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A CHARACTERIZATION OF THE COSINE FUNCTION
BY THE VALUE DISTRIBUTION

BY MITSURU OZAWA

1. Baker [1] has shown the following characterization of the exponential
function.

If f{z) is a transcendental entire function for which every value is linearly
distributed, then with constants a, b, c,

Recently Kobayashi [3] has beautifully given a generalization of Baker's
result. His main results may be stated in the following two theorems.

THEOREM A. Let f{z) be a transcendental entire function. Assume that there
are three distinct finite complex numbers a3 and three distinct straight lines l3 in
the complex plane on which all the solutions of f(z)=cij lie (j—1, 2, 3). Assume
further that f(z) has a finite deficient value other than au a2 and a3. Then
f(z)=P (exp Az) with a quadratic polynomial P and a non-zero constant A.

THEOREM B. Let f{z) be a transcendental entire function. Assume that there
is an unbounded sequence {wn} so that each wn is a linearly distributed value of
f{z). Then

f(z)=P(expAz)

with a quadratic polynomial P and a non-zero constant A.

In this paper we shall give a characterization of the cosine function by the
value distribution. Our form is of Baker's type. We need a deeper analysis for
any extension of Kobayashi's type and this is just an open problem.

THEOREM 1. Let f(z) be a transcendental entire function, real for real z, of
finite order. Assume that, for every real number w satisfying w^w0 or w^—w0,
f(z)=w has its roots on two straight lines lwl, lw2 being parallel to the real axis
and that, for every real number w satisfying |W;|<M;O, f(z)=-w has its roots on
two straight lines lwl, lw2. Then f(z)=AcosiBz+Q+D with real constants A, B,
C, D, AB^O.
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THEOREM 2. Let f(z) be a transcendental entire function, real for real z.
Assume that f(z)=w has either only non-real roots or only real roots for an
arbitrary real number w. Then f(z)=Aco$(Bz+C)-{-D with real constants A, B,
C, D, ABΦΰ.

In this theorem we cannot omit the reality of f(z). However we have the
following slightly extended theorem.

THEOREM 2'. Let f{z) be a transcendental entire function, having only real
zeros and only real one-points. Assume that f(z)=w has either only non-real roots
or only real roots for an arbitrary real number w. Then f{z) has one of the
following three forms:

constants,

p : an integer (Φθ, 1), ξ, η: real constants,

3) f(z) = Acos(Bz+C)+D,

A, B, C, D: real, ABφO.

THEOREM 3. Let f{z) be a transcendental entire function, real for real z.
Assume that f{z) has only real zeros and only real one-points. Assume further
that, for every real w, f{z)—w has either only non-negative real roots or only
non-real roots except only one negative root or only non-real roots. Then

with real A} B, D, ABφQ, \D\^\A\, \1-D\^\A\.

2. Lemmas. We need several known results.

LEMMA 1. [2]. Let f{z) be an entire function having only real zeros and
real one-points. Then the order of f{z) does not exceed one. If "real" is replaced
by "positive", the order of f{z) does not exceed 1/2.

LEMMA 2. [2]. Let f{z) be a real entire function whose zeros and the
one-points are all real. Then all the roots of f(z)=h with real h in [0, 1] are
real.
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LEMMA 3. [2]. Let f{z) be an entire function. Assume that there exists an
unbounded sequence {wv} such that all the roots of the equations f{z)—wv (v=l,
2, 3, •••) be real. Then f(z) is a quadratic polynomial.

LEMMA 4. [2]. Let f(z) be an entire function which has only real zeros and
real one-points. Assume that f(z) is not real for real z. Then f{z) is one of the
following two forms:

where ξ, η, and ηλ are real constants,

Z)- sin(ξz+V)

where p (ΦQ, 1) is an integer and ξ, η are real constants.

LEMMA 5. [3]. Let f{z) be an entire function of finite lower order. If all
the zeros of f(z) (/(z)—1) lie in the strip \^z\^hf the order of f(z) is at
most one.

3. Proof of Theorem 2. Let E be the set of real numbers w for which
f(z)= w has only real roots and F the one for which f(z)= w has no real root.
By Lemma 3 E is bounded and hence Fφφ. Evidently /(0) and /(e) are real
for a real number e. Hence f(z)=f(Q) and f(z)=f(e) have only real roots by
our assumption. Hence Lemma 1 implies that f(z) is of order at most one.
By Lemma 2 E is a closed interval [w/*, w*], w*<w*. Let {xj} be the set of
(real) roots of f(z)=w*. Let x move the open interval (xj—e, Xj+e) along the
real axis. Then f(x) moves from f(xj—e) to f(x3)=w* and then turns back
from w* to f(xj+e). f{x) cannot traverse w*. Hence x3 is a multiple root of
f(z)=w* of even order. The same holds for w*. Hence

f(z)-w*=g(z)\

Thus

(g(z)-Kz))(g(z)+Kz))=w*-w*Φθ,

which shows that

h(z)-g(z)= Vw*
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Hence

with real b, c. This is the desired result.
If the reality of f[z) is omitted in this theorem, the result is not true. Let

us consider the function i) in Lemma 4. For this function f(z) and for a real
number w

f{z)=w

can be solved and with u~ζz+η, x=η1 — η

2u = -ι—\og(l-4:W sin2 x+iw2sm2 x)+θ+2pπ+(η-η1),

cos x + ι(l—2u;)sin x

=(l—4w sin2 x+iw2 sin2 x)1/2eί&

Hence for wφO, 1 f(z)=w has only non-real roots and for w=0 or w/=l
f(z)= w has only real roots.

Similarly we have the same fact for the function ii) in Lemma 4.

4. Proof of Theorem 3. Let us put F(z)=f(z2). Then F(z) satisfies the
assumption in Theorem 2. Hence F(z)=A cos (Bz+C)+D. Further F(z) is real
for purely imaginary z. Hence C=0. Evidently |D |^ |y l | , |1—D\^\Λ\, since
f(z) has only real zeros and real ones.

5. Proof of Theorem 1. Firstly by Lemma 5 the order of / is at most one.
Again by Lemma 3 for w'^w1 and w^—w1 lwlΦlw2- By the reality of f(z)

f(z)-w=CeAz Π {l-ψ

with real C and A. Further Sbj=awl=— aw2=
(3bJ. Hence for real y

log\f(ιy)-w\

Here for | ; | ^ n 0 2(Sfl ^ ) 2 -2α^i^0. The above inequality holds for sufficiently
large y . Now consider
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For this function the maximum modulus M(r, L)=L(r). Further logM(r, L)/
logr-^oo as r —> oo. Therefore log \f(iy)— w\ —> oo as y-+±00 and so \f{ιy)\
—> 00 as 3; —• ±00. Now the Lindelδf-Iversen-Gross theorem [4] implies

uniformly as | z | -* 00 in \&rgz —π/2\^π/2— δ or in |arg^—37r/2|^π/2—δ for
every

For every real w there occur five possibilities on lwl, lw2: 1) /M,i=/w 2

/ w l coincides with the real axis, 2) ίwl^lw2 but / ω l , /w 2 are parallel to the real
axis, 3) lwl coincides with the real axis and lw2 is perpendicular to the real
axis, 4) both of lwl, lw2 are perpendicular to the real axis, and 5) lwl, lw2

intesect at a real point and have inclinations m, —m respectively. Here
0<m<oo.

Suppose that 4) occurs. Then on lwl, lw2 there are only finitely many
^/-points of f(z). Hence f(z)=w+Peaz, where P is a real polynomial and a is
a real non-zero constant. In this case it is easy to show that there are infinitely
many roots of f(z)=w for wφw in the direction of the imaginary axis. This is
absurd. Hence 4) does not occur. Similarly 5) does not occur either. If 3)
occurs, there are only finitely many w-points of f(z) on lw2. Of course in this
case there are at least two non-real w-points of f(z) on lw2, since, if not, 1)
appears instead of 3).

Let E be the set of real numbers for which 1) occurs, F the one for which
2) occurs, and D the one for which 3) occurs. For w satisfying \w\>w0 either
1) or 2) occurs. However by Lemma 3 the case 1) does not occur for any un-
bounded sequence {wn}. Therefore F covers two unbounded parts of the real
axis. Since /(z)=/(0) has at least one real root 0, E^JDφφ and is a bounded
closed set. Let {w*, w*} be the connected component of E^JD containing /(0).
Firstly EVD=lw*, w*] . Indeed {f(x)} for real x is connected and {/(*)} C
E^JD and further for every w^E^JD there is a real number x such that f(x)
— w. Next we shall prove that w*, w*<^E. Suppose that w*^D. Evidently
w* is an end-point of F, that is, w^F if w>w*. Let {xj} and {zs} be the
sets of real roots and of non-real roots of f(z)=w*, respectively. As in the
proof of Theorem 2 x3 is a multiple root of f(z)=w* of even order. Thus for
every w^F, w*<w1<ιv* — δ for a sufficiently small d>0, f(z)=w1 has two
complex roots around all the x3. Hence we have two lWll, lWl2 which are
parallel to the real axis. If δ —> 0, lWll, lWχ2 tend to the real axis. f{z)—wλ has
no other root which does not lie on lWll, lWχ2. However every small neigh-
borhood of zs corresponds to some neighborhood of w*. Hence there must exist
a point z's such that f{zf

s)=w1. z's does not lie on lWll, lWl2. This is a con-
tradiction. This shows that w*^E. The same holds for w*. Further f(z)=w*
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and f{z)—w^ have only real roots of even order. Thus we have the desired
result as in the proof of Theorem 2.

Theorem 2 does not hold without the reality of f{z). Let us start from the
second function in Lemma 4 with £ = 3 . Let us put u=ξz+η and x=exρ(2zz/).
For f{z)—w we have xs—wx+w—1=0. x=l does not give any root of the
original equation. Therefore

This gives the roots

w = --^-log ^ r Yqπ

Cι Li

and

i , V4w-3+l , π

with integers ^=0, ± 1 , •••. For w=l, the first members are disappeared.
Except for w=0 and w=ί, and f(z)=w has roots lying on two distinct
straight lines which are parallel to the real axis.
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