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Abstract

The main assertion of this paper is that for an arbitrarily given parabolic open
Riemann surface R there always exists a Heins surface Wy, i.e. a parabolic open
Riemann surface with the single ideal boundary component, such that the harmonic
dimension of Wk, i.e. the cardinal number of the set of minimal Martin boundary points
of Wk, is identical with that of R. The result is then applied to give a simple and
unified proof for the best theorem at present as an answer to the Heins problem to
determine the set V of harmonic dimensions of all Heins surfaces obtained by collecting
contributions of many authors that V contains the set N of all positive integers, the
cardinal number X, of countably infinite set, and the cardinal number R of continuum,
ie. Vo NU{R(,R}, so that V=[I,8]|, the interval of cardinal numbers ¢ with
1 < ¢ <X, when the continuum hypothesis is postulated.

1. Introduction

We denote by A(R) the Martin boundary of an open Riemann surface R and
by Ai(R) the set of minimal points in A(R). The cardinal number of A;(R),
card A;(R) in notation, is referred to as the harmonic dimension of R, dim R in
notation:

(1) dim R = card A;(R).

Here a few words are in order on the definition of the Martin compacti-
fication. Open Riemann surfaces are classified into two categories: hyperbolic
and parabolic surfaces according to the existence or nonexistence of harmonic
Green functions on them (cf. §3 below). Originally the Martin compactifications
are defined by using Green functions so that these notions are basically con-
sidered for hyperbolic R. Let V' be any parametric disc |z| < 1 in R with V, the
closure of V, is given by |z|] < 1. It can be seen that the defining sequence
(zn),»1 in R\V of a point { in A(R\ V) either converges to the ideal boundary of
R or accumulates to the relative boundary 0V of V. The point { in A(R\V)
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is said to lie over the ideal boundary of R or over ¢V according to the former
or the latter situation described above occurs. Moreover the set of points in
A(R\V) lying over 0V is identical with ¢V and

2) A(R) = A(R\P)\oV

is valid for any hyperbolic surface R and any parametric disc . Even if R is
parabolic, R\ V is hyperbolic for any parametric disc ¥ and hence A(R\V) can
be defined. It is also easy to see that

A(R\V1)\oV1 = A(R\V2)\V>

for any pair (V3,V>) of parametric discs V; in R (j=1,2). Reversing the
process we define the Martin boundary A(R) of a parabolic surface R by (2)
which is independent of the choice of the parametric disc V' as we mentioned
above. Thus (2) is valid for every open Riemann surface R as a theorem for
hyperbolic R and as a definition for parabolic R. Naturally we have

3) Ai(R) = Ai(R\P)\oV

for every open Riemann surface R. It is not important in this context but we
have the inclusion dV = A;(R\V), which is sometimes convenient. In (2) and
(3) we may replace V' by any compact subset K of R with positive capacity such
that R\K is connected, where 0K here is understood as being Carathéodory
relative boundary. The remark mentioned above is important since we mainly
consider the harmonic dimension dim R = card A;(R) for parabolic open Rie-
mann surface R.

The notion of the harmonic dimension was originally introduced by Heins
[4] in 1952 in connection with his study on the value distribution theory for
meromorphic functions at the parabolic isolated ideal boundary component of
surfaces with infinite genus and the term harmonic dimension itself was also
coined by himself. It is clear that

(4) 1 <dim R <X,

where N is the cardinal number of continuum. We denote by [1,N] the set of
cardinal numbers ¢ such that 1 <& < Y. The interval [1,N] is a difficult set in
general but simply [1,N] = NU{®,, R} if the continuum hypothesis is postulated,
where N is the set of positive integers and ¥ is the cardinal number of countably
infinite set so that e.g. N9 = card N. In any case (4) can be denoted by dim R e
[1,N].

An open Riemann surface R is said to be a Heins surface if R e Og, the
class of all parabolic open Riemann surfaces, (cf. e.g. [11], see also §3 below) and
R has a single ideal boundary component, i.e. there exists only one Kerékjarto-
Stoilow ideal boundary component of R (cf. e.g. [9]) so that R is homeomorphic
to its Richards model R*\{0} ([8]), where R* is the compact space obtained from
C\Un(K,,UKnV) by identifying symmetric points in 0K, and 0K, with respect
to the real axis. Here C is the Riemann sphere and (K,),_,.y.; (N < o or
N = o0) is a finite or infinite sequence of mutually disjoint closed discs K, in the
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upper half plane of the complex plane C accumulating only to the origin 0 and
K}/ is the symmetric image of K, with respect to the real axis. The space R* is
the Kerékjarto-Stoilow compactification of R.  The condition that R has a single
ideal boundary component is also characterized by the fact that R\X has only
one relatively noncompact connected component for any compact subset X of R.
We denote by # the class of Heins surfaces so that # < Og.

The punctured sphere C\{0} is the simplest and a typical Heins surface and
the fact that

(5) dim(C\{0}) =1

is referred to mainly by French mathematicians such as Bouligand and Brelot as
the Picard principle but chronologically the fact itself was found by Bocher (cf.
e.g. [1]) much earlier than Picard. Nevertheless we rather prefer to continue to
call (5) as the Picard principle for several reasons. Looking at Richards model
R* of R e #, one might feel that the Picard principle remains to be true for every
R e o but Heins pointed out that this is only true for R € # of finite genus and
is no longer the case in general, i.e. there is an Re # of infinite genus with
dim R > 1, and thus proposed the following problem in the same paper [4] cited
above. Let

V:={dim R: Re #},

the set of harmonic dimensions dim R for all Re .
THE HEINS PROBLEM. Determine the set V of harmonic dimensions.

As mentioned above Heins [4] (1952) himself showed that N < V. Then
Kuramochi [5] (1954) claimed that Xy € V (cf. also Cornea [3] (1958), Segawa [12]
(1981), Nakai-Sario [7] (1985)). Finally in this direction X € V was shown by
Constantinescu-Cornea [2] (1959). Thus the present best knowledge on the above
Heins problem is summarized as follows:

THEOREM A. The range V of the harmonic dimension dim as a mapping of
the family A of Heins surfaces to cardinal numbers satisfies the following inclusion
relations:

(6) NU{X,R} = V < [1,N].

If the continuum hypothesis: NU {®g, N} = [1,X] is postulated, then (6) is
reduced to the identity V = [1,X] and the Heins problem is completely over by
this identity. Therefore the problem left is to settle whether there is an R € #
with dim R =¢ or not for an arbitrarily given cardinal number ¢ with Ry <
¢ < N. In the present paper, however, we are only concerned with the proof of
the above theorem A. Of course putting 6 proofs cited above together produces
a proof for (6) but any one of these 6 proofs is treating only an relevant in-
dividual case of NcV, XyeV, or ReV separately and cannot be applied to
other cases. Thus it is desirable to prove that & e V if £ e NU {X(, R} in a unified
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fashion independent of the choice of £eN, & =Ny, or £ =X. The secondary
purpose of this paper is to give such a proof in §5 as an application of a general
result mentioned below as our main theorem proving which is our primary
purpose of the present paper.

2. Construction of canonical Heins surfaces

Given an arbitrary R e Og and we will construct in a fixed procedure a
Riemann surface Wy € # with dim Wy = dim R which will be called a canonical
Heins surface associated with R. As the first step of our fixed procedure of
constructing Wx we start with fixing a regular exhaustion (R,),., of R with R
a parametric disc such that Ry = {|z| < 1}, i.e. a sequence (R,),., of relatively
compact subregion R, bounded by a finite number of disjoint analytic Jordan
curves such that R\R, has no relatively compact component for each n > 0 and

moreover R, Ry (n>0) and R=1{]J,_ R, Let
Ry\R,= |J Ry (n=1)

I<j<N,
be the decomposition of R, 1\R, into connected components R, (1<j<N,).
Choose and then fix an arbitrary parametric disc B,; = {|z| < 1} with B,; = R
and then the concentric disc D,; = {|z| < 1/2} to B,; and finally the radial slit
Yy =12€By:0<Rez<r,Imz=0} (0<r, <1/4)in D, = B, which will be
able to be made short by taking r, enough small (cf. (7) below). For simplicity,
set
B,:= \J By, D= U Dy, p,= U 9y (m=1).

1<j<N, 1<j<N, 1<j<N,
Moreover we put
B:= U B, D:= U D, y:= U Vs Q.= R\Ro.

n>1 n>1 n>1
Let B, :={|z—3j|<1} be in C and y, :={z€B,;:0<Re(z—3j) <ry,
Imz=0} (1<j<N,nx>1) and

B, = | B,;j, we= U y,’,j (n>1).

1<j<N, 1<j<N,

As above we also set
B :=\J)B, y:=1).

n>1 n>1

The region S, := C\y/, is referred to as a finite chain of handles. Two of these
regions are viewed to be disjoint if they are different: S, NS, =0 (n #m). We
set S := Un>1 S,, a set of handles. A finite chain S, of handles is viewed as
being getting smaller and smaller by making r, | 0 for each n > 1.

Fix a point a in Q\B and let k, := k({a} UdB,; Q\D) > 1 be the Harnack
constant of the compact set {a} UdB, with respect to the region Q\D (n > 1):
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h(z") < k,h(z") for every pair (z/,z") of points z' and z” in {a}UdB, and / in
HP(Q\D), the class of nonnegative harmonic functions # on Q\D. Let o=
o(-,7,,Q\y,) be the harmonic measure of y, with respect to the region Q\y,:
w=1inf s on Q\y,, where the infimum is taken with respect to nonnegative
superharmonic functions s on Q such that s >1 on y,. It is clear that

lim (-7, Q\7,) = 0

on Q\y,. Therefore it is possible to take an r, € (0,1/4) so small that

1
(7) w(a>yn7Q\yn) < 2”+—1k,% (I’l = 1)
We hence hereafter assume that the union y of the unions y, (n>1) of slits
7s (1 <j < N,) has been chosen and fixed so small as to satisfy the condition
(7) above.

Now we attach the set S of chains S, of handles (n>1) to R as fol-
lows. We view each B,; in B, in B and each B,;j in B in B’ are copies of the
same unit disc and identify each y,; in y, in y with y,; in 7, in y’ (1 <j < Ny,
n>1). We take W := R\y and connect S to W by joining S, to W crosswise
along each edge of each y,, =y, (1 <j<N,) for every n > 1, i.e. connect S, to
W by identifying the upper (lower, resp.) edge y,fj (7> resp.) of y,; with the lower
(upper, resp.) edge (y,;)" ((y,;j)+, resp.) of y,; for each 1 < j < N, and for each
n > 1. The resulting surface will be denoted by Wk. In Wy each S, is viewed
as a relatively compact regular subregion of Wi whose relative boundary 25, in
Wr is the union yF of a finite number of mutually disjoint analytic Jordan curves
YUy (1 <j<N,), where y,. (y,,, resp.) is as already mentioned above the
upper (lower, resp.) edge of the slit y,; =y, (1 <j < N,). Recall that at each
point { of Wg\y the original local parameter z in R or S is adopted as that for
Wr; at each point ( at y except for the end points of each y,, we take z — ( as the
local parameter at { where z is the natural plane coordinate in B,; and also in B,;
containing (; finally at each end point { of y,; in B, and also in B,’lj with their
original coordinate z as above we choose the function vz —( with v/1 =1 as
the local parameter at {. Because of such definition of the conformal structure
of Wx the set y:;Uy;/ becomes an analytic Jordan curve in the Carathéodory
compactification of B,',j\ynj whose boundary is defined to be the set of boundary
elements of B,\y,, embedded in Wr in the sense of Carathéodory.

The surface Wy has the following particular properties to prove which is
the main purpose of this paper as announced in the introduction. After a
preparation in §3 the proof will be given in §4 below.

THE MAIN THEOREM. The surface Wg associated with an arbitrarily given
surface R in the parabolic class Og is a Heins surface whose harmonic dimension is
identical with that of R:

(8) dim Wx = dim R.
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The Riemann surface Wy constructed from a given Riemann surface R in
Og in the fixed fashion described above will be referred to as a canonical Heins
surface associated with R. We use the characterization for Wk to have a single
ideal boundary component that there exists an exhaustion (X,),., of Wz such
that Wg\X, is connected for every n>0. The modification Wy of R is so
performed as to ensure the possibility of constructing such an exhaustion (X,,),-.
described above. One of the roles of the requirement (7) is to guarantee for Wx
to inherit the parabolicity from the fact that R is parabolic. Thus the part
Wgr € Og of the proof of Wx e o, the class of Heins surfaces, is almost straight
forward. Really important role of the condition (7) is to assure the validity of
the identity (8), to prove which is the main part of the proof of the above
theorem given in §4 below.

Recall that the Heins problem is to determine the range set V= {dim R:
Re #} of the mapping dim: # — [1I,XN]. Since # < Og, Vc{dimR:
Re Og}. The identity (8) implies {dim R: Re€ Og} = {dim Wx: Re Og} < V.
Thus we can conclude that

9) V={dim R: Re Og}.

Hence the Heins problem can be rephrased as follows: determine the range of
the mapping dim: Og — [1,X]. In this formulation a unified simple proof of
Theorem A can be instantaneously given as will be observed later in §5.

3. Parabolic surfaces and a maximum principle

In the classification theory of Riemann surfaces (cf. e.g. [11]), the class of
harmonic (nonnegative harmonic, bounded harmonic, resp.) functions on an open
Riemann surface F is denoted by H(F) (HP(F), HB(F), resp.). The class Og
is the totality of every parabolic surface F, i.e. an open Riemann surface F
on which there is no Green function (cf. e.g. [11]). Let Fy:={|z| <1} be a
parametric disc on F such that Fy = {|z| <1} = F. An open Riemann surface
F is parabolic, i.e. F e O¢ in notation, if and only if there exists an Evans
function h on F\Fy (cf. [6], see also [10], [11]) characterized by the conditions
that he HP(F\Fo) N C(F\Fy) with h|0Fy =0 and lim, ., 4(z) = +c0, where
ooF 1s the Alexandroff ideal boundary point of F. The harmonic measure
o= (-, p,F\Fy) of the ideal boundary f of F relative to F\F, is given by

o= inf s
ses
on F\Fy, where % is the class of nonnegative superharmonic functions s on
F\Fy such that s > 1 on F outside some compact subset of F containing Fj.
The above definition of w assures that w € HP(F\Fy). As for the behavior of
o at the relative boundary 0F, of F\F,, we see that o vanishes continuously on
0Fy. 1In fact, let F| be an arbitrary regular subregion of F containing Fy and an
s1€ % be such that s; € H(F\\Fo) N C(F\Fy), si|F\Fi =1, and s|0F, = 0.
Such an s; can be found by solving the Dirichlet problem on Fi\F, with
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boundary values 1 on 0F; and 0 on dFy,. Then 0 <w <s; on F\F,, which
implies that

0< limsup w(z)< lim s5(z2)=0
zeF\I:"o,z—»C ze F\Fy,z—(

for every { € 0F, i.e. w has continuously vanishing boundary values on 0F,. It
is known that F € Og is also characterized by that w = 0 on F\F, (cf. e.g. [11]).
In general, no matter whether F € Og or not, we have the identity

(10) sup o |o =
F\Fy

on F\Fy. In fact, let 1:= supp, g, @. Observe that min(s, 1) € & along with
se¥ so that 0 <w <1 and hence 0 <1 < 1. Take an arbitrary real number
¢>0. Since the harmonic function w/(A+¢) <1 on F\Fy and w/(4+ ¢) has
vanishing boundary values on 0F, as we saw above, the minimum principle
for superharmonic functions implies that s > w/(4+¢) on F\F, for any se &
so that w > w/(A+e) or (L+é&w>w on F\Fy. On letting ¢ | 0 we have
Jow >w on F\Fy. This with the trivial fact that iw < @ on F\F, yields (10)
above. Hence in particular F ¢ Og is equivalent to

(11) sup o = 1.
F\Fy
Let G be a subregion of an Fe Og such that G< F\Fy, and s be a
superharmonic (subharmonic, resp.) function on G bounded from below (above,
resp.) on G. Then the following minimum (maximum, resp.) principle is valid: if

liminf s(z) >0 <lim sup s(z) <0, resp.)
zeG,z—( zeG,z—(

for any { € 0G, then s >0 (s <0, resp.) on G. These are also referred to as
the comparison principle. To prove these we can assume G is not compact in
F\Fy. Otherwise these are reduced to the mere usual comparison principle.
We take an Evans function 4 on F\F, and an arbitrary positive number ¢ and
then consider the function s+ ¢h (s —eh, resp.) on G. Then we see that

liminf (s(z) + eh(z)) = 0 <lim sup(s(z) — eh(z)) <0, resp.)
zeG,z—=( zeG,z—(

for every { € 0G by the assumption on s and also for { = cog, the Alexandroff
point of G defined to be the single point left in cl[G]\(GUdG) with cl[G] the
closure of G in the Alexandroff compactification F U {cor} of F, as consequences
of s being bounded below (above, resp.) and the behavior of / at cor and hence
at 00g: lim;cg z—o0, A(z) = +00. From the above boundary behavior of s+ ¢h
(s — eh, resp.) it follows that s +¢h >0 (s —eh < 0, resp.) on G as a consequence
of the usual minimum (maximum, resp.) principle. On letting ¢ | 0, we deduce
the desired conclusion. The result applied to u € HB(G) will be referred to as
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the maximum principle: if the upper boundary values of u < ¢ on dG, then u <c¢
on G.

4. Proof of the main theorem

We now prove the main theorem: Wy e # and dim Wi = dim R. We will
use the notations introduced in §2 without further reviewing them. We denote
by X, the relatively compact subregion of Wx bounded by 0R, (n > 1) and also
Xo := Ry for n =0 so that

Rn:<Xn U &)U U »n =0,

I<v<n-1 I<v<n—-1

where U1 <ven1 Sy and Ul <v<n_1 Vv are understood to be the empty set for

n=0 and 1. Then the sequence (X,),., is a regular exhaustion of Wx. Since
Xo = Ry is a disc, Wg\X, is connected. Moreover, although R\R, may consist
of at least one and at most N, components and may not be connected, since these
are joined by the chain S, of handles in W\ X, we see that Wy\X, is connected
not only for n =0 but also for every n > 0. By the existence of an exhaustion
(X»),so of Wgr with the property that Wz\X, is connected for every n >0, we
conclude that Wy has only one ideal boundary component. Therefore we only
have to show that Wy € Og in order to conclude that W% is a Heins surface, i.e.
Wr € #. For the purpose we take the harmonic measure w = w(-,f, X) of the
ideal boundary S of Wy with respect to the region X := Wz\ X, and we have to
show that ® =0 on X. Contrary to the assertion, assume that @ > 0 on X so
that by (11)

(12) sup w = sup o(z,f,X) =1.

X zeX
Let Y, be the relatively compact subregion of Wk bounded by 0B, (n=1) so
that ¥, o S,. Recall that W = R\y and Q = R\R,. Observe that W = y* :=

Unzl yE considered in Wy but 0W =y considered in R. Since

1 1
w =< ZCU(',VH,Q\V) < Zw('vynag\yn) < er]kn < E

n>1 n>1 n>1

on 0B and trivially on 0Xj, the maximum principle yields that w <1/2 on
Q\B. In particular, @ <1/2 on 0B implies that ® <1/2 on (J, _, ¥, so that
® <1/2 on X = Wg\X,, contradicting (12) so that W € Og.

Having finished the proof of Wx € # we turn to the proof of the essential
part dim Wx = dim R. In general, let G be a subregion of a Riemann surface
and ' = 0G. We use the notation HP(G;T') for the class of functions u >0
continuous on GUT and harmonic on G with vanishing boundary values on T":

HP(G;T) = {ue HP(G)N C(GUT) : ul" = 0}.

n>1

Using this notation we first show that
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(13) HP(Q;0Q) ~ HP(Q\y; 0QU7y),

which means that there exists a positively homogeneous additive bijective
mapping of the half module HP(Q;0Q) onto the half module HP(Q\y; QU y).
Let u e HP(Q;0Q) and H,u be the bounded harmonic function on Q\y such that
H,u has vanishing boundary values on dQU (y\y,) and the boundary values # on
v, (n>1). The possibility of constructing such an H,u and its uniqueness is
seen as follows. By solving the Dirichlet problem on Qm\Ul<v<m—l 7 (m=>
n+2) with Q, := R,\Ro, we can take an /ly, = hy e H(Q,\\J,_, -, ;)N
C(Qy,) such that h,|0Q2, U () 2yt en ?y) = 0 and Ay, = u.  The maximum
principle assures that the sequegfcei(hm)mm 42 1s increasing and uniformly bounded
on every compact subset of Q and a fortiori

h:= li{n hn€e HB(Q\y) N C(Q)

exists with A[0QU (y\y,) =0 and h|y,=u. In view of Re Og, the maxi-
mum principle (cf. §3) yields that such an / is uniquely determined and there-
fore i = H,u. Without loss of generality we assume that u(a) = 1. Then the
Harnack inequality implies that u < k, on 0B, and hence on y,. Then by (7),
Hyu(a) < 1/2" 'k, and again by the Harnack inequality H,u < 1/2"*! on 0B,.
Hence H,u < 1/2"! on Q\B, and

1
Hu := ZHnu < 3
n>1

on Q\B. The operator H defined above is thus seen to be a positively ho-
mogeneous additive mapping of the halfmodule HP(Q;0Q) to that HP(Q\y; 0Q)
and Hu (ue HP(Q;0Q)) is characterized as the unique function in HP(Q\y; 0Q)
NHB(Q\B)N C(Q) such that Huly =u. Let

HP(Q;0Q) © HP(Q;0Q) = {u—v:u,ve HP(Q;0Q)},

the linearlized space generated by HP(Q;dQ), and HP(Q\y; 0Q) © HP(Q\y; 0Q)
be similarly defined as above. We insert here a remark that we can further
extend the domain of definition of H so as to be a linear operator from the
linear space HP(Q;0Q) © HP(Q;0Q) to that HP(Q\y; 0Q) © HP(Q\y; Q) by
the relation

H(u—v):=Hu— Hv (u,ve HP(Q;0Q)).

It is aesy to see that H(u — v) depends solely upon the function u — v and does
not depend on the particular decomposition u — v, i.e. if u, v, u’, v’ are in
HP(Q;0Q) and u—v=u"—v', then H(u—v) = H(u' —v'"). As before Hh (he
HP(Q;0Q) © HP(Q;0Q)) is seen to be characterized as the unique function in
(HP(Q\y;0Q) © HP(Q\y; 0Q)) N HB(Q\B) N C(Q) such that Hh|y = h. Using H
we now consider the operator 7 given by

Tu:=u— Hu
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on Q\y. Tt is seen that Tu e HP(Q\y; 0QU7y) and T is a positively homogeneous
(i.e. T(cu) = cTu for nonnegative real numbers c¢) additive (i.e. T(u; + up) =
Tu; + Tu;) mapping of HP(Q;0Q) to HP(Q\y;QUy).

We first show that T : HP(Q;3Q) — HP(Q\y; 0QUy) is injective. Take
two functions u and v arbitrarily in HP(Q;0Q) and assume that Tu = Tv, i.e.
u—Hu=v—Hv or u—v=H(u—v). We have to show that u=v on Q.
Since H(u —v) = u — v is harmonic on each B, and

|H(u —v)| < Hu+ Hv < @_,_@

on Q\B, we see that |H(u—v)| <u(a)/2+wv(a)/2 on Q. Since H(u—v)
has vanishing boundary values on 0Q, the maximum principle implies that
Hu—v)=0 on Q so that u—v=H(u—v)=0 on Q and thus u=v on Q.

Next we show that T : HP(Q;0Q) — HP(Q\y; 0QUy) is surjective. Take

an arbitrary v € HP(Q\y; 0QUy) and we are to find a u € HP(Q;0Q) such that
Tu=v. We can view that v is subharmonic on Q by setting v =0 on y. Again

we may suppose that v(a) = 1. Take the function w e HP(Q\y) N C(Q) given by
wi= Z4knw( » Vo Q\y)
n>1
Fix an arbitrary m € N and set

m

W = Z 4k,160(' y Yns Q\y)
n=1

Then wy,|y, < 4k, and, by (7) and the definition of k,, we see that
k

.

<2
17-2

27Tk

Win|0B, < 24/@ .
v=1

Since w,, is bounded on Q\B we can conclude that w,, <2 on Q\B. By letting
m 1 oo we finally conclude that

w<?2
on Q\B. Hence s:=v+we HP(Q\y)NC(Q) and s|y, = 4k,, and
S|0By < ky + 2 < 3k, < 4k, = 5|y,

assures that s|B, < 4k, = s|y,, which shows that s is a superharmonic majorant
of v on Q. Hence there is the least harmonic majorant u# of v on Q such that
v<u<s on Q. Hence in particular u € HP(Q; Q). Then, since Hu < Hs =
Hw = w, we have

[Tu—v|<(u—v)+Hu<(s—v)+ Hu<w+w=2w

on Q. Observe that Tu —v =0 on yUdQ, |Tu—v| <2w <4 on Q\B so that
Tu —v is bounded and harmonic on Q\y with vanishing boundary values, i.e.
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Tu—v=0 on dQUy. Hence Tu=v. Thus we have established the relation
13).

- In Wr the slit y,, was viewed as an analytic Jordan curve y,f/Uy;j so that
By\y,; was also viewed as an annulus A4,; bounded by analytic Jordan curves
0B, and y;;Uy;/ and S, was viewed as a relatively compact subregion bounded
by the finite union y* = Ul <j< Nn(y,;Uy;/.) of mutually disjoint analytic Jordan
curves y,; Uy, Recall that X = Wx\Xo. We also set y*:= (), _,7; . We next
maintain the following relation which is a counterpart of (13). Namely,

(14) HP(X;0X) ~ HP(X\S;0X Uy?).

The proof of the above relation is essentially the same as that for (13). For
the sake of completeness we briefly state the outline of the proof of (14)
mimicking the proof of (13). Using the same notation as before let H,u, for
each integer n > 1, be the bounded harmonic function on Y := X\S such that
H,u has boundary values zero on 0X U (y*\y¥) and u on y* for any arbitrarily
given u in HP(X;0X). The unique existence of such an H,ue HB(Y) for
each u e HP(X;0X) can be seen by exactly the same fashion as was employed
in the proof of (13). Without loss of generality we may assume that u(a) =1 in
order to show the convergence of the sequence ijl Hju. Then the Harnack
inequality shows that u <k, on 0B, and hence on yr. By (7), Hu(a) <1/
(2"*1k,) and again by the Harnack inequality H,u < 1/2"*! on 0B,. Then
H,u < 1/2"" on Y\B” and a fortiori

Hu = ZHnu <%

nx>1

on X\B”, where B! is the relatively compact subregion of X bounded by 0B, so
that it is obtained by attaching the chain of handles S, to B,\y, crosswise along
the slits y, =7, and B":= (), B/. Let

Tu=u— Hu

on X\S. Itis clear that Tu e HP(X\S;0X Uy*) and we instantly see that T is a
positively homogeneous additive mapping of HP(X;0X) onto HP(X\S;0X Uy?*).
We first ascertain that T : HP(X;0X) — HP(X\S;0X Uy%) is injective.
Take two functions u and v arbitrarily in HP(X;0X) and assume that Tu = Tv,
iie. u— Hu=v— Hv. We have to show that u=v on X. Since H(u—v) =
u— v (cf. the remark for the extention of H in the proof of (13)) is harmonic on
each B/ and
u(a)  v(a)
|H(u—v)| < Hu+ Hv < TJrT
on X\B”, we see that |H(u—v)| <u(a)/2+v(a)/2 on X. Since H(u —v) has
vanishing boundary values on 0X, the maximum principle yields that H(u — v) =
0 on X so that u—v=H(u—v)=0 on X and thus u=v on X as desired.
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To finish the proof of the relation (14) we need to do one more task: we
show that the mapping T : HP(X;0X) — HP(X\S;0X Uy?*) is surjective. Take
an arbitrary v € HP(X\S;0X Uy*) and we are to find a u € HP(X;0X) such that
Tu=v. We can view that v is subharmonic on X by setting v=0 on S. We
may assume v(a) = | this time too. Consider the function w e HP(X\S) N C(X)
defined by

W= Z4kna)(~ g X\S),
n>1
where we have set that (-, 75, X\S) =1 on S, and (-, 7+, X\S) =0 on S\S,.
Noting (-, 75, X\S) = o(-,7,,Q\y) on X\S = Q\y, we see that w|yF = 4k, and,
by (7) and the definition of k,, we deduce that

ky
M/|aBn S Z4kv . W == 2
v>1 v

By considering partial sums we deduce that
w<2
on X\B". Therefore s:=v+we HP(X\S)NC(X) and s|y* = 4k,, and
5|0By < ky+2 < 3k, < 4k, = s|yF

implies that s|B! < 4k, = s|y+, which shows that s is a superharmonic majorant
of v on X. Hence there exists the least harmonic majorant u of v on X such that
v<u<son X. Hence in particular ue€ HP(X;0X). Then, since Hu < Hs =
Hw = w, we have

[Tu—v|<(u—v)+Hu<(s—v)+ Hu<w+w=2w

on X. Observe that Tu —v =0 on X Uyp* |Tu—v| <2w <4 on X\B” so
that Tu — v is bounded and harmonic on X'\ S with vanishing boundary values,
ie. Tu—v=0 on 0XUyp*. Hence Tu=v and the proof of (14) is herewith
complete.

Pick an arbitrary u € HP(Q\y; QU y) so that u is nonnegative and harmonic
on Q\y and vanishing continuously on the relative boundary 0(Q\y) = 0Q Uy of
Q\y. Observe that Q\y = X\S and the relative boundary 9(X\S) of X\S is
0X Uy*  Therefore u may be understood to be nonnegative and harmonic on
X\S and vanishing continuously on the relative boundary 6(X\S) = 0X Uy* of
X\S so that ue HP(X\S;0X Uy*). This natural identification u ~— u gives a
positively homogeneous and additive bijection of HP(Q\y;0QU7y) to HP(X\S;
0X Uy%). Hence we see that

HP(Q\y;0QUy) ~ HP(X\S;0X Uy™).
This with (13) and (14) assures that
HP(Q;0Q) ~ HP(X;0X).
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Recall that Q= R\Ry with dQ=0R, and X = Wx\R, with 0X = 0R,.
Therefore we finally conclude that

(15) HP(R\R();aRQ) >~ HP(WR\R();@R()).

Let .#(R) (4 (Wg), tesp.) be the convex set {u € HP(R\Ro; 0Ry) : u(a) = 1}
({u e HP(WR\Ro; 0Ry) : u(a) = 1}, resp.). We denote by .#,(R) (.4, (Wg), resp.)
the set of extreme points in the convex set .#(R) (.#(Wg), resp.). As another
characterization of dim R (dim Wk, resp.) we recall that

(16) dim R = card .#,(R) (dim Wg = card .#,(Wkg), resp.).

Choose a positively homogeneous additive bijection 7 giving (15) and consider
the mapping

1
U U= Tu(a) Tu,

where we see that u > 0 is equivalent to Tu > 0 and a fortiori 7 maps .#(R) to
M(Wg). We now prove that 7: .#(R) — .4 (W) is a bijection. First let u and
v be arbitrarily chosen members in .#(R) with tu =tv. Applying T~' to the
both sides of tu = tv we obtain u/Tu(a) = v/Tv(a). Evaluating both sides of
this at a we see that u(a)/Tu(a) = v(a)/Tv(a) and, since u(a) = v(a) = 1, we have
1/Tu(a) = 1/Tv(a) so that u=wv. This proves that tv: #(R) — M4 (Wg) is in-
jective. Next take an arbitrary v e .#(Wg) and let w:= T-1v e HP(R\Ry; 0Ry).
Then Tw = v > 0 implies that w > 0 and we can consider u := w/w(a) € 4 (R).
Then, by v(a) =1, we see that

1 w(a) 1 1 1 1
= Tu@ T o) wa) Y T @@ @ L L Y T @t T
i.e. tu =v so that 7 : #(R) — .M (W) is surjective. We have thus completed the
proof of 7: . #(R) — .4(Wg) being bijective.

Observe that the inverse mapping 7! of the bijection T: HP(R\Ry : 0R¢) —
HP(Wg\Ro; 0Rp) in (15) is also additive and positively homogeneous along
with 7. Now take an arbitrary ve .#(Wg) and let t-'v =1ue .#(R) or v=
tu = (1/Tu(a))Tu. Then T~ 'v = (1/Tu(a))u. Considering this identity at a we
see that T 'v(a) = 1/Tu(a). Hence t~'v =u= Tu(a)T~'v and we obtain the
following expression of 77!

T

1
vt lp=—o 77!

T-v(a)
Finally we prove that t(.#;(R)) = .#,(Wg), which shows that 7 : .#(R) —
A (Wg) is a bijection. Take any u e .# (R). We need first to show that tu e
AM(Wg) in fact belongs to .#;(Wg). Let tu= Av; + (1 —A)v, with A€ (0,1)
and v; and v, being in .#(Wg). Apply T~ to the both sides of the above
identity and then we obtain u = g + u'uy with p:= Tu(a)AT 'vi(a) and u' =

Tu(a)(1 — 2)T~'vy(a) being positive numbers and u; :=t 'v; and wup := 77!,
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being in .#(R). Considering the above identity u = pu; + p'up at a we obtain
l=pu+p so that u=pa + (1 — wu, with pe (0,1). Since u is extremal in
AM(R) (re. ue s (R)), we see that u; =up, ie. tu= Av; + (1 — A)vy implies
v = v, and a fortiori tu € 4 (Wg) or ©(4\(R)) < 41 (Wgr). Conversely choose
any ve./ (Wg) and we are to show that v~ !'ve.#(R) actually belongs to
Mi(R). Let t™'v=Ju; + (1 — A)uy with 1€ (0,1) and u; and wu, in .#(R).
Apply T to the both sides of the above by using t='v = (1/T"'v(a))T v to
deduce v = vy + p'vy with g := T 'w(a)ATui(a) and u' = T v(a)(1 — 1) Tuy(a)
being positive numbers and v; :=7tu; and v, := 7wy being in #(Wg). Con-
siderring v = uv; + ('vy at a we see that 1 = u+ ' so that v=puv; + (1 — wov,
with @€ (0,1). Since v is extreme in .#(Wg) (i.e. ve .4 (Wg)), we see that
vy =vy or tu; =tuy and a fortiori u; = up, which proves that t~'ve .#(R),
ie. (1 (WR)) < M (R) so that t(4(R)) > 41 (Wr). Thus t(4 (R)) =
A (WR) and t: M (R) — M1 (Wg) is bijective since t: M (R) — M (Wg) is bi-
jective. Thus, by (15), we can conclude that

dim R = card .#;(R) = card t(#,(R)) = card .#,(Wgr) = dim Wy

so that the essential part of the proof of the main theorem is over. The proof of
the main theorem as a whole is herewith complete. O

5. Planar parabolic surfaces

A Riemann surface R is said to be planar if it is represented as a subregion
of the complex sphere C: R < C. Without loss of generality we can always
suppose that the point at infinity co of C is contained in R: oo € R, which we
always assume in the sequel. We also restrict ourselves to consider only planar
surfaces R which are open, i.e. noncompact so that the complement

(17) K :=C\R

is nonempty compact subset of C whose complement R is connected. For
convenience we denote by # the class of nonempty compact subsets K of the
complex plane C:= C\{oo} with connected complement C\K or equivalently
C\K with respect to C or equivalently to C. Therefore the totality # of open
planar Riemann surfaces R and the totality ¢ of nonempty compact subsets K
of C with connected complements are in bijective correspondence R — K by the
relation (17).

A compact subset E < C is said to be of (logarithmic) capacity zero if the
energy integral over E is infinite for any unit Borel measure x4 on E:

inf ” log L du(z) du(w) = +o0,
|z —w]

where the infimum is taken with respect to the family of Borel measures u on E

with u(E) = 1. Tt is off hand seen that E € & if the capacity of E is zero. We

denote by .#; the class of all compact subsets K of C which are of capacity

zero. Then
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Hy < A .

A mapping s : C — [—o0, +00] is said to be an Evans-Selberg potential for a given
compact subset E of C if the following three conditions are satisfied:
he HIC\(EU{x})); h+loge H(C\(EU{0})), where log is the function z+—
log|z| with log oo = oo;
lim  A(z) =+
zeC\E,z—(

for every (€ E. Hence in particular /i(o0) = lim. .o h(z) = —00. Of course
such an / need not always exist for every given E, and in fact we see that K € ¢
if and only if there exists an Evans-Selberg potential # for K. In terms of
this characterization of the class .#, and the characterization of the class Og of
parabolic surfaces by the existence of Evans function given in §3, we obtain
another important characterization of the class #;: a planar open Riemann
surface R is parabolic if and only if K in (17) belongs to %y, i.e.

(18) Ay ={Ke A :C\K € Og}.

This relation with the characterization (9) of the range set V in particular implies
the following inclusion relation:

(19) V > {dim(C\K) : K € #;}.

Hence to complete the proof of Theorem A by the unified fashion we only have
to show that the set on the right hand side of (19) above is identical with the set
NU{Xy, 8}, which we will achieve in the sequel.

We fix an arbitrary K € .#; and we are to study the Martin boundary A(R)
and the Martin minimal boundary A;(R) of R:= C\K. We will show that the
Martin compactification RUA(R) of R is (topologically) identical with C, A(R)
with K, and A;(R) also with K. To see these we may assume without loss of
generality that the disc U :={zeC:|z|] < 1/2} contains K, and we set D :=
{zeC:|z| <1}, the unit disc, so that K <« U< U = D. Let g(z,w) be the
Green function (kernel) on V' := D\K. Since K is of capacity zero, g(z,w) can
be uniquely extended to the Green function (kernel) on D so that the Martin
kernel on R = D\K is the restriction to it of the Martin kernel

k(z,w) := 9(z,w)
glc,w)
on D, where ¢ is an arbitrarily chosen point in D\K. By this observation one

instantly sees that the totality of Martin boundary points of D\K lying over K
is nothing but the set K itself in D so that we conclude that

(20) A(R)=K, RUA(R)=C (R=C\K)

(cf. (2) and (3) in §1). Hence a point { € A(R) = K belongs to the minimal
Martin boundary A;(R) if and only if k(-,{) =ag(-,{) (= 1/g(c,{), a con-
stant) is minimal, i.e. extreme in the convex set {u € HP(D\K;0D) : u(c) = 1}.
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However, g(-,{) is always minimal in HP(D\K;0D) for every (€ K as a
consequence of the Picard principle (cf. (5) in §1). Hence we have seen that

(21) A(R)=K (R=C\K).

Since dim R = card A, (R) = card K, we see that dim(C\K) = card K so that by
(19) we conclude that

(22) Vo{card K : K € #}.
Finally we show that
(23) {card K : K € #y} = NU{R, R},

which with (22) implies (6) so that a unified proof for Theorem A is here
completed as announced. For each n e N, the finite set K, := {1,2,...,n} on
the real line belongs to #) and card K,, = n. Hence the set on the left hand
side of (23) contains N. Let Ky, := {1/n:neN}U{0}. Clearly Ky, € #p and
card Ky, = Ng. We can pick a generalized 1-dimensional Cantor set Ky in 4
(cf. e.g. p. 336 in [11]). Since card Kx = XN, we can now maintain {card K : K €
Ao}t 2 NU{Ny,8}. Conversely, choose an arbitrary compact set K < C. The
Cantor-Bendixson theorem says that K is a union of a perfect set and a countable
set, each of which may be empty. Since the cardinal number of a nonempty
perfect set is N, we see that card K e NU{Ny,X} and in particular {card K :
K e Ay} « NU{X,R}. Hence we have established (23). O

6. Continuum hypothesis

As the possible answers to the Heins problem on harmonic dimensions to
determine the range set V= {dim R: R e #}, the following three typical cases
are considered:

(24) V=[N
(25) V =NU{Ro,R};
(26) NU{Ro,N} <V < [1,¥],

where < indicates the strict inclusion relation, i.e. A < B means that 4 = B and
A # B. 1If the continuum hypothesis is postulated, i.e. NU{Xo, R} =[1,%], then
Theorem A or (6) implies (24) or equivalently (25) and the Heins problem is
completely settled. If the hypothesis is negated, then the above three cases are
equally possible to hold at the present knowledge and the Heins problem should
be said to be still widely open.

Let 2 be a class of open Riemann surfaces R like # or Og and let us
denote by V(Z') the range set

V(Z)={dim R: Re X}

so that our original range set V is V=V(#)=V(0Og). It may be also in-
teresting to determine V(Z') for a given class 2 although there may not be any
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firm motivation to ask such a question like in the case of V = V(#) = V(Og).
Particularly important in this context is to determine V(%) for & = # or Og,
which might open the way to the complete resolution of the Heins problem.
Recall that 2 is the class of planar open Riemann surfaces. What we really did
in §5 is that

(27) V(0gN2) = NU{R, N}

Let @ be the class of multisheeted plane R, i.e. ¥ is the family of every R =
(R,C,x), possibly branched covering surface of C with the projection 7z such that
card 77! (w) is a constant (sheet number) for every w e C.  We also denote by %
the subclass of finitely sheeted planes, i.e. %) consists of Re @ with its sheet
number in N. What Heins did in [4] is

(28) V(# N%,) = N.

In this context the task to determine V(# N%¥) is important. We know that
V(#NE) > NU{Rp, X} (unpublished) and essential question left here is to de-
termine whether V(# N %) = NU{Ry, R} or not.
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