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k-NORMALITY OF WEIGHTED PROJECTIVE SPACES
SHOETSU OGATA

Abstract

It is known that a complete linear system on a projective variety in a projective
space is generated from the linear system of the projective space by restriction if its
degree is sufficiently large. We obtain a bound of degree of linear systems on weighted
projective spaces when they are generated from those of the projective spaces. In
particular, we show that a weighted projective 3-space embedded by a complete linear
system is projectively normal. We treat more generally Q-factorial toric varieties with
the Picard number one, and obtain the same bounds for them as those of weighted
projective spaces.

Introduction

Let X be a nondegenerate projective variety of dimension n in P". It is well
known that the homomorphism

H(P", Opr(k)) — H(X, Ox (k)

is surjective for large enough k. We say that X is k-normal if this homo-
morphism is surjective. It is of interest to find an explicit bound &y such that all
nonsingular, nondegenerate, projective varieties of dimension n and degree d in
P’ are k-normal for all k > ko. This was done for curves in P* by Castelnuovo
[C], and for reduced irreducible curves in P", r > 3 by Gruson, Lazarsfeld and
Peskine [GLP]. They showed that the best possible ko = d + 1 — r. This suggests
the equality

ky=d+n—r.

According to Mumford [M1], [M2], we say that X is k-regular if
H(P", Jx(k —i)) =0 for all i > 1, where .#x is the sheaf of ideals of X in P".
It is easy to see that X is (k + l)-regular if and only if X is k-normal and
H(X,0x(k —1i))=0 for all i>1. Eisenbud and Goto [EG] conjectured that
X is k-regular for all k >d+n—r+1. For nonsingular surfaces, Pinkham [P]
obtained a bound, and Lazarsfeld [L] obtained the full conjecture. Kwak [Kwl],
[Kw2] obtained a good bound for n = 3,4.
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In this paper we obtain a bound of k-normality for a class of toric varieties
containing weighted projective spaces. A weighted projective space of dimension
n is a quotient of the projective n-space by a finite abelian group. We treat
a class of toric varieties that are quotients of the projective n-space by finite
abelian groups, in other words, a class of Q-factorial toric varieties with the
Picard number one. These toric varieties are defined by integral simplices (see
[F], [Od]). We use combinatorics of polytopes corresponding to toric varieties.
Herzog and Hibi [HH] also obtain a result on the Castelnuovo regularity of affine
semigroup rings defined by integral simplices.

A projective toric variety of dimension one is the projective line. It is
known [Ko] that an ample line bundle on a toric surface X is normally generated,
i.e., it is very ample and X is k-normal for all £ > 1. In general, it is known
[NO] that for an ample line bundle L on a projective toric variety X of di-
mension n (>1) the multiplication map

HO(X7L®i) ®H0(X, L) _ HO(X,L®i+1)

is surjective for all i >n— 1.

THEOREM 1. Let X be a projective toric variety of dimension n which is a
quotient of the projective n-space by a finite abelian group, and let L a very ample
line bundle on X. Then we have that

H(X,L®)® H(X,L) — H°(X,L®™)

is surjective for all i > [n/2]. In particular, any weighted projective 3-space em-
bedded by a very ample line bundle is projectively normal.

THEOREM 2. Let X be a projective toric variety of dimension n (n > 3) which
is a quotient of the projective n-space by a finite abelian group embedded by a very
ample line bundle in P". Then X is k-normal for all k >n— 1+ [n/2].

The author would like to thank the Mathematics Institute Erlangen-Niirnberg
University for their hospitslity during his visit there in 2001 and 2002.

1. Polarized toric varieties

First we mention the fact about toric varieties needed in this paper following
Oda’s book [Od], or Fulton’s book [F].

Let N be a free Z-module of rank n, M its dual and {,)>: M x N — Z the
canonical pairing. By scalar extension to the field R of real numbers, we have
real vector spaces Ng := N ®zR and Mg :=M ®z;R. Let Ty =N®,C* =
(C*)" be the algebraic torus over the complex number field C, where C* is the
multiplicative group of C. Then M = Homg (7x,C") is the character group of
Ty. For me M we denote e(m) as the character of 7. Let A be a complete
finite fan of N consisting strongly convex rational polyhedral cones o, that is,
with a finite number of elements vy, v;,...,v; in N we can denote
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g = Ryov1 + -+ + Rxovs

and it satisfies that ¢N{—oc} = {0}. Then we have a complete toric variety
X = Ty emb(A) := {J__, Us of dimension n (see Section 1.2 [Od], or Section 1.4
[F]). Here U, = Spec C[g¥ N M] and ¢" is the dual cone of ¢ with respect to the
paring {,». For the origin {0}, the affine open set Uy = Spec C[M] is the
unique dense Ty-orbit. We note that a toric variety is always normal.

Let L be an ample Ty-invariant invertible sheaf on X. Then the polarized
variety (X, L) corresponds to an integral convex polytope. We call the convex

hull Conv{ug,uy,...,u,} in Mg of a finite subset {ug,u;,...,u,} = M an integral
convex polytope in Myg. The correspondence is given by the isomorphism
(1.1) HY(X,L)= @ Ce(m),

me PNM

where e(m) are considered as rational functions on X because they are functions
on an open dense subset Ty of X (see Section 2.2 [Od], or Section 3.5 [F]).
Let P; and P, be integral convex polytopes in Mg. Then we can consider
the Minkowski sum P; + P, := {x; + x, € Mg;x; € P, (i=1,2)} and the multi-
plication by scalars rP := {rx € Mg;x € P} for a positive real number r. If / is
a natural number, then /P; coincides with the / times sum of P, ie., [P; =

{x1 4 +x7€ Mg;x1,...,x; € P;}. The I times twisted sheaf L®' corresponds
to the convex polytope [P := {Ix € Mg;x € P}. Moreover the multiplication map
(1.2) H(X,L®)Y®@ H'(X,L) — H°(x, L®U*D)

transforms e(u;) ® e(uz) for uy € IPNM and u, e PN M to e(u; + up) through
the isomorphism (1.1). Therefore the equality /IPNM +PNM = (I+1)PNM
means the surjectivity of (1.2). For the case of dimension two Koelman [Ko]
proved that /IPNM +PNM = (I+1)PNM for all natural number /. Naka-
gawa and Ogata generalize this in the higher dimension.

ProposiTION 1.1 (Nakagawa-Ogata [NO]). Let P be an integral polytope of
dimension n (>1). Then

IiPNM+PNM=(>Gi+1)PNM
for all i =n—1.

For a proof see Proposition 1.2 in [NOJ.

In this article we assume that L is very ample, that is, the global sections of
L defines an embedding of X into the projective space P(H°(X,L)) = P". Since
H°(P",0p:(1)) =~ H°(X, L), the k-normality of X implies the surjectivity of the
multiplication map Sym* HO(X,L) — HO(X,L®"). We denote the subset of
kPN M consisting of sums of k elements in PN M by S* PN M. Then the k-
normality means the equality

k
(1.3) > POM=kPNM.
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Next we may explain how to describe a weighted projective space as a
toric variety according to Fulton’s book [F]. Let ¢o,qi,...,¢9, be positive
integers with g.c.d.{qo,q1,...,9,} = 1. Then we define the weighted projective
n-space with the weight (qo,q1,...,9,) as the quotient P(qo,q1,...,qn) :=
(C"1\{0})/C*, where the action of reC* is defined by - (xo,X1,...,%,) =
(t9x0, t9x1,...,t%x,). We know that the space can be expressed as the
quotient of the projective n-space by an action of a finite abelian group as
P(o.q1. - dn) = P"/(Z/(q0) X Z/(q1) % --- x Z/(qs)). Let  m:=lem{qu,
qi,---sqny and di=m/q; for i=0,1,...,n. Set wuy=(do,0,...,0), wu =
0,d1,0,...,0),..., u, = (0,...,d,) in M::NZ”“. Let P = Conv{ug,u,...,u,}
be a convex hull of this n+ 1 points in Mg. Let H be the affine hyperplane
containing P, and let M := HNM. Then P< My = H is an integral convex
polytope of M. The integral convex polytope P defines a polarized toric variety
(P(q0,41,---,4n),0(m)). We can easily see that on P(1,6,10,15) the invertible
sheaf ((30) is ample, but not very ample.

In this paper we treat an integral n-simplex P in M = Z", which corresponds
not only to a weighted projective space but also to a toric variety defined as a
quotient of the projective n-space by a finite abelian group. For example, set
n =3 and P = Conv{(0,0,0),(1,0,0),(0,1,0),(3,3,4)}. Then the corresponding
toric variety X is isomorphic to P* /<>, where { is a primitive 4-th root of unity,
and the corresponding embedding is X = {zzjz223 = z{} = P*.

2. k-normality

Let n be an integer greater than two and M =Z". Let P = Conv{uy,
up,...,u,+ be an integral n-simplex with its vertices wuo,u1,...,u, € M. We
assume that L is very ample for the polarized toric variety (X, L) corresponding
to P. We may say that P is very ample when L is very ample.

Lemma 2.1.  Let P = Conv{ug,uy,...,u,} be a very ample integral n-simplex.
Let s be an integer greater than one and let x e sSPONM. Then for any u; there
exist Xi,...,X21 € POM with (s — Du; +x=x1 + - + Xp51.

Proof. Since sP = Conv{sug,suj,...,su,}, any xe€sP can be expressed
uniquely as a linear combination x = >"" u;(su;) with 0 <g <1. We may
write as x = > Au; with J; =sg;. For simplicity we may take u; as ug. By
an affine transformation of M we may put ug as the origin. Then x = Y7, Au;
is contained in ¢P if and only if > 4 <t Now since xesP, we have
S 4 <s. Since P is very ample, the equality (1.3) holds for a sufficiently
large k. Hence, for (k —s)up+xe€ kPN M there exist xj,...,x, € PN M such
that (k —s)up + x =x1+ -+ x¢. If x; +x3 € P, then by setting y; = x; + x»
we have (k—1—s)ug+x=y +x3+---+x; with yy e PO M. If we write as
X1 +x2 =" Au; and if x; +x, ¢ P, then .7 A/ > 1. Hence, if x;+ x; ¢ P

k N
for every i and j, then > ! ;> 5 This implies k < 2s.
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ProposITION 2.2.  Let P = Conv{ug,uy,...,u,} be an integral n-simplex. If
P is very ample, then we have

IPOM = (I—1)PAM+PNM

Sor all 1 >n/2.
In particular, if P is a very ample integral 3-simplex, then it is normally
generated.

Proof. Set [ >2. Assume that [PNM # (I—1)PNM + PN M. Take x
in /[PONM but not in (/—1)PNM+PNM. We can express uniquely as
x=>1yAu with ;>0 and > " 4 =/ From Lemma 2.1 there exist
X1y, X1 € PN M such that (/ — Dug+x=x; 4+ -+ x2-1. Move uy to the
origin. Set y;:=x; +---4+ Xj_1 + Xj41 +--- +x2-1. Each y; is not contained

in (/= 1)P by the assumption. Since x = 0= 21251 »j, the point x is not
: _ .

. . 20— .
contained in m(l —1)P=(1-1/2)P, that is, >_/' | 4; >1—1/2. Thus we

have o < 1/2. This estimate holds for other u;. Hence we have 4; < 1/2 for
i=0,1,...,n. Thuswehave /=Y "4 < (n+1)/2. The inequality n/2 <1<
(n+1)/2 does not hold. Hence we have IPONM =(/—1)PNM+ PN M.

Lemma 2.3. Let P = Conv{ug,uy,...,u,} be an integral n-simplex. For
[ >n+1 we have

n

IP = J{u; + (I - 1)P}.

i=0

PrROPOSITION 2.4. Let n >4 and let P = Conv{ug,ui,...,u,} a very ample
integral n-simplex. For | >n—1+4 [n/2] we have

1
ZPHM =IPN M.

Proof of Proposition 2.4. Set t=[n/2]. Then />n—1+1¢ Take x€
I[POANM. We shall find xj,...,x;e POM with x=x;+---+x;. If we suc-
cessively / —n times apply Lemma 2.3, then we can find nonnegative integers
ap,ai,...,ay, with Y% ca;=1—n (=t—1) and an x’ enPN M such that x =
Soiloaiui + x'. By applying Proposition 2.2 n— ¢ times to x’ e nPN M, there
exist xp,...,x, ;€ PNM and a yetPNM such that x' = y+x; + -+ x,_.
If we could find x,_r1,...,00€ POM with > " gau+ y=Xy_rs1+ -+ + X4,
then we complete the proof. It is obtained by the following lemma.

LemMa 2.5. Set t=[n/2]. For nonnegative integers ap,di,...,a, with
Soioai=t—1 and yetPNM there exist yi,ya,...,yu-1 € PONM such that

n
Zaiui‘f'y:yl‘f'""f‘)htfl-
i=0
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Proof. Take a; to be positive. From Lemma 2.1 there exist y;,..., vy | €
PN M such that (t — )u;+y =y +---+ yu—1. Move u; to the origin. If sum
of any two among y;’s is contained in P, then we may write as y =z +---+
Zi—1 + Y1 With zj = yyi 1 + yy; for j=1,...,t—1. Thus y is in ZtPﬂM.
In this case we proved the lemma since Y, au; € ZH PNM. 1If yy+ y, ¢ P,
then z:= y3+---+ yy_1 is containd in (¢—1)P. Thus we have u;+ y=
yitya+z in (¢+1)PNM. Next we consider > aju; + (a; — 1)u; +z for
ze(t—1)PNM. By induction we obtain a proof.
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