashi T., On a characteristic property of the exponential function. Kōdai Math. Sem. Rep. 29 (1977), 130-156.
[4] Noshiro K., Cluster sets, Springer, Berlin (1960).
Department of Mathematics
Tokyo institute of Technology
Oh-okayama, Meguro-ku, TOKyo, Japan

[^0]: Received April 13, 1977.

