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ENTIRE FUNCTIONS THAT SHARE TWO VALUES

Ping Li

Abstract

In this paper, we find all the possible forms of two nonconstant entire functions f

and g that share two values counting multiplicities. As applications, we generalize some

known results and confirm a conjecture proposed by Osgood-Yang.

1. Introduction and results

Let f be a meromorphic functions defined on the complex plane C. In this
paper, we shall use the standard notations in Nevanlinna’s value distribution
theory of meromorphic functions such as the characteristic function Tðr; f Þ, the
counting function of the poles Nðr; f Þ, and the proximity function mðr; f Þ (see,
e.g., [3]). As usual, Nðr; f Þ is the reduced counting function of the poles of f ,
i.e., the counting function which count every poles only once ignoring the
multiplicities. We denote by NkÞðr; f Þ the counting function of the poles of f of
multiplicitiesa k, and denote by Nðkðr; f Þ the counting function of the poles of f
of multiplicitiesb k. The notation Sðr; f Þ is defined to be any quantity sat-
isfying Sðr; f Þ ¼ oðTðr; f ÞÞ as r ! y possibly outside a set of r of finite linear
measure. Let f and g be two nonconstant meromorphic functions, and a be a
value in C. We say that f and g share a IM (CM) provided that f ðzÞ � a and
gðzÞ � a have same zeros ignoring multiplicities (counting multiplicities). It is
well known (see [2]) that the Nevanlinna characteristic functions Tðr; f Þ and
Tðr; gÞ satisfy the following relation:

Tðr; f Þ ¼ Tðr; gÞ þ Sðr; gÞ

provided that f and g share four values IM. In 1976, Osgood-Yang [8] proved
that if f and g are two nonconstant entire functions of finite order, and share two
distinct finite values CM, then Tðr; f Þ@Tðr; gÞ ðr ! yÞ. Osgood-Yang con-
jectured that the restriction for the order in this result can be removed. There
have been published many other results related to entire functions sharing two
values CM, or meromorphic functions sharing three values CM (see [4, 5, 6] and
[9, 10, 11]).
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In 1998, the author proved the following result.

Theorem A ([5]). Let f and g be nonconstant meromorphic functions sharing
0, 1, y CM. Suppose additionally that f is not a Möbius transformation of g and
that there exists an a0 0; 1;y and a positive constant c such that

Tðr; f Þa cNð2 r;
1

f � a

� �
þ Sðr; f Þ;ð1Þ

then there exist a nonconstant entire function g, a nonzero constant l and two
integers s, t (t > 0) which are mutually prime, such that

f ¼ etg � 1

le�sg � 1
; g ¼ e�tg � 1

1

l
esg � 1

;

ð1� aÞ sþt

at
¼ l t ð1� yÞ sþt

y t ;

with y ¼ � t

s
0 1; a.

The author also gave all the possible meromorphic functions f and g if the
inequality in (1) is replaced by

N1Þ r;
1

f � a

� �
¼ Sðr; f Þ:ð2Þ

In 2003, W.-R. Lü and H.-X. Yi considered another conditions di¤erent
from that in (1) and (2), and proved the following results.

Theorem B ([6]). Let f and g be two distinct meromorphic functions sharing
0, 1 and y CM. Suppose that

lim sup
r!y

N1Þðr; f Þ þN1Þ r;
1

f

� �

Tðr; f Þ < 1:

Then

f ¼ esg � 1

e�ðkþ1�sÞg � 1
; g ¼ e�sg � 1

eðkþ1�sÞg � 1
;

where s and k are positive integers ð1a sa kÞ such that ðs; k þ 1Þ ¼ 1, and g is a
nonconstant entire function.

Theorem C ([6]). Let f and g be two meromorphic functions sharing 0, 1 and
y CM, and suppose that N1Þðr; f Þ ¼ Sðr; f Þ. If
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lim sup
r!y

N1Þ r;
1

f � 1

� �
þN1Þ r;

1

f

� �

Tðr; f Þ < 2; ðr A IÞ;

then f and g assume one of the following forms:
(i) f ¼ ekg þ eðk�1Þg þ � � � þ eg þ 1, g ¼ e�kg þ e�ðk�1Þg þ � � � þ e�g þ 1;
(ii) f ¼ �ekg � eðk�1Þg � � � � � eg, g ¼ �e�kg � e�ðk�1Þg � � � � � e�g,

where k is a positive integer and g is a nonconstant entire function.

In this paper, we shall find all the possible forms of two nonconstant entire
functions f and g that share two finite values CM. In fact, we shall prove the
following result.

Theorem 1. Suppose that f and g are two distinct nonconstant entire
functions. If f and g share the values 0 and 1 CM, then they assume one of the
following cases:

(i) f ¼ cð1� ezÞ, g ¼ ð1� cÞð1� e�zÞ;
(ii) f ¼ e�nz

Pn
j¼0 e

jz, g ¼
Pn

j¼0 e
jz, n ¼ 1; 2; . . . ;

(iii) f ¼ �e�ðnþ1Þz Pn
j¼0 e

jz, g ¼ �ez
Pn

j¼0 e
jz, n ¼ 0; 1; 2; . . . ,

where c ð0 0; 1Þ is a constant, and z is a nonconstant entire function.

Theorem 1 can be generalized to the case (see, Section 3) that f and g

are meromorphic functions with the conditions Nðr; f Þ ¼ Sðr; f Þ and Nðr; gÞ ¼
Sðr; gÞ. By Theorem 1, we can get the following results easily. The first one
gives a positive answer to Osgood-Yang’s conjecture, and the others extend some
known results which had some restrictions for the order.

Corollary 1. If nonconstant entire functions f and g share two values
counting multiplicities, then Tðr; f Þ ¼ Tðr; gÞ þOð1Þ.

Corollary 2. Suppose that f and g are two distinct nonconstant entire
functions sharing the values 0 and 1 CM. If dð0; f Þ > 0, and if dð0; f Þ0 1=p
for any integer p ðb 2Þ, then f ¼ ez and g ¼ e�z, where z is a nonconstant entire
function.

Corollary 3. Suppose that f and a are nonconstant entire functions, and
a1, a2 are two nonzero constant. If f share 0 and 1 CM with g ¼ a1e

a þ a2e
�a,

then f ¼ g.

2. Lemmas and proof of the main result

The following two lemmas will be used in the proof of the main theorem.

Lemma 1 ([4]). Let f1 and f2 be two nonconstant meromorphic functions
satisfying
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Nðr; fiÞ þN r;
1

fi

� �
¼ SðrÞ; i ¼ 1; 2:

If f s
1 f

t
2 � 1 is not identically zero for all integers s and t (jsj þ jtj > 0), then for any

positive number e, we have

N0ðr; 1; f1; f2Þa eTðrÞ þ SðrÞ;

where N0ðr; 1; f1; f2Þ denotes the reduced counting function of f1 and f2 related
to the common 1-points, which counts such points only once ignoring multiplicities,
and TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ, SðrÞ ¼ oðTðrÞÞ as r ! y, except for a set of r of
finite linear measure.

Lemma 2 ([1] or [7]). If f and g are nonconstant meromorphic functions
sharing 0, 1 and y CM and f is not a Möbius transformation of g, then

Tðr; f Þ þ Tðr; gÞ ¼ Nðr; f Þ þN r;
1

f

� �
þN r;

1

f � 1

� �
þN0ðrÞ þ SðrÞ;

where N0ðrÞ denotes the reduced counting function of the zeros of f � g which are
not the 0-points, 1-points or poles of f and g, and SðrÞ :¼ Sðr; f Þ ¼ Sðr; gÞ.

For convenience, we introduce the notation S �ðr; f Þ which is defined to be
any quantity such that for any positive number e there exists a Sðr; f Þ satisfying
the following inequality:

jS �ðr; f Þja eTðr; f Þ þ Sðr; f Þ:

Suppose that MðCÞ is the set of all meromorphic functions on C. For
f A MðCÞ, Let

Sð f Þ ¼ fg A MðCÞ : Tðr; gÞ ¼ Sðr; f Þg;
S �ð f Þ ¼ fg A MðCÞ : Tðr; gÞ ¼ S �ðr; f Þg:

It is obvious that both Sð f Þ and S �ð f Þ are fields of functions, which are closed
under products and di¤erentiating, and Sð f ÞHS �ð f Þ. It is easily seen that we
can not find any set I of infinite linear measure such that Tðr; f ÞaS �ðr; f Þ,
r A I .

Now we prove the main result. Suppose that f and g are two distinct
nonconstant entire functions, and share 0, 1 CM. Then there exists two entire
functions a and b such that

f

g
¼ ea;

f � 1

g� 1
¼ eb:ð3Þ

Since f and g share 0 and 1 CM, by Nevanlinna’s second fundamental theorem,
we get

Tðr; f Þa 2Tðr; gÞ þ Sðr; f Þ and Tðr; gÞa 2Tðr; f Þ þ Sðr; gÞ:
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Therefore, an Sðr; f Þ is also an Sðr; gÞ, and vice versa. If ea ¼ c is a constant,
then it is easily seen that c0 0; 1. Note that f and g share 1 CM. We see that
both 1 and c are the exceptional values of f . This is impossible. Hence ea is
not a constant. Similarly, eb is not a constant either.

If ea�b ¼ c is a constant, then c0 1, otherwise f ¼ g. It follows from (3)
that

f ¼ c

c� 1
ð1� ebÞ; g ¼ 1

c� 1
ðe�b � 1Þ:

Therefore, f and g assume the first form in Theorem 1.
In the sequel, we suppose that ea, eb and ea�b are not constants, and

distinguish two cases below.

Case 1. ðe�bÞs � ðea�bÞ t is not identically zero for any integers s and t
ðjsj þ jtj > 0Þ.

In this case, by Lemma 1 we see that

N0ðr; 1; e�b; ea�bÞa eðTðr; e�bÞ þ Tðr; ea�bÞÞ þ Sðr; f Þð4Þ

holds for any positive number e. It follows from (3) that

f ¼ ea�b � ea

ea�b � 1
; g ¼ e�b � 1

ea�b � 1
:ð5Þ

Since f and g are entire, we see that any 1-points of ea�b is a common 1-points

of e�b and ea�b. Therefore,

N r;
1

ea�b � 1

� �
aN0ðr; 1; e�b; ea�bÞ:

This and (4) imply N r;
1

ea�b � 1

� �
¼ S �ðr; f Þ. And thus

Tðr; ea�bÞ ¼ S �ðr; f Þ:ð6Þ
Since N0ðrÞ is the reduced counting function which counts the zeros of f � g, but
does not count 0-points, 1-points or poles of g, we have

N0ðrÞaN0ðr; 1; e�b; ea�bÞaS �ðr; f Þ:
By Lemma 2, we get

Tðr; f Þ þ Tðr; gÞ ¼ N r;
1

f

� �
þN r;

1

f � 1

� �
þNðr; f Þ þN0ðrÞ þ Sðr; f Þ

¼ N r;
1

f

� �
þN r;

1

g� 1

� �
þ S �ðr; f Þ;

which implies
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m r;
1

f

� �
þm r;

1

g� 1

� �
¼ S �ðr; f Þ:ð7Þ

Let

j ¼ f � g

f ðg� 1Þ :ð8Þ

Then we have Nðr; jÞ ¼ 0. By (7), we have mðr; jÞ ¼ S �ðr; f Þ. Therefore,

Tðr; jÞ ¼ S �ðr; f Þ:ð9Þ

It is obvious that j0 0;�1 and g ¼ ð1þ jÞ f =ð1þ jf Þ. Therefore, Nðr; 1=
ðjf þ 1ÞÞ ¼ S �ðr; f Þ. Let

c ¼ j 0 f þ jf 0

jf þ 1
:ð10Þ

By the lemma of logarithmic derivative, we have mðr;cÞ ¼ S �ðr; f Þ. Thus,
Tðr;cÞ ¼ S �ðr; f Þ. Let

g ¼ 1

ea�b � 1
:ð11Þ

It follows from (6) that Tðr; gÞ ¼ S �ðr; f Þ. By (5) and (11), we deduce that

f ¼ gþ 1� gea:ð12Þ
Therefore,

f 0 ¼ g 0 � ðg 0 þ ga 0Þea

¼ g 0 � ðg 0 þ ga 0Þ gþ 1� f

g

� �

¼ g 0 � g 0

g
þ a 0

� �
ðgþ 1� f Þ:

This and (10) imply

cjf þ c ¼ j 0 þ j
g 0

g
þ a 0

� �� �
f � j

g 0

g
þ a 0gþ a 0

� �
:ð13Þ

If cj0 j 0 þ j
g 0

g
þ a 0

� �
, then the above equation implies Tðr; f Þ ¼ S �ðr; f Þ,

which is impossible. Suppose cj ¼ j 0 þ j
g 0

g
þ a 0

� �
. We get

c ¼ j 0

j
þ g 0

g
þ a 0:

Combining this and (10), we have
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j 0 f þ jf 0

jf þ 1
¼ j 0

j
þ g 0

g
þ a 0:

By integration, we get

jf þ 1 ¼ cðjgaÞ;

where c is a nonzero constant. This also implies Tðr; f Þ ¼ S �ðr; f Þ, a con-
tradiction. Case 1 has been ruled out.

Case 2. There exist two nonzero integers s and t such that ðe�bÞs ¼ ðea�bÞ t.
Without loss of generality, we assume s > 0. Let d be the maximal

common factor of s and t. Thus there exist two integers u and v such that
usþ vt ¼ d. Let h ¼ ðe�bÞv=dðea�bÞu=d . Then we have ea�b ¼ hs and e�b ¼ ht.

If s > d, then any e2pi=s point of h is an 1-point of ea�b, but not an 1-point of
e�b. Note that any 1-point of ea�b must be an 1-point of e�b. Hence s ¼ d.

Therefore, e�b ¼ ðea�bÞn, where n ¼ t=d. If n > 0, then it follows from (5) that

f ¼ e�ðn�1Þða�bÞ
Xn�1

j¼0

eða�bÞj; g ¼
Xn�1

j¼0

eða�bÞj:

Hence f and g assume the second case in Theorem 1. If n < 0, then from (5) we
get

f ¼ �enðb�aÞ
X�n�1

j¼0

eðb�aÞj ; g ¼ �eb�a
X�n�1

j¼0

eðb�aÞj:

Hence f and g assume the third case in Theorem 1. This completes the proof of
Theorem 1.

3. Concluding remark

A meromorphic function a ðDyÞ is called a small function with respect
to f provided that Tðr; aÞ ¼ Sðr; f Þ. Let f and g be two nonconstant mer-
omorphic functions, and let a be a small function with respect to f and g.
Denote by NEðr; f ¼ a ¼ gÞ the reduced counting function of the common a-
points of f and g with the same multiplicities. We say that f and g share a in
the sense of CM �, if

N r;
1

f � a

� �
�NEðr; f ¼ a ¼ gÞ ¼ Sðr; f Þ;

and

N r;
1

g� a

� �
�NEðr; f ¼ a ¼ gÞ ¼ Sðr; gÞ:
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By the arguments similar to that in the proof of Theorem 1, we can proof
the following result.

Theorem 2. Suppose that f and g are two distinct nonconstant meromorphic

functions satisfying Nðr; f Þ ¼ Sðr; f Þ and Nðr; gÞ ¼ Sðr; gÞ. If f and g share the
values 0 and 1 CM�, then they assume one of the following cases:

(i) f ¼ cð1� hÞ, g ¼ ð1� cÞð1� 1=hÞ;
(ii) f ¼ h�n

Pn
j¼0 h

j, g ¼
Pn

j¼0 h
j, n ¼ 1; 2; . . . ;

(iii) f ¼ �h�ðnþ1Þ Pn
j¼0 h

j, g ¼ �h
Pn

j¼0 h
j, n ¼ 0; 1; 2; . . . ,

where h is a nonconstant meromorphic function satisfying

Nðr; hÞ þN r;
1

h

� �
¼ Sðr; hÞ;

and c ðD 0; 1Þ is a small function of h.
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