k-NORMALITY OF WEIGHTED PROJECTIVE SPACES

Shoetsu Ogata

Abstract

It is known that a complete linear system on a projective variety in a projective space is generated from the linear system of the projective space by restriction if its degree is sufficiently large. We obtain a bound of degree of linear systems on weighted projective spaces when they are generated from those of the projective spaces. In particular, we show that a weighted projective 3 -space embedded by a complete linear system is projectively normal. We treat more generally \mathbf{Q}-factorial toric varieties with the Picard number one, and obtain the same bounds for them as those of weighted projective spaces.

Introduction

Let X be a nondegenerate projective variety of dimension n in \mathbf{P}^{r}. It is well known that the homomorphism

$$
H^{0}\left(\mathbf{P}^{r}, \mathcal{O}_{\mathbf{P}^{r}}(k)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(k)\right)
$$

is surjective for large enough k. We say that X is k-normal if this homomorphism is surjective. It is of interest to find an explicit bound k_{0} such that all nonsingular, nondegenerate, projective varieties of dimension n and degree d in \mathbf{P}^{r} are k-normal for all $k \geq k_{0}$. This was done for curves in \mathbf{P}^{3} by Castelnuovo $[\mathrm{C}]$, and for reduced irreducible curves in $\mathbf{P}^{r}, r \geq 3$ by Gruson, Lazarsfeld and Peskine [GLP]. They showed that the best possible $k_{0}=d+1-r$. This suggests the equality

$$
k_{0}=d+n-r .
$$

According to Mumford [M1], [M2], we say that X is k-regular if $H^{i}\left(\mathbf{P}^{r}, \mathscr{I}_{X}(k-i)\right)=0$ for all $i \geq 1$, where \mathscr{I}_{X} is the sheaf of ideals of X in \mathbf{P}^{r}. It is easy to see that X is $(k+1)$-regular if and only if X is k-normal and $H^{i}\left(X, \mathcal{O}_{X}(k-i)\right)=0$ for all $i \geq 1$. Eisenbud and Goto [EG] conjectured that X is k-regular for all $k \geq d+n-r+1$. For nonsingular surfaces, Pinkham [P] obtained a bound, and Lazarsfeld [L] obtained the full conjecture. Kwak [Kwl], [Kw2] obtained a good bound for $n=3,4$.

[^0]In this paper we obtain a bound of k-normality for a class of toric varieties containing weighted projective spaces. A weighted projective space of dimension n is a quotient of the projective n-space by a finite abelian group. We treat a class of toric varieties that are quotients of the projective n-space by finite abelian groups, in other words, a class of \mathbf{Q}-factorial toric varieties with the Picard number one. These toric varieties are defined by integral simplices (see $[\mathrm{F}],[\mathrm{Od}]$). We use combinatorics of polytopes corresponding to toric varieties. Herzog and Hibi $[\mathrm{HH}]$ also obtain a result on the Castelnuovo regularity of affine semigroup rings defined by integral simplices.

A projective toric variety of dimension one is the projective line. It is known $[\mathrm{Ko}]$ that an ample line bundle on a toric surface X is normally generated, i.e., it is very ample and X is k-normal for all $k \geq 1$. In general, it is known [NO] that for an ample line bundle L on a projective toric variety X of dimension $n(>1)$ the multiplication map

$$
H^{0}\left(X, L^{\otimes i}\right) \otimes H^{0}(X, L) \rightarrow H^{0}\left(X, L^{\otimes i+1}\right)
$$

is surjective for all $i \geq n-1$.
Theorem 1. Let X be a projective toric variety of dimension n which is a quotient of the projective n-space by a finite abelian group, and let L a very ample line bundle on X. Then we have that

$$
H^{0}\left(X, L^{\otimes i}\right) \otimes H^{0}(X, L) \rightarrow H^{0}\left(X, L^{\otimes i+1}\right)
$$

is surjective for all $i \geq[n / 2]$. In particular, any weighted projective 3 -space embedded by a very ample line bundle is projectively normal.

Theorem 2. Let X be a projective toric variety of dimension $n(n>3)$ which is a quotient of the projective n-space by a finite abelian group embedded by a very ample line bundle in \mathbf{P}^{r}. Then X is k-normal for all $k \geq n-1+[n / 2]$.

The author would like to thank the Mathematics Institute Erlangen-Nürnberg University for their hospitslity during his visit there in 2001 and 2002.

1. Polarized toric varieties

First we mention the fact about toric varieties needed in this paper following Oda's book [Od], or Fulton's book [F].

Let N be a free \mathbf{Z}-module of rank n, M its dual and $\langle\rangle:, M \times N \rightarrow \mathbf{Z}$ the canonical pairing. By scalar extension to the field \mathbf{R} of real numbers, we have real vector spaces $N_{\mathbf{R}}:=N \otimes_{\mathbf{Z}} \mathbf{R}$ and $M_{\mathbf{R}}:=M \otimes_{\mathbf{Z}} \mathbf{R}$. Let $T_{N}:=N \otimes_{\mathbf{Z}} \mathbf{C}^{*} \cong$ $\left(\mathbf{C}^{*}\right)^{n}$ be the algebraic torus over the complex number field \mathbf{C}, where \mathbf{C}^{*} is the multiplicative group of \mathbf{C}. Then $M=\operatorname{Hom}_{\mathrm{gr}}\left(T_{N}, \mathbf{C}^{*}\right)$ is the character group of T_{N}. For $m \in M$ we denote $\mathbf{e}(m)$ as the character of T_{N}. Let Δ be a complete finite fan of N consisting strongly convex rational polyhedral cones σ, that is, with a finite number of elements $v_{1}, v_{2}, \ldots, v_{s}$ in N we can denote

$$
\sigma=\mathbf{R}_{\geq 0} v_{1}+\cdots+\mathbf{R}_{\geq 0} v_{s}
$$

and it satisfies that $\sigma \cap\{-\sigma\}=\{0\}$. Then we have a complete toric variety $X=T_{N} \operatorname{emb}(\Delta):=\bigcup_{\sigma \in \Delta} U_{\sigma}$ of dimension n (see Section 1.2 [Od], or Section 1.4 $[\mathrm{F}]$). Here $U_{\sigma}=\operatorname{Spec} \mathbf{C}\left[\sigma^{\vee} \cap M\right]$ and σ^{\vee} is the dual cone of σ with respect to the paring \langle,$\rangle . For the origin \{0\}$, the affine open set $U_{\{0\}}=\operatorname{Spec} \mathbf{C}[M]$ is the unique dense T_{N}-orbit. We note that a toric variety is always normal.

Let L be an ample T_{N}-invariant invertible sheaf on X. Then the polarized variety (X, L) corresponds to an integral convex polytope. We call the convex hull $\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{r}\right\}$ in $M_{\mathbf{R}}$ of a finite subset $\left\{u_{0}, u_{1}, \ldots, u_{r}\right\} \subset M$ an integral convex polytope in $M_{\mathbf{R}}$. The correspondence is given by the isomorphism

$$
\begin{equation*}
H^{0}(X, L) \cong \underset{m \in P \cap M}{\bigoplus} \mathbf{C e}(m), \tag{1.1}
\end{equation*}
$$

where $\mathbf{e}(m)$ are considered as rational functions on X because they are functions on an open dense subset T_{N} of X (see Section 2.2 [Od], or Section 3.5 [F$]$).

Let P_{1} and P_{2} be integral convex polytopes in $M_{\mathbf{R}}$. Then we can consider the Minkowski sum $P_{1}+P_{2}:=\left\{x_{1}+x_{2} \in M_{\mathbf{R}} ; x_{i} \in P_{i}(i=1,2)\right\}$ and the multiplication by scalars $r P_{1}:=\left\{r x \in M_{\mathbf{R}} ; x \in P_{1}\right\}$ for a positive real number r. If l is a natural number, then $l P_{1}$ coincides with the l times sum of P_{1}, i.e., $l P_{1}=$ $\left\{x_{1}+\cdots+x_{l} \in M_{\mathbf{R}} ; x_{1}, \ldots, x_{l} \in P_{1}\right\}$. The l times twisted sheaf $L^{\otimes l}$ corresponds to the convex polytope $l P:=\left\{l x \in M_{\mathbf{R}} ; x \in P\right\}$. Moreover the multiplication map

$$
\begin{equation*}
H^{0}\left(X, L^{\otimes l}\right) \otimes H^{0}(X, L) \rightarrow H^{0}\left(X, L^{\otimes(l+1)}\right) \tag{1.2}
\end{equation*}
$$

transforms $\mathbf{e}\left(u_{1}\right) \otimes \mathbf{e}\left(u_{2}\right)$ for $u_{1} \in l P \cap M$ and $u_{2} \in P \cap M$ to $\mathbf{e}\left(u_{1}+u_{2}\right)$ through the isomorphism (1.1). Therefore the equality $l P \cap M+P \cap M=(l+1) P \cap M$ means the surjectivity of (1.2). For the case of dimension two Koelman [Ko] proved that $l P \cap M+P \cap M=(l+1) P \cap M$ for all natural number l. Nakagawa and Ogata generalize this in the higher dimension.

Proposition 1.1 (Nakagawa-Ogata [NO]). Let P be an integral polytope of dimension $n(>1)$. Then

$$
i P \cap M+P \cap M=(i+1) P \cap M
$$

for all $i \geq n-1$.
For a proof see Proposition 1.2 in [NO].
In this article we assume that L is very ample, that is, the global sections of L defines an embedding of X into the projective space $\mathbf{P}\left(H^{0}(X, L)\right) \cong \mathbf{P}^{r}$. Since $H^{0}\left(\mathbf{P}^{r}, \mathcal{O}_{\mathbf{P}^{r}}(1)\right) \cong H^{0}(X, L)$, the k-normality of X implies the surjectivity of the multiplication map $\operatorname{Sym}^{k} H^{0}(X, L) \rightarrow H^{0}\left(X, L^{\otimes k}\right)$. We denote the subset of $k P \cap M$ consisting of sums of k elements in $P \cap M$ by $\sum^{k} P \cap M$. Then the k normality means the equality

$$
\begin{equation*}
\sum^{k} P \cap M=k P \cap M \tag{1.3}
\end{equation*}
$$

Next we may explain how to describe a weighted projective space as a toric variety according to Fulton's book $[\mathrm{F}]$. Let $q_{0}, q_{1}, \ldots, q_{n}$ be positive integers with g.c.d. $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}=1$. Then we define the weighted projective n-space with the weight $\left(q_{0}, q_{1}, \ldots, q_{n}\right)$ as the quotient $\mathbf{P}\left(q_{0}, q_{1}, \ldots, q_{n}\right):=$ $\left(\mathbf{C}^{n+1} \backslash\{0\}\right) / \mathbf{C}^{*}$, where the action of $t \in \mathbf{C}^{*}$ is defined by $t \cdot\left(x_{0}, x_{1}, \ldots, x_{n}\right)=$ $\left(t^{q_{0}} x_{0}, t^{q_{1}} x_{1}, \ldots, t^{q_{n}} x_{n}\right)$. We know that the space can be expressed as the quotient of the projective n-space by an action of a finite abelian group as $\mathbf{P}\left(q_{0}, q_{1}, \ldots, q_{n}\right) \cong \mathbf{P}^{n} /\left(\mathbf{Z} /\left(q_{0}\right) \times \mathbf{Z} /\left(q_{1}\right) \times \cdots \times \mathbf{Z} /\left(q_{n}\right)\right)$. Let $m:=1 . c . m .\left\{q_{0}\right.$, $\left.q_{1}, \ldots, q_{n}\right\}$ and $d_{i}=m / q_{i}$ for $i=0,1, \ldots, n$. Set $u_{0}=\left(d_{0}, 0, \ldots, 0\right), u_{1}=$ $\left(0, d_{1}, 0, \ldots, 0\right), \ldots, u_{n}=\left(0, \ldots, d_{n}\right)$ in $\tilde{M}:=\mathbf{Z}^{n+1}$. Let $P=\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ be a convex hull of this $n+1$ points in $\tilde{M}_{\mathbf{R}}$. Let H be the affine hyperplane containing P, and let $M:=H \cap \tilde{M}$. Then $P \subset M_{\mathbf{R}}=H$ is an integral convex polytope of M. The integral convex polytope P defines a polarized toric variety $\left(\mathbf{P}\left(q_{0}, q_{1}, \ldots, q_{n}\right), \mathcal{O}(m)\right)$. We can easily see that on $\mathbf{P}(1,6,10,15)$ the invertible sheaf $\mathcal{O}(30)$ is ample, but not very ample.

In this paper we treat an integral n-simplex P in $M=\mathbf{Z}^{n}$, which corresponds not only to a weighted projective space but also to a toric variety defined as a quotient of the projective n-space by a finite abelian group. For example, set $n=3$ and $P=\operatorname{Conv}\{(0,0,0),(1,0,0),(0,1,0),(3,3,4)\}$. Then the corresponding toric variety X is isomorphic to $\mathbf{P}^{3} /\langle\zeta\rangle$, where ζ is a primitive 4-th root of unity, and the corresponding embedding is $X \cong\left\{z_{0} z_{1} z_{2} z_{3}=z_{4}^{4}\right\} \subset \mathbf{P}^{4}$.

2. k-normality

Let n be an integer greater than two and $M=\mathbf{Z}^{n}$. Let $P=\operatorname{Conv}\left\{u_{0}\right.$, $\left.u_{1}, \ldots, u_{n}\right\}$ be an integral n-simplex with its vertices $u_{0}, u_{1}, \ldots, u_{n} \in M$. We assume that L is very ample for the polarized toric variety (X, L) corresponding to P. We may say that P is very ample when L is very ample.

Lemma 2.1. Let $P=\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ be a very ample integral n-simplex. Let s be an integer greater than one and let $x \in s P \cap M$. Then for any u_{i} there exist $x_{1}, \ldots, x_{2 s-1} \in P \cap M$ with $(s-1) u_{i}+x=x_{1}+\cdots+x_{2 s-1}$.

Proof. Since $s P=\operatorname{Conv}\left\{s u_{0}, s u_{1}, \ldots, s u_{n}\right\}$, any $x \in s P$ can be expressed uniquely as a linear combination $x=\sum_{i=0}^{n} \mu_{i}\left(s u_{i}\right)$ with $0 \leq \mu_{i} \leq 1$. We may write as $x=\sum_{i=0}^{n} \lambda_{i} u_{i}$ with $\lambda_{i}=s \mu_{i}$. For simplicity we may take u_{i} as u_{0}. By an affine transformation of M we may put u_{0} as the origin. Then $x=\sum_{i=0}^{n} \lambda_{i} u_{i}$ is contained in $t P$ if and only if $\sum_{i=1}^{n} \lambda_{i} \leq t$. Now since $x \in s P$, we have $\sum_{i=1}^{n} \lambda_{i} \leq s$. Since P is very ample, the equality (1.3) holds for a sufficiently large k. Hence, for $(k-s) u_{0}+x \in k P \cap M$ there exist $x_{1}, \ldots, x_{k} \in P \cap M$ such that $(k-s) u_{0}+x=x_{1}+\cdots+x_{k}$. If $x_{1}+x_{2} \in P$, then by setting $y_{1}=x_{1}+x_{2}$ we have $(k-1-s) u_{0}+x=y_{1}+x_{3}+\cdots+x_{k}$ with $y_{1} \in P \cap M$. If we write as $x_{1}+x_{2}=\sum_{i=0}^{n} \lambda_{i}^{\prime} u_{i}$ and if $x_{1}+x_{2} \notin P$, then $\sum_{i=1}^{n} \lambda_{i}^{\prime}>1$. Hence, if $x_{i}+x_{j} \notin P$ for every i and j, then $\sum_{i=1}^{n} \lambda_{i}>\frac{k}{2}$. This implies $k<2 s$.

Proposition 2.2. Let $P=\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ be an integral n-simplex. If P is very ample, then we have

$$
l P \cap M=(l-1) P \cap M+P \cap M
$$

for all $l>n / 2$.
In particular, if P is a very ample integral 3-simplex, then it is normally generated.

Proof. Set $l \geq 2$. Assume that $l P \cap M \neq(l-1) P \cap M+P \cap M$. Take x in $l P \cap M$ but not in $(l-1) P \cap M+P \cap M$. We can express uniquely as $x=\sum_{i=0}^{n} \lambda_{i} u_{i}$ with $\lambda_{i} \geq 0$ and $\sum_{i=0}^{n} \lambda_{i}=l$. From Lemma 2.1 there exist $x_{1}, \ldots, x_{2 l-1} \in P \cap M$ such that $(l-1) u_{0}+x=x_{1}+\cdots+x_{2 l-1}$. Move u_{0} to the origin. Set $y_{j}:=x_{1}+\cdots+x_{j-1}+x_{j+1}+\cdots+x_{2 l-1}$. Each y_{j} is not contained in $(l-1) P$ by the assumption. Since $x=\frac{1}{2(l-1)} \sum_{j=1}^{2 l-1} y_{j}$, the point x is not contained in $\frac{2 l-1}{2(l-1)}(l-1) P=(l-1 / 2) P$, that is, $\sum_{i=1}^{n} \lambda_{i}>l-1 / 2$. Thus we have $\lambda_{0}<1 / 2$. This estimate holds for other u_{i}. Hence we have $\lambda_{i}<1 / 2$ for $i=0,1, \ldots, n$. Thus we have $l=\sum_{i=0}^{n} \lambda_{i}<(n+1) / 2$. The inequality $n / 2<l<$ $(n+1) / 2$ does not hold. Hence we have $l P \cap M=(l-1) P \cap M+P \cap M$.

Lemma 2.3. Let $P=\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ be an integral n-simplex. For $l \geq n+1$ we have

$$
l P=\bigcup_{i=0}^{n}\left\{u_{i}+(l-1) P\right\} .
$$

Proposition 2.4. Let $n \geq 4$ and let $P=\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ a very ample integral n-simplex. For $l \geq n-1+[n / 2]$ we have

$$
\sum^{l} P \cap M=l P \cap M
$$

Proof of Proposition 2.4. Set $t=[n / 2]$. Then $l \geq n-1+t$. Take $x \in$ $l P \cap M$. We shall find $x_{1}, \ldots, x_{l} \in P \cap M$ with $x=x_{1}+\cdots+x_{l}$. If we successively $l-n$ times apply Lemma 2.3, then we can find nonnegative integers $a_{0}, a_{1}, \ldots, a_{n}$ with $\sum_{i=0}^{n} a_{i}=l-n(\geq t-1)$ and an $x^{\prime} \in n P \cap M$ such that $x=$ $\sum_{i=0}^{n} a_{i} u_{i}+x^{\prime}$. By applying Proposition $2.2 n-t$ times to $x^{\prime} \in n P \cap M$, there exist $x_{1}, \ldots, x_{n-t} \in P \cap M$ and a $y \in t P \cap M$ such that $x^{\prime}=y+x_{1}+\cdots+x_{n-t}$. If we could find $x_{n-t+1}, \ldots, x_{l} \in P \cap M$ with $\sum_{i=0}^{n} a_{i} u_{i}+y=x_{n-t+1}+\cdots+x_{l}$, then we complete the proof. It is obtained by the following lemma.

Lemma 2.5. Set $t=[n / 2]$. For nonnegative integers $a_{0}, a_{1}, \ldots, a_{n}$ with $\sum_{i=0}^{n} a_{i}=t-1$ and $y \in t P \cap M$ there exist $y_{1}, y_{2}, \ldots, y_{2 t-1} \in P \cap M$ such that

$$
\sum_{i=0}^{n} a_{i} u_{i}+y=y_{1}+\cdots+y_{2 t-1}
$$

Proof. Take a_{i} to be positive. From Lemma 2.1 there exist $y_{1}, \ldots, y_{2 t-1} \in$ $P \cap M$ such that $(t-1) u_{i}+y=y_{1}+\cdots+y_{2 t-1}$. Move u_{i} to the origin. If sum of any two among y_{j} 's is contained in P, then we may write as $y=z_{1}+\cdots+$ $z_{t-1}+y_{2 t-1}$ with $z_{j}=y_{2 j-1}+y_{2 j}$ for $j=1, \ldots, t-1$. Thus y is in $\sum^{t} P \cap M$. In this case we proved the lemma since $\sum_{i=0}^{n} a_{i} u_{i} \in \sum^{t-1} P \cap M$. If $y_{1}+y_{2} \notin P$, then $z:=y_{3}+\cdots+y_{2 t-1}$ is containd in $(t-1) P$. Thus we have $u_{i}+y=$ $y_{1}+y_{2}+z$ in $(t+1) P \cap M$. Next we consider $\sum_{j \neq i} a_{j} u_{j}+\left(a_{i}-1\right) u_{i}+z$ for $z \in(t-1) P \cap M$. By induction we obtain a proof.

References

[C] G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica, Rend. Circ. Mat. Palermo 7 (1893), 89-110.
[EG] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89-133.
[F] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Studies 131, Princeton Univ. Press, 1993.
[GLP] L. Gruson, R. Razarsfeld and C. Peskine, On a theorem of Castelnuovo and the equations defining projective varieties, Invent. Math. 72 (1983), 491-506.
[HH] J. Herzog and T. Hibi, Castelnuovo-Mumford regularity of simplicial semigroup rings with isolated singularity, Proc. Amer. Math. Soc. 131 (2003), 2641-2647.
[Kwl] S. Kwak, Castelnuovo regularity for smooth subvarieties of dimension 3 and 4, J. Algebraic Geom. 7 (1998), 195-206.
[Kw2] S. Kwak, Generic projection methods and Castelnuovo regularity of projective varieties, 1998, preprint.
[Ko] R. J. Koelman, Generators for the ideal of a projectively embedded toric surfaces, Tohoku Math. J. 45 (1993), 385-392.
[L] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), 423-438.
[M1] D. Mumford, Lectures on curves on an algebraic surface, Annala of Math. Studies 59, Princeton U. Press, Princeton, 1966.
[M2] D. Mumford, Varieties defined by quadric equations, Questions on Algebraic Varieties, Corso CIME, 1969, 30-100.
[NO] K. Nakagawa and S. Ogata, On generators of ideals defining projective toric varieties, Manuscripta Math. 108 (2002), 33-42.
[Od] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Math. 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.
[P] H. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), 321-332.

```
Mathematical Institute
Tohoku University
SEndai 980
JAPAN
E-mail: ogata@math.tohoku.ac.jp
```


[^0]: * 2000 Mathematics Subject Classification. Primary 14M25; Secondary 14J40, 52B20.

 Partly supported by the Ministry of Education, Calture, Sports, Science and Technology, Japan. Received January 6, 2005; revised February 25, 2005.

