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PROJECTABLE ALMOST COMPLEX CONTACT STRUCTURES

BY D. E. BLAIR, S. ISHIHARA AND G.D. LUDDEN

A complex manifold of complex dimension 2m+1 is said to be a complex
contact manifold if it admits an open covering {ua} such that on each ua there
is a holomorphic 1-form ωa with ωaA(dωa)

mΦθ on uaΓ\UβΦ$, a)β=fωa for some
non-vanishing holomorphic function / . In general such a structure is not given
by a global 1-form ω in fact this is the case for a compact complex manifold
if and only if its first Chern class vanishes [6]. However, a complex contact
manifold is the base space of a principal fibre bundle with 1-dimensional fibres
and real contact structure. Homogeneous complex contact manifolds were studied
by Boothby in [3].

It is also shown in [6] that the structural group of the tangent bundle of a
Hermitian contact manifold M is reducible to (Sp(m)-Sp(l))xU(l) where Sp(m)
•Sp(ϊ)=Sp(m)xSp(X)/{±I} and hence equivalently M admits the following local
structure tensors. Let F denote the almost complex structure and g the Hermitian
metric on M. Then each coordinate neighborhood admits tensor fields G, H of
type (1, 1) and vector fields U, V with covariant forms u and v such that
(G, U, V, g) and (H, U, V, g) are metric /-structures with complemented frames
(see e.g. [1]), FU=V and GH=-HG=F+v®U-*u®V. In the overlap of
coordinate neighborhoods we have

Gf=aG+bH, u'=au+bv,
(0.1)

Hf=-bG+aH, vf=b

with a2jrb2=l. Such a structure is called an almost complex contact structure [5]
and our first project here will be to given an equivalent definition in terms of
global tensor fields.

A standard example of a complex contact manifold is the odd-dimensional
complex projective space pc2m+1. It is also well known that PC2m+1 is a fibre
space over the quaternionic projective space PHm with fibres S2~PCK In
sections 3 and 4 we generalize this situation to a projectable almost complex
contact structure on a Kahlerian manifold.

§ 1. Almost Complex Contact Structures

In terms of the above local tensor fields G, H, U, V we can define global
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tensor fields Σ of type (1, 3) and S of type (1,1). For local vector fields X, Y, Z
set

ΣxγZ=g{GX, Y)GZ+g{HX, Y)HZ (1.1)
and

SX=u(X)U+υ{X)V. (1.2)
It is then easy to check using equations (0.1) that Σ and S are globally defined.
Note also that 5 is a projection tensor field of rank 2, i.e. S2=S. For a unit
vector Λ^TpM with SA=0, let

σΛ={B<ΞTpM\g(A, B)=0, \\B\\ = 1, Σ(A, B, A, B)=l} ,

where Σ(X, Y, Z, W)=g(ΣxγZ, W) and [σ J the subspace of TPM generated by

σA.
The following properties of Σ and 5 are now easily deduced. l)-8) are

straightforward computations using equations (1.1) and (1.2) and elementary
properties of metric /-structures. For 9) given A set B=GA and it is easy to
see that

1) SF=FS
2) Σχr=—ΣYχ
3) Σ\y=Σ{X, Y, X, Y)(-I+S)

4) ΣχγS=SΣXγ=0

6)
7) Σ(X, Y, Z, W)=Σ(Z, W, X, Y)

8) ΣχΣγzχW
9) σAψ® for any unit vector A with SA=0 and at any point p of M.

Conversely we will show that an almost Hermitian manifold M with structure
tensors (F, g) admitting global tensor fields Σ and 5 satisfying l)-9) is an almost
complex contact manifold. We first give several lemmas.

LEMMA 1.1. For B^σA, ΣABA=B, SB=0 and σA is invariant under F.

Proof. Since Σ(A, B, A, B)=g{ΣABA, B)=ί to show that ΣABA=B it suffices

to show that ΣABA is a unit vector.

g(ΣABA, ΣΛBA)=~g(ΣΪBA, A)=-g{-A+SA, A)=l

by 2), 7) and 3), since A is a unit vector and SA=0. Now SB=SΣABA=0 by
4). Finally for the in variance by F,

ΣAFBA=—ΣAFBF
2A=FΣABA—FB ,

from which Σ(A, FB} A, FB)=1 and g(FB, A)=g(ΣAFBA, A)=0.

LEMMA 1.2. For any unit vector B^σA set C—FB<^σA, then
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ΣABΣAC=F-SF.

Proof. If we take an arbitrary vector D^TPM then, using (3) and (6), we
have

ΣABΣACD=Σ ABΣAFBD^—Σ ABΣAFBF2D

= -ΣABΣABFD=(I-S)FD.

LEMMA 1.3. For any orthonormal pair {BfC}^σA,

ΣABΣ Ac=z—ΣACΣAB .

Proof. First, using (3), we have

ΣAB+C=Σ(A9 B+C, A, B+C)(-I+S)

On the other hand, we obtain

Σ AB+C—\ΣAB-{-ΣAc)

=2(-I+S)+(ΣABΣAc+ΣACΣAB).

Thus we have ΣABΣAC+ΣACΣAB=0.

LEMMA 1.4.

Proof. Take B and C as in Lemma 1.1 and assume that there is a unit
vector D^[_σA~] such that D is orthogonal to B and C. They by Lemmas 1.2 and
1.3 we have

Σ ABΣ AcΣ A£>=2, ADΣ ABΣ AC,
and so

(F-SF)ΣAD=ΣAD(F-SF).

Thus, using (1) and (4), we obtain

FΣAD=ΣADF,

which contradicts (5). Therefore, [_σA~] is necessarily of dimension 2.

LEMMA 1.5. For any vectors B,C^TPM, satisfying Σ£B,C,B,C)=1,

Proof. Using (8), we have

ΣAΣBCAA—ΣBCA ,

from which it follows that ΣBCA^σA.
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LEMMA 1.6. Take a unit vector A^TPM with SA=O and a unit vector A

Put C—FB^σA. The Σ ABD and ΣACD are orthonormal, where D is an arbitrary
unit vector at p such that SD—O.

Proof. g(ΣABD,ΣABD)=-g(Σ2

ABD,D)=g(D-SD,D)=l and similarly ΣACD
is also a unit vector. Finally

g(ΣΛBD, ΣACD)=-g(ΣABD, ΣAFBF*D)=-g(ΣABD, ΣABFD)

=g(ΣABD,FΣABD)=0.

Summing up Lemmas 1.4, 1.5 and 1.6, we have

PROPOSITION 1. Take a unit vector A<ΞTPM such that SΛ=0 and a unit
vector B^σA. Put C=FB^σA. Then, for any unit vector D^TPM with SD=0,
ΣABD and ΣACD form an orthonormal basis of [σD~],

LEMMA 1.7. Take A, B and C as in Proposition 1. Then, for any D, E

ΣDE=Σ{A, By Ό, E)ΣAB+Σ(A, C, D, E)ΣAC .

Proof. When D (or E) satisfies SD=D (or SE=E), then both sides of the
equation above vanish because of (4). So, D and E may be assumed to satisfy
SD=SE=0 and also that D and E are unit. First, we consider the case in
which E is orthogonal to σD. Linearizing (3) we have ΣXYΣxZΛ-ΣxzΣxγ

^2Σ(X,Y,X,Z){~~IJrS). Thus if Y^σDy ΣDE anti-commutes with ΣDY and
ΣDFY and hence ΣDE commutes with ΣDYΣDFX which by Lemma 1.2 is equal to
F-SF. Therefore using (1) and (4)

FΣDE=(F-SF)ΣDE=ΣDE(F-SF)=ΣDEF,

from which by (5) and the non-singularity of F we have ΣDE=0 and again both
sides of the above equation vanish.

Finally we consider the case where E^σD. For simplicity set a=g(ΣABD, E)
and b=g(ΣACD, E). Then as {ΣABD, ΣACD) is an orthonormal basis of [>/>],

E=aΣABD+bΣACD.

Using (8) we have

=aΣABA+bΣACA

=aB+bC.
Using (8) again

ΣDE=ΣAΣDEA=aΣ AB-\τbZ A C ,

which is the desired formula.
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Take a suitable coordinate neighborhood u of an arbitrary point p of M and
a unit vector field A in u. Then there is in u a unit vector field B belonging
to σA at each point of u. On putting C=FB^σA we define locally in u two
tensor fields G and H of type (1,1) respectively by

G=ΣAB, H=ΣAC .

Then setting FH=F—FS and using (3) and (4) and Lemma 1.3, we have

(FH)2=G2=H2=-I+S,

GH=-HG=FH, HFH=-FHH=G, FHG=-GFH=H, (1.3)

FHS=SFH=GS=SG=HS=SH=O.

Next, (1), (2), and (7) imply

g(FHX,Y)=-g(FHY9X),

g(GX, Y)=-g(GY, X), g{HX, Y)=-g(HY, X),

for all X and Y. By Lemma 1.7, a local expression for Σxγ in u is the following

Σχγ=g(GX, Y)G+g(HX, Y)H. (1.4)

We now take another coordinate neighborhood u'(ur\u'φφ) and define G; and
H/ as in w, say G'=ΣA>B> and H/=ΣA>c By the formula of Lemma 1.7

^ * = I ( Λ B, A', B')ΣAB+Σ{A, C, A', C')ΣAC .

ΣΛ.C.=Σ(A, B, A', C')ΣAB+Σ(A, C, A', C')ΣAC .

Setting a=Σ(A, B, A', B') and b=Σ{A, C, A', B') we have that

l=g{ΣA,B.A', B')=Σ(A, B, A', B')2+Σ(A, C, A', B')2=a2+b2

and
Σ(A, C, A', σ)=-g{ΣAFBF*A', FB')=-g(ΣABFA', FB')

=g(FΣABA', FB')=g(ΣABA', B')=a,

Σ(A, B, A', C')=-g{ΣAFBFA', F2C')=-g(FΣACA', FB')

= -g{ΣA0A',B')=-b,

so that G'=aG+bH and H'=~bG+aH.

THEOREM 1. Let (M, G, F) be an almost Hermitian manifold. Then M is an
almost complex contact manifold if and only if M admits a global tensor field Σ
of type (1,3) and a projection tensor field S of rank 2 satisfying l)-9).



80 D.E. BLAIR, S. ISHIHARA AND G.D. LUDDEN

§ 2. Horizontal and Vertical Tensors

Given a vector field X on an almost Hermitian manifold (M, g, F) with almost
complex contact structure (g, F, Σ, S), XV=SX and XH=X—XV will be called
the vertical and the horizontal parts of X, respectively. For a 1-form ω,
ωv=ω°S and ωH—ω—ωv will be called the vertical and the horizontal parts of
ω, respectively. We now define, for a function /, fH=fv—f. Then we easily
have

(fX+hY)H=fHXH+hHYHΛfXJrhY)v=fvXv+hvYv,
(2.1)

(fω+hπ)H=fHωH+hHπH,(fo)+hπ)v=fvωv+hvπv,

where /, h are arbitrary functions and ωy π are arbitrary 1-forms.
We now define the horizontal part TH of an arbitrary tensor field T. Assume

that the operation of taking the horizontal part satisfies

(2.2) (P+Q)Π=PH+QH, {P®U)H=PH®UH,

where P and Q are arbitrary tensor fields of the same type and U another
arbitrary tensor field, then by using (2.1) we can inductively define the horizontal
part TH of an arbitrary tensor field T on M.

§ 3. Almost Complex Contact Structures which are Projectable

The Riemannian connection is denoted by V in a Kahlerian manifold M with
almost complex contact structure (g, F, Σ, S). We define a tensor field P of type
(1, 2) by

(3.1) PXY={{VYS)X)H.

Note that

(3.2) SPx=0.

Next, differentiating covariantly S2=S we have

(3.3) Psx=Pχ

and differentiating covariantly (1)

(3.4) PFX=FPX.

LEMMA 3.1. When P=0, a Kahlerian manifold M of complex dimension
2ra+l with almost complex contact structure (g, F, Σ, S) is locally a product of
two Kahlerian manifolds of complex dimensions 2m and 1 respectively.

Proof. If P=0, (3.1) implies

(FY(SX))H=((FYS)X)H=0,
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which means that the distribution determined by S and its complement are
parallel. This with SF=FS proves the lemma.

We now consider the following conditions:

(PI) for any vector A^TPM, there are two vectors B,C^TPM such that

PA=ΣBC, Σ(B, C, B, C)=ag{SA, SA) with constant a

(P2)

When an almost complex contact structure (g, F, Σ, S) satisfies the conditions
(PI) and (P2), it is said to be projectable.

In this section, the almost complex contact structure (g, F, Σ, S) is assumed
to be projectable. Then 3)-4) and (PI) imply

(3.5)

for some a and

(3.6)

is equivalent to

(3.7)

Px

2=ag(SX, SX)(-H

PXS=O

S(FsvS)=FsrS.

Thus we now have from (1) and (3.7)

PROPOSITION 2. In a Kdhlerian manifold M with almost complex contact
structure (g, F, Σ, S) which satisfies (PI), the distribution determined by S is
integrable and each of its integral submanifolds is totally geodesic and holomorphic.

Since (PI) is satisfied, restricting ourselves to a coordinate neighborhood u
in which (1.4) is established, we find

(3.8) Px=c(u(X)G+v(X)H)

with local 1-forms u and v defined in u, where the associated vector fields U of
u and V of v satisfy | | f / | | 2 = | | F | | 2 = l , g(U, V)=0, i.e.,

(3.9) S=u<g)U+vζ

(3.8) implies that

(3.10) (F(SX))H=c(u(x)G+v(x)H).

The fundamental 2-form Φ of the Kahlerian manifold (M, g, F) is defined by
Φ(X, Y)=g(FX, Y). We now define in M a tensor field Λ of type (0, 4) by

(3.11) Λ=ΦH<g>ΦH+Σ,

which is horizontal, that is, ΛH=Λ. Then, using (1.3) and (3.8), we can verify
that in u



82 D.E. BLAIR, S. ISHIHARA AND G.D. LUDDEN

Pu'Λ=O, PvΆ=O,

where Px- denotes the action of Px as a derivation. Thus, using (3.9), we
obtain

(3.13) Pχ-Λ=0.

Since FF=0, we find

(3.14) (FSXΛ)H=O

as a consequence of (P2). As is well known, the Lie derivative XsxA is given
by

(See e. g. Yano [8]). Thus we have

(3.15) UχvΛ)H=0.

LEMMA 3.2. // an almost complex contact structure (g, F, Σ, S) is projectable,
then

UχvΛπ)H=0.

On the other hand, by Proposition 2, each integral submanifold of the dis-
tribution determined by S is totally geodesic. Thus we have (see Ishihara and
Konishi [5])

LEMMA 3.3. // an almost complex contact structure (g, F, Σ, S) is projectable,
then

We now put

Then Lemmas 3.2 and 3.3 imply

LEMMA 3.4. // an almost complex contact structure (g, F, Σ, S) is projectable,
then

§ 4. Submersion of a Kahlerian Manifold with Almost Complex Contact
Structure

Let (M, G, F) be a Kahlerian manifold of complex dimension 2m+1 with
almost complex contact structure (g, F, Σ, S), which is projectable, and M a
manifold of real dimension Am. Suppose that there is a differential mapping
π : M-+M which is of rank Am everywhere and satisfies π(M)=M and that for
each point p of M, π~\p) is a connected integral submanifold of the distribution
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determined by S. In such a case, the Kahlerian manifold M with almost^ complex
contact structure is said to have a fibred Riemannian structure π: M—*M and M
is called the base space. When M is compact and the distribution S) determined
by S is regular, M has a fibred Riemannian structure if M is defined as the set
of all maximal integral submanifolds of £), π: M-+M being defined by π{p)=£>p^
p^M, where 2)p is the maximal integral submanifold passing through p, and M
is naturally topologized.

Consider a Kahlerian manifold M with almost complex contact structure
(g, F, Σ, S), which is projectable, and with fibred Riemannian structure π : M-^M.
Then, taking account of arguments developed in [5], we see by Lemma 3.4 that
the tensor field A is projectablejn M and its projection is a tensor field A of
type (1, 3) in the base space M. The metric tensor g in M is, by Lemma 3.3,
projectable and its projection g defines a Riemannian structure on M. Thus,
(2)-(9) implies that (g, A) is an almost quaternionic structure in the base space M
(see Blair and Showers [2]). Thus, summing up, we have

THEOREM 2. Suppose that (M, g, F) is a Kahlerian manifold with almost
complex contact structure (g, F, Σ, S), which is projectable. Assume moreover that
(M, g, F) has a fibred Riemannian structure π: M-+M. Then (g, Λ) is an almost
quaternionic structure in the base space M, where g and A are the projections of g
and A, respectively.

If in a Kahlerian manifold M satisfying the conditions given in Theorem 2

holds, then the projection A of A in M is covariantly constant. Thus in such a
case {g, A) is a quaternionic Kahlerian structure (see Ishihara [4]). Thus we have

THEOREM 3. //, an a Kahlerian manifold M satisfying the conditions given in
Theorem 2, (FAH)H=0, then (g, Λ) is a quaternionic Kahlerian structure in the base
space M.

Taking account of Lemma 3.1, we easily have

PROPOSITION 3. // a Kahlerian manifold M of complex dimension 2m+l
with almost complex contact structure (g, F, Σ, 5), which is projectable, satisfies
the condition P=0, then M is locally a product of Kahlerian manifolds (Mlf gu F^
of complex dimension 2m and (M2, g2, F2) of complex dimension 1, where Mx

admits quaternion structure (gu Aλ).

PROPOSITION 4. //, in a Kahlerian manifold M satisfying the conditions given
in Proposition 3 (FAH)H=0 then M1 admits a quaternionic Kahlerian structure
(glt A^ with vanishing Ricci tensor {see Ishihara [4]).
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