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Abstract

The main assertion of this paper is that for an arbitrarily given parabolic open

Riemann surface R there always exists a Heins surface WR, i.e. a parabolic open

Riemann surface with the single ideal boundary component, such that the harmonic

dimension of WR, i.e. the cardinal number of the set of minimal Martin boundary points

of WR, is identical with that of R. The result is then applied to give a simple and

unified proof for the best theorem at present as an answer to the Heins problem to

determine the set ‘ of harmonic dimensions of all Heins surfaces obtained by collecting

contributions of many authors that ‘ contains the set N of all positive integers, the

cardinal number @0 of countably infinite set, and the cardinal number @ of continuum,

i.e. ‘INU f@0;@g, so that ‘ ¼ ½1;@�, the interval of cardinal numbers x with

1a xa@, when the continuum hypothesis is postulated.

1. Introduction

We denote by DðRÞ the Martin boundary of an open Riemann surface R and
by D1ðRÞ the set of minimal points in DðRÞ. The cardinal number of D1ðRÞ,
card D1ðRÞ in notation, is referred to as the harmonic dimension of R, dim R in
notation:

dim R ¼ card D1ðRÞ:ð1Þ
Here a few words are in order on the definition of the Martin compacti-

fication. Open Riemann surfaces are classified into two categories: hyperbolic
and parabolic surfaces according to the existence or nonexistence of harmonic
Green functions on them (cf. §3 below). Originally the Martin compactifications
are defined by using Green functions so that these notions are basically con-
sidered for hyperbolic R. Let V be any parametric disc jzj < 1 in R with V , the
closure of V , is given by jzja 1. It can be seen that the defining sequence
ðznÞnb1 in RnV of a point z in DðRnV Þ either converges to the ideal boundary of
R or accumulates to the relative boundary qV of V . The point z in DðRnV Þ
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is said to lie over the ideal boundary of R or over qV according to the former
or the latter situation described above occurs. Moreover the set of points in
DðRnV Þ lying over qV is identical with qV and

DðRÞ ¼ DðRnV ÞnqVð2Þ
is valid for any hyperbolic surface R and any parametric disc V . Even if R is
parabolic, RnV is hyperbolic for any parametric disc V and hence DðRnV Þ can
be defined. It is also easy to see that

DðRnV1ÞnqV1 ¼ DðRnV2ÞnqV2

for any pair ðV1;V2Þ of parametric discs Vj in R ð j ¼ 1; 2Þ. Reversing the
process we define the Martin boundary DðRÞ of a parabolic surface R by (2)
which is independent of the choice of the parametric disc V as we mentioned
above. Thus (2) is valid for every open Riemann surface R as a theorem for
hyperbolic R and as a definition for parabolic R. Naturally we have

D1ðRÞ ¼ D1ðRnV ÞnqVð3Þ
for every open Riemann surface R. It is not important in this context but we
have the inclusion qV HD1ðRnV Þ, which is sometimes convenient. In (2) and
(3) we may replace V by any compact subset K of R with positive capacity such
that RnK is connected, where qK here is understood as being Carathéodory
relative boundary. The remark mentioned above is important since we mainly
consider the harmonic dimension dim R ¼ card D1ðRÞ for parabolic open Rie-
mann surface R.

The notion of the harmonic dimension was originally introduced by Heins
[4] in 1952 in connection with his study on the value distribution theory for
meromorphic functions at the parabolic isolated ideal boundary component of
surfaces with infinite genus and the term harmonic dimension itself was also
coined by himself. It is clear that

1a dim Ra@;ð4Þ
where @ is the cardinal number of continuum. We denote by ½1;@� the set of
cardinal numbers x such that 1a xa@. The interval ½1;@� is a di‰cult set in
general but simply ½1;@� ¼ NU f@0;@g if the continuum hypothesis is postulated,
where N is the set of positive integers and @0 is the cardinal number of countably
infinite set so that e.g. @0 ¼ card N. In any case (4) can be denoted by dim R A
½1;@�.

An open Riemann surface R is said to be a Heins surface if R A OG, the
class of all parabolic open Riemann surfaces, (cf. e.g. [11], see also §3 below) and
R has a single ideal boundary component, i.e. there exists only one Kerékjártó-
Stoı̈low ideal boundary component of R (cf. e.g. [9]) so that R is homeomorphic
to its Richards model R�nf0g ([8]), where R� is the compact space obtained from
ĈCn6

n
ðKn UK4

n Þ by identifying symmetric points in qKn and qK4
n with respect

to the real axis. Here ĈC is the Riemann sphere and ðKnÞ1an<Nþ1 (N < y or
N ¼ y) is a finite or infinite sequence of mutually disjoint closed discs Kn in the
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upper half plane of the complex plane C accumulating only to the origin 0 and
K4

n is the symmetric image of Kn with respect to the real axis. The space R� is
the Kerékjártó-Stoı̈low compactification of R. The condition that R has a single
ideal boundary component is also characterized by the fact that RnX has only
one relatively noncompact connected component for any compact subset X of R.
We denote by H the class of Heins surfaces so that HHOG.

The punctured sphere ĈCnf0g is the simplest and a typical Heins surface and
the fact that

dimðĈCnf0gÞ ¼ 1ð5Þ
is referred to mainly by French mathematicians such as Bouligand and Brelot as
the Picard principle but chronologically the fact itself was found by Bôcher (cf.
e.g. [1]) much earlier than Picard. Nevertheless we rather prefer to continue to
call (5) as the Picard principle for several reasons. Looking at Richards model
R� of R A H, one might feel that the Picard principle remains to be true for every
R A H but Heins pointed out that this is only true for R A H of finite genus and
is no longer the case in general, i.e. there is an R A H of infinite genus with
dim R > 1, and thus proposed the following problem in the same paper [4] cited
above. Let

‘ :¼ fdim R : R A Hg;
the set of harmonic dimensions dim R for all R A H.

The Heins Problem. Determine the set ‘ of harmonic dimensions.

As mentioned above Heins [4] (1952) himself showed that NH‘. Then
Kuramochi [5] (1954) claimed that @0 A ‘ (cf. also Cornea [3] (1958), Segawa [12]
(1981), Nakai-Sario [7] (1985)). Finally in this direction @ A ‘ was shown by
Constantinescu-Cornea [2] (1959). Thus the present best knowledge on the above
Heins problem is summarized as follows:

Theorem A. The range ‘ of the harmonic dimension dim as a mapping of
the family H of Heins surfaces to cardinal numbers satisfies the following inclusion
relations:

NU f@0;@gH‘H ½1;@�:ð6Þ

If the continuum hypothesis: NU f@0;@g ¼ ½1;@� is postulated, then (6) is
reduced to the identity ‘ ¼ ½1;@� and the Heins problem is completely over by
this identity. Therefore the problem left is to settle whether there is an R A H
with dim R ¼ x or not for an arbitrarily given cardinal number x with @0 <
x < @. In the present paper, however, we are only concerned with the proof of
the above theorem A. Of course putting 6 proofs cited above together produces
a proof for (6) but any one of these 6 proofs is treating only an relevant in-
dividual case of NH‘, @0 A ‘, or @ A ‘ separately and cannot be applied to
other cases. Thus it is desirable to prove that x A ‘ if x A NU f@0;@g in a unified
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fashion independent of the choice of x A N, x ¼ @0, or x ¼ @. The secondary
purpose of this paper is to give such a proof in §5 as an application of a general
result mentioned below as our main theorem proving which is our primary
purpose of the present paper.

2. Construction of canonical Heins surfaces

Given an arbitrary R A OG and we will construct in a fixed procedure a
Riemann surface WR A H with dim WR ¼ dim R which will be called a canonical
Heins surface associated with R. As the first step of our fixed procedure of
constructing WR we start with fixing a regular exhaustion ðRnÞnb0 of R with R0

a parametric disc such that R0 ¼ fjzja 1g, i.e. a sequence ðRnÞnb0 of relatively
compact subregion Rn bounded by a finite number of disjoint analytic Jordan
curves such that RnRn has no relatively compact component for each nb 0 and
moreover Rn HRnþ1 ðnb 0Þ and R ¼ 6

nb0
Rn. Let

Rnþ1nRn ¼ 6
1ajaNn

Rnj ðnb 1Þ

be the decomposition of Rnþ1nRn into connected components Rnj ð1a jaNnÞ.
Choose and then fix an arbitrary parametric disc Bnj ¼ fjzj < 1g with Bnj HRnj

and then the concentric disc Dnj ¼ fjzj < 1=2g to Bnj and finally the radial slit
gnj ¼ fz A Bnj : 0aRe za rn; Im z ¼ 0g ð0 < rn < 1=4Þ in Dnj HBnj which will be

able to be made short by taking rn enough small (cf. (7) below). For simplicity,
set

Bn :¼ 6
1ajaNn

Bnj ; Dn :¼ 6
1ajaNn

Dnj; gn :¼ 6
1ajaNn

gnj ðnb 1Þ:

Moreover we put

B :¼ 6
nb1

Bn; D :¼ 6
nb1

Dn; g :¼ 6
nb1

gn; W :¼ RnR0:

Let B 0
nj :¼ fjz� 3jj < 1g be in C and g 0nj :¼ fz A B 0

nj : 0aReðz� 3jÞa rn;
Im z ¼ 0g ð1a jaNn; nb 1Þ and

B 0
n :¼ 6

1ajaNn

B 0
nj ; g 0n :¼ 6

1ajaNn

g 0nj ðnb 1Þ:

As above we also set

B 0 :¼ 6
nb1

B 0
n; g 0 :¼ 6

nb1

g 0n:

The region Sn :¼ ĈCng 0n is referred to as a finite chain of handles. Two of these
regions are viewed to be disjoint if they are di¤erent: Sn VSm ¼ j ðn0mÞ. We
set S :¼ 6

nb1
Sn, a set of handles. A finite chain Sn of handles is viewed as

being getting smaller and smaller by making rn # 0 for each nb 1.
Fix a point a in WnB and let kn :¼ kðfagU qBn;WnDÞb 1 be the Harnack

constant of the compact set fagU qBn with respect to the region WnD ðnb 1Þ:
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hðz 0Þa knhðz 00Þ for every pair ðz 0; z 00Þ of points z 0 and z 00 in fagU qBn and h in
HPðWnDÞ, the class of nonnegative harmonic functions h on WnD. Let o ¼
oð� ; gn;WngnÞ be the harmonic measure of gn with respect to the region Wngn:
o ¼ inf s on Wngn, where the infimum is taken with respect to nonnegative
superharmonic functions s on W such that sb 1 on gn. It is clear that

lim
rn#0

oð� ; gn;WngnÞ ¼ 0

on Wngn. Therefore it is possible to take an rn A ð0; 1=4Þ so small that

oða; gn;WngnÞ <
1

2nþ1k2
n

ðnb 1Þ:ð7Þ

We hence hereafter assume that the union g of the unions gn ðnb 1Þ of slits
gnj ð1a jaNnÞ has been chosen and fixed so small as to satisfy the condition

(7) above.
Now we attach the set S of chains Sn of handles ðnb 1Þ to R as fol-

lows. We view each Bnj in Bn in B and each B 0
nj in B 0

n in B 0 are copies of the

same unit disc and identify each gnj in gn in g with g 0nj in g 0n in g 0 ð1a jaNn;

nb 1Þ. We take W :¼ Rng and connect S to W by joining Sn to W crosswise
along each edge of each gnj ¼ g 0nj ð1a jaNnÞ for every nb 1, i.e. connect Sn to
W by identifying the upper (lower, resp.) edge gþnj (g

�
nj , resp.) of gnj with the lower

(upper, resp.) edge ðg 0njÞ
� (ðg 0njÞ

þ, resp.) of g 0nj for each 1a jaNn and for each

nb 1. The resulting surface will be denoted by WR. In WR each Sn is viewed
as a relatively compact regular subregion of WR whose relative boundary qSn in
WR is the union gGn of a finite number of mutually disjoint analytic Jordan curves
gþnj U g�nj ð1a jaNnÞ, where gþnj (g�nj , resp.) is as already mentioned above the
upper (lower, resp.) edge of the slit gnj ¼ g 0nj ð1a jaNnÞ. Recall that at each
point z of WRng the original local parameter z in R or S is adopted as that for
WR; at each point z at g except for the end points of each gnj we take z� z as the
local parameter at z where z is the natural plane coordinate in Bnj and also in B 0

nj

containing z; finally at each end point z of gnj in Bnj and also in B 0
nj with their

original coordinate z as above we choose the function
ffiffiffiffiffiffiffiffiffiffiffi
z� z

p
with

ffiffiffi
1

p
¼ 1 as

the local parameter at z. Because of such definition of the conformal structure
of WR the set gþnj U g�nj becomes an analytic Jordan curve in the Carathéodory
compactification of Bnjngnj whose boundary is defined to be the set of boundary
elements of Bnjngnj embedded in WR in the sense of Carathéodory.

The surface WR has the following particular properties to prove which is
the main purpose of this paper as announced in the introduction. After a
preparation in §3 the proof will be given in §4 below.

The Main Theorem. The surface WR associated with an arbitrarily given
surface R in the parabolic class OG is a Heins surface whose harmonic dimension is
identical with that of R:

dim WR ¼ dim R:ð8Þ
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The Riemann surface WR constructed from a given Riemann surface R in
OG in the fixed fashion described above will be referred to as a canonical Heins
surface associated with R. We use the characterization for WR to have a single
ideal boundary component that there exists an exhaustion ðXnÞnb0 of WR such
that WRnXn is connected for every nb 0. The modification WR of R is so
performed as to ensure the possibility of constructing such an exhaustion ðXnÞnb0
described above. One of the roles of the requirement (7) is to guarantee for WR

to inherit the parabolicity from the fact that R is parabolic. Thus the part
WR A OG of the proof of WR A H, the class of Heins surfaces, is almost straight
forward. Really important role of the condition (7) is to assure the validity of
the identity (8), to prove which is the main part of the proof of the above
theorem given in §4 below.

Recall that the Heins problem is to determine the range set ‘ ¼ fdim R :
R A Hg of the mapping dim : H ! ½1;@�. Since HHOG, ‘H fdim R :
R A OGg. The identity (8) implies fdim R : R A OGg ¼ fdim WR : R A OGgH‘.
Thus we can conclude that

‘ ¼ fdim R : R A OGg:ð9Þ
Hence the Heins problem can be rephrased as follows: determine the range of
the mapping dim : OG ! ½1;@�. In this formulation a unified simple proof of
Theorem A can be instantaneously given as will be observed later in §5.

3. Parabolic surfaces and a maximum principle

In the classification theory of Riemann surfaces (cf. e.g. [11]), the class of
harmonic (nonnegative harmonic, bounded harmonic, resp.) functions on an open
Riemann surface F is denoted by HðFÞ (HPðF Þ, HBðFÞ, resp.). The class OG

is the totality of every parabolic surface F , i.e. an open Riemann surface F
on which there is no Green function (cf. e.g. [11]). Let F0 :¼ fjzj < 1g be a
parametric disc on F such that F0 ¼ fjzja 1gHF . An open Riemann surface
F is parabolic, i.e. F A OG in notation, if and only if there exists an Evans
function h on F nF0 (cf. [6], see also [10], [11]) characterized by the conditions

that h A HPðF nF0ÞVCðF nF0Þ with hjqF0 ¼ 0 and limz!yF
hðzÞ ¼ þy, where

yF is the Alexandro¤ ideal boundary point of F . The harmonic measure
o ¼ oð� ; b;F nF0Þ of the ideal boundary b of F relative to F nF0 is given by

o ¼ inf
s AS

s

on F nF0, where S is the class of nonnegative superharmonic functions s on
F nF0 such that sb 1 on F outside some compact subset of F containing F0.
The above definition of o assures that o A HPðF nF0Þ. As for the behavior of
o at the relative boundary qF0 of F nF0, we see that o vanishes continuously on
qF0. In fact, let F1 be an arbitrary regular subregion of F containing F0 and an
s1 A S be such that s1 A HðF1nF0ÞVCðF nF0Þ, s1jF nF1 ¼ 1, and s1jqF0 ¼ 0.
Such an s1 can be found by solving the Dirichlet problem on F1nF0 with
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boundary values 1 on qF1 and 0 on qF0. Then 0aoa s1 on F nF0, which
implies that

0a lim sup
z AF nF0; z!z

oðzÞa lim
z AF nF0; z!z

s1ðzÞ ¼ 0

for every z A qF0, i.e. o has continuously vanishing boundary values on qF0. It
is known that F A OG is also characterized by that o ¼ 0 on F nF0 (cf. e.g. [11]).

In general, no matter whether F A OG or not, we have the identity

sup
F nF0

o

 !
o ¼ oð10Þ

on F nF0. In fact, let l :¼ supF nF0
o. Observe that minðs; 1Þ A S along with

s A S so that 0aoa 1 and hence 0a la 1. Take an arbitrary real number
e > 0. Since the harmonic function o=ðlþ eÞ < 1 on F nF0 and o=ðlþ eÞ has
vanishing boundary values on qF0 as we saw above, the minimum principle
for superharmonic functions implies that sbo=ðlþ eÞ on F nF0 for any s A S
so that obo=ðlþ eÞ or ðlþ eÞobo on F nF0. On letting e # 0 we have
lobo on F nF0. This with the trivial fact that loao on F nF0 yields (10)
above. Hence in particular F B OG is equivalent to

sup
F nF0

o ¼ 1:ð11Þ

Let G be a subregion of an F A OG such that GHF nF0 and s be a
superharmonic (subharmonic, resp.) function on G bounded from below (above,
resp.) on G. Then the following minimum (maximum, resp.) principle is valid: if

lim inf
z AG; z!z

sðzÞb 0 lim sup
z AG; z!z

sðzÞa 0; resp:

 !

for any z A qG, then sb 0 (sa 0, resp.) on G. These are also referred to as
the comparison principle. To prove these we can assume G is not compact in
F nF0. Otherwise these are reduced to the mere usual comparison principle.
We take an Evans function h on F nF0 and an arbitrary positive number e and
then consider the function sþ eh (s� eh, resp.) on G. Then we see that

lim inf
z AG; z!z

ðsðzÞ þ ehðzÞÞb 0 lim sup
z AG; z!z

ðsðzÞ � ehðzÞÞa 0; resp:

 !

for every z A qG by the assumption on s and also for z ¼ yG, the Alexandro¤
point of G defined to be the single point left in cl½G �nðGU qGÞ with cl½G� the
closure of G in the Alexandro¤ compactification F U fyFg of F , as consequences
of s being bounded below (above, resp.) and the behavior of h at yF and hence
at yG: limz AG; z!yG

hðzÞ ¼ þy. From the above boundary behavior of sþ eh
(s� eh, resp.) it follows that sþ ehb 0 (s� eha 0, resp.) on G as a consequence
of the usual minimum (maximum, resp.) principle. On letting e # 0, we deduce
the desired conclusion. The result applied to u A HBðGÞ will be referred to as
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the maximum principle: if the upper boundary values of ua c on qG, then ua c
on G.

4. Proof of the main theorem

We now prove the main theorem: WR A H and dim WR ¼ dim R. We will
use the notations introduced in §2 without further reviewing them. We denote
by Xn the relatively compact subregion of WR bounded by qRn ðnb 1Þ and also
X0 :¼ R0 for n ¼ 0 so that

Rn ¼ Xn

-
6

1anan�1

Sn

 !
U 6

1anan�1

gn ðnb 0Þ;

where 6
1anan�1

Sn and 6
1anan�1

gn are understood to be the empty set for

n ¼ 0 and 1. Then the sequence ðXnÞnb0 is a regular exhaustion of WR. Since
X0 ¼ R0 is a disc, WRnX0 is connected. Moreover, although RnRn may consist
of at least one and at most Nn components and may not be connected, since these
are joined by the chain Sn of handles in WRnXn, we see that WRnXn is connected
not only for n ¼ 0 but also for every nb 0. By the existence of an exhaustion
ðXnÞnb0 of WR with the property that WRnXn is connected for every nb 0, we
conclude that WR has only one ideal boundary component. Therefore we only
have to show that WR A OG in order to conclude that WR is a Heins surface, i.e.
WR A H. For the purpose we take the harmonic measure o ¼ oð� ; b;XÞ of the
ideal boundary b of WR with respect to the region X :¼ WRnX0 and we have to
show that o ¼ 0 on X . Contrary to the assertion, assume that o > 0 on X so
that by (11)

sup
X

o ¼ sup
z AX

oðz; b;XÞ ¼ 1:ð12Þ

Let Yn be the relatively compact subregion of WR bounded by qBn ðnb 1Þ so
that Yn ISn. Recall that W ¼ Rng and W ¼ RnR0. Observe that qW ¼ gG :¼
6

nb1
gGn considered in WR but qW ¼ g considered in R. Since

oa
X
nb1

oð� ; gn;WngÞa
X
nb1

oð� ; gn;WngnÞa
X
nb1

1

2nþ1kn
a

1

2

on qB and trivially on qX0, the maximum principle yields that oa 1=2 on
WnB. In particular, oa 1=2 on qB implies that oa 1=2 on 6

nb1
Yn so that

oa 1=2 on X ¼ WRnX0, contradicting (12) so that WR A OG.
Having finished the proof of WR A H we turn to the proof of the essential

part dim WR ¼ dim R. In general, let G be a subregion of a Riemann surface
and GH qG. We use the notation HPðG;GÞ for the class of functions ub 0
continuous on GUG and harmonic on G with vanishing boundary values on G:

HPðG;GÞ ¼ fu A HPðGÞVCðGUGÞ : ujG ¼ 0g:
Using this notation we first show that
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HPðW; qWÞFHPðWng; qWU gÞ;ð13Þ
which means that there exists a positively homogeneous additive bijective
mapping of the half module HPðW; qWÞ onto the half module HPðWng; qWU gÞ.
Let u A HPðW; qWÞ and Hnu be the bounded harmonic function on Wng such that
Hnu has vanishing boundary values on qWU ðgngnÞ and the boundary values u on
gn ðnb 1Þ. The possibility of constructing such an Hnu and its uniqueness is
seen as follows. By solving the Dirichlet problem on Wmn61anam�1

gn ðmb

nþ 2Þ with Wm :¼ RmnR0, we can take an hnm ¼ hm A HðWmn61anam�1
gnÞV

CðWmÞ such that hmjqWm U ð6
1anam�1; n0n

gnÞ ¼ 0 and hmjgn ¼ u. The maximum

principle assures that the sequence ðhmÞmbnþ2 is increasing and uniformly bounded
on every compact subset of W and a fortiori

h :¼ lim
m"y

hm A HBðWngÞVCðWÞ

exists with hjqWU ðgngnÞ ¼ 0 and hjgn ¼ u. In view of R A OG, the maxi-
mum principle (cf. §3) yields that such an h is uniquely determined and there-
fore h ¼ Hnu. Without loss of generality we assume that uðaÞ ¼ 1. Then the
Harnack inequality implies that ua kn on qBn and hence on gn. Then by (7),
HnuðaÞ < 1=2nþ1kn and again by the Harnack inequality Hnu < 1=2nþ1 on qBn.
Hence Hnu < 1=2nþ1 on WnBn and

Hu :¼
X
nb1

Hnu <
1

2

on WnB. The operator H defined above is thus seen to be a positively ho-
mogeneous additive mapping of the halfmodule HPðW; qWÞ to that HPðWng; qWÞ
and Hu ðu A HPðW; qWÞÞ is characterized as the unique function in HPðWng; qWÞ
VHBðWnBÞVCðWÞ such that Hujg ¼ u. Let

HPðW; qWÞmHPðW; qWÞ ¼ fu� v : u; v A HPðW; qWÞg;

the linearlized space generated by HPðW; qWÞ, and HPðWng; qWÞmHPðWng; qWÞ
be similarly defined as above. We insert here a remark that we can further
extend the domain of definition of H so as to be a linear operator from the
linear space HPðW; qWÞmHPðW; qWÞ to that HPðWng; qWÞmHPðWng; qWÞ by
the relation

Hðu� vÞ :¼ Hu�Hv ðu; v A HPðW; qWÞÞ:
It is aesy to see that Hðu� vÞ depends solely upon the function u� v and does
not depend on the particular decomposition u� v, i.e. if u, v, u 0, v 0 are in
HPðW; qWÞ and u� v ¼ u 0 � v 0, then Hðu� vÞ ¼ Hðu 0 � v 0Þ. As before Hh ðh A
HPðW; qWÞmHPðW; qWÞÞ is seen to be characterized as the unique function in
ðHPðWng; qWÞmHPðWng; qWÞÞVHBðWnBÞVCðWÞ such that Hhjg ¼ h. Using H
we now consider the operator T given by

Tu :¼ u�Hu
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on Wng. It is seen that Tu A HPðWng; qWU gÞ and T is a positively homogeneous
(i.e. TðcuÞ ¼ cTu for nonnegative real numbers c) additive (i.e. Tðu1 þ u2Þ ¼
Tu1 þ Tu2) mapping of HPðW; qWÞ to HPðWng; qWU gÞ.

We first show that T : HPðW; qWÞ ! HPðWng; qWU gÞ is injective. Take
two functions u and v arbitrarily in HPðW; qWÞ and assume that Tu ¼ Tv, i.e.
u�Hu ¼ v�Hv or u� v ¼ Hðu� vÞ. We have to show that u ¼ v on W.
Since Hðu� vÞ ¼ u� v is harmonic on each Bn and

jHðu� vÞjaHuþHva
uðaÞ
2

þ vðaÞ
2

on WnB, we see that jHðu� vÞja uðaÞ=2þ vðaÞ=2 on W. Since Hðu� vÞ
has vanishing boundary values on qW, the maximum principle implies that
Hðu� vÞ ¼ 0 on W so that u� v ¼ Hðu� vÞ ¼ 0 on W and thus u ¼ v on W.

Next we show that T : HPðW; qWÞ ! HPðWng; qWU gÞ is surjective. Take
an arbitrary v A HPðWng; qWU gÞ and we are to find a u A HPðW; qWÞ such that
Tu ¼ v. We can view that v is subharmonic on W by setting v ¼ 0 on g. Again
we may suppose that vðaÞ ¼ 1. Take the function w A HPðWngÞVCðWÞ given by

w :¼
X
nb1

4knoð� ; gn;WngÞ:

Fix an arbitrary m A N and set

wm :¼
Xm
n¼1

4knoð� ; gn;WngÞ:

Then wmjgn a 4kn and, by (7) and the definition of kn, we see that

wmjqBn a
Xm
n¼1

4kn �
kn

2nþ1k2
n

< 2:

Since wm is bounded on WnB we can conclude that wm a 2 on WnB. By letting
m " y we finally conclude that

wa 2

on WnB. Hence s :¼ vþ w A HPðWngÞVCðWÞ and sjgn ¼ 4kn, and

sjqBn a kn þ 2a 3kn < 4kn ¼ sjgn
assures that sjBn a 4kn ¼ sjgn, which shows that s is a superharmonic majorant
of v on W. Hence there is the least harmonic majorant u of v on W such that
va ua s on W. Hence in particular u A HPðW; qWÞ. Then, since HuaHs ¼
Hw ¼ w, we have

jTu� vja ðu� vÞ þHua ðs� vÞ þHuawþ w ¼ 2w

on W. Observe that Tu� v ¼ 0 on gU qW, jTu� vja 2wa 4 on WnB so that
Tu� v is bounded and harmonic on Wng with vanishing boundary values, i.e.
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Tu� v ¼ 0 on qWU g. Hence Tu ¼ v. Thus we have established the relation
(13).

In WR the slit gnj was viewed as an analytic Jordan curve gþnj U g�nj so that

Bnjngnj was also viewed as an annulus Anj bounded by analytic Jordan curves
qBn and gþnj U g�nj and Sn was viewed as a relatively compact subregion bounded

by the finite union gGn ¼ 6
1ajaNn

ðgþnj U g�njÞ of mutually disjoint analytic Jordan

curves gþnj U g�nj . Recall that X ¼ WRnX0. We also set gG :¼ 6
nb1

gGn . We next

maintain the following relation which is a counterpart of (13). Namely,

HPðX ; qXÞFHPðX nS; qX U gGÞ:ð14Þ

The proof of the above relation is essentially the same as that for (13). For
the sake of completeness we briefly state the outline of the proof of (14)
mimicking the proof of (13). Using the same notation as before let Hnu, for
each integer nb 1, be the bounded harmonic function on Y :¼ X nS such that
Hnu has boundary values zero on qX U ðgGngGn Þ and u on gGn for any arbitrarily
given u in HPðX ; qXÞ. The unique existence of such an Hnu A HBðY Þ for
each u A HPðX ; qX Þ can be seen by exactly the same fashion as was employed
in the proof of (13). Without loss of generality we may assume that uðaÞ ¼ 1 in
order to show the convergence of the sequence

P
jb1 Hju. Then the Harnack

inequality shows that ua kn on qBn and hence on gGn . By (7), HnuðaÞ < 1=
ð2nþ1knÞ and again by the Harnack inequality Hnu < 1=2nþ1 on qBn. Then
Hnu < 1=2nþ1 on YnB 00

n and a fortiori

Hu :¼
X
nb1

Hnu <
1

2

on X nB 00, where B 00
n is the relatively compact subregion of X bounded by qBn so

that it is obtained by attaching the chain of handles Sn to Bnngn crosswise along
the slits gn ¼ g 0n and B 00 :¼ 6

jb1
B 00
j . Let

Tu ¼ u�Hu

on X nS. It is clear that Tu A HPðX nS; qX U gGÞ and we instantly see that T is a
positively homogeneous additive mapping of HPðX ; qX Þ onto HPðX nS; qX U gGÞ.

We first ascertain that T : HPðX ; qX Þ ! HPðX nS; qX U gGÞ is injective.
Take two functions u and v arbitrarily in HPðX ; qX Þ and assume that Tu ¼ Tv,
i.e. u�Hu ¼ v�Hv. We have to show that u ¼ v on X . Since Hðu� vÞ ¼
u� v (cf. the remark for the extention of H in the proof of (13)) is harmonic on
each B 00

n and

jHðu� vÞjaHuþHva
uðaÞ
2

þ vðaÞ
2

on X nB 00, we see that jHðu� vÞja uðaÞ=2þ vðaÞ=2 on X . Since Hðu� vÞ has
vanishing boundary values on qX , the maximum principle yields that Hðu� vÞ ¼
0 on X so that u� v ¼ Hðu� vÞ ¼ 0 on X and thus u ¼ v on X as desired.
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To finish the proof of the relation (14) we need to do one more task: we
show that the mapping T : HPðX ; qXÞ ! HPðX nS; qX U gGÞ is surjective. Take
an arbitrary v A HPðX nS; qX U gGÞ and we are to find a u A HPðX ; qXÞ such that
Tu ¼ v. We can view that v is subharmonic on X by setting v ¼ 0 on S. We
may assume vðaÞ ¼ 1 this time too. Consider the function w A HPðX nSÞVCðX Þ
defined by

w :¼
X
nb1

4knoð� ; gGn ;X nSÞ;

where we have set that oð� ; gGn ;X nSÞ ¼ 1 on Sn and oð� ; gGn ;X nSÞ ¼ 0 on SnSn.
Noting oð� ; gGn ;X nSÞ ¼ oð� ; gn;WngÞ on X nS ¼ Wng, we see that wjgGn ¼ 4kn and,
by (7) and the definition of kn, we deduce that

wjqBn a
X
nb1

4kn �
kn

2nþ1k2
n

¼ 2:

By considering partial sums we deduce that

wa 2

on X nB 00. Therefore s :¼ vþ w A HPðX nSÞVCðXÞ and sjgGn ¼ 4kn, and

sjqBn a kn þ 2a 3kn < 4kn ¼ sjgGn
implies that sjB 00

n a 4kn ¼ sjgGn , which shows that s is a superharmonic majorant
of v on X . Hence there exists the least harmonic majorant u of v on X such that
va ua s on X . Hence in particular u A HPðX ; qXÞ. Then, since HuaHs ¼
Hw ¼ w, we have

jTu� vja ðu� vÞ þHua ðs� vÞ þHuawþ w ¼ 2w

on X . Observe that Tu� v ¼ 0 on qX U gG, jTu� vja 2wa 4 on X nB 00 so
that Tu� v is bounded and harmonic on X nS with vanishing boundary values,
i.e. Tu� v ¼ 0 on qX U gG. Hence Tu ¼ v and the proof of (14) is herewith
complete.

Pick an arbitrary u A HPðWng; qWU gÞ so that u is nonnegative and harmonic
on Wng and vanishing continuously on the relative boundary qðWngÞ ¼ qWU g of
Wng. Observe that Wng ¼ X nS and the relative boundary qðX nSÞ of X nS is
qX U gG. Therefore u may be understood to be nonnegative and harmonic on
X nS and vanishing continuously on the relative boundary qðX nSÞ ¼ qX U gG of
X nS so that u A HPðX nS; qX U gGÞ. This natural identification u 7! u gives a
positively homogeneous and additive bijection of HPðWng; qWU gÞ to HPðX nS;
qX U gGÞ. Hence we see that

HPðWng; qWU gÞFHPðX nS; qX U gGÞ:

This with (13) and (14) assures that

HPðW; qWÞFHPðX ; qX Þ:
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Recall that W ¼ RnR0 with qW ¼ qR0 and X ¼ WRnR0 with qX ¼ qR0.
Therefore we finally conclude that

HPðRnR0; qR0ÞFHPðWRnR0; qR0Þ:ð15Þ
Let MðRÞ (MðWRÞ, resp.) be the convex set fu A HPðRnR0; qR0Þ : uðaÞ ¼ 1g

(fu A HPðWRnR0; qR0Þ : uðaÞ ¼ 1g, resp.). We denote by M1ðRÞ (M1ðWRÞ, resp.)
the set of extreme points in the convex set MðRÞ (MðWRÞ, resp.). As another
characterization of dim R (dim WR, resp.) we recall that

dim R ¼ card M1ðRÞ ðdim WR ¼ card M1ðWRÞ; resp:Þ:ð16Þ
Choose a positively homogeneous additive bijection T giving (15) and consider
the mapping

u 7! tu :¼ 1

TuðaÞTu;

where we see that u > 0 is equivalent to Tu > 0 and a fortiori t maps MðRÞ to
MðWRÞ. We now prove that t : MðRÞ ! MðWRÞ is a bijection. First let u and
v be arbitrarily chosen members in MðRÞ with tu ¼ tv. Applying T�1 to the
both sides of tu ¼ tv we obtain u=TuðaÞ ¼ v=TvðaÞ. Evaluating both sides of
this at a we see that uðaÞ=TuðaÞ ¼ vðaÞ=TvðaÞ and, since uðaÞ ¼ vðaÞ ¼ 1, we have
1=TuðaÞ ¼ 1=TvðaÞ so that u ¼ v. This proves that t : MðRÞ ! MðWRÞ is in-
jective. Next take an arbitrary v A MðWRÞ and let w :¼ T�1v A HPðRnR0; qR0Þ.
Then Tw ¼ v > 0 implies that w > 0 and we can consider u :¼ w=wðaÞ A MðRÞ.
Then, by vðaÞ ¼ 1, we see that

tu ¼ 1

TuðaÞTu ¼ wðaÞ
TwðaÞ �

1

wðaÞTw ¼ 1

ðTðT�1vÞÞðaÞTðT�1vÞ ¼ 1

vðaÞ v ¼ v;

i.e. tu ¼ v so that t : MðRÞ ! MðWRÞ is surjective. We have thus completed the
proof of t : MðRÞ ! MðWRÞ being bijective.

Observe that the inverse mapping T�1 of the bijection T : HPðRnR0 : qR0Þ!
HPðWRnR0; qR0Þ in (15) is also additive and positively homogeneous along
with T . Now take an arbitrary v A MðWRÞ and let t�1v ¼: u A MðRÞ or v ¼
tu ¼ ð1=TuðaÞÞTu. Then T�1v ¼ ð1=TuðaÞÞu. Considering this identity at a we
see that T�1vðaÞ ¼ 1=TuðaÞ. Hence t�1v ¼ u ¼ TuðaÞT�1v and we obtain the

following expression of t�1:

v 7! t�1v ¼ 1

T�1vðaÞT
�1v:

Finally we prove that tðM1ðRÞÞ ¼ M1ðWRÞ, which shows that t : M1ðRÞ !
M1ðWRÞ is a bijection. Take any u A M1ðRÞ. We need first to show that tu A
MðWRÞ in fact belongs to M1ðWRÞ. Let tu ¼ lv1 þ ð1� lÞv2 with l A ð0; 1Þ
and v1 and v2 being in MðWRÞ. Apply T�1 to the both sides of the above
identity and then we obtain u ¼ mu1 þ m 0u2 with m :¼ TuðaÞlT�1v1ðaÞ and m 0 :¼
TuðaÞð1� lÞT�1v2ðaÞ being positive numbers and u1 :¼ t�1v1 and u2 :¼ t�1v2
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being in MðRÞ. Considering the above identity u ¼ mu1 þ m 0u2 at a we obtain
1 ¼ mþ m 0 so that u ¼ mu1 þ ð1� mÞu2 with m A ð0; 1Þ. Since u is extremal in
MðRÞ (ı.e. u A M1ðRÞ), we see that u1 ¼ u2, i.e. tu ¼ lv1 þ ð1� lÞv2 implies
v1 ¼ v2 and a fortiori tu A M1ðWRÞ or tðM1ðRÞÞHM1ðWRÞ. Conversely choose
any v A M1ðWRÞ and we are to show that t�1v A MðRÞ actually belongs to
M1ðRÞ. Let t�1v ¼ lu1 þ ð1� lÞu2 with l A ð0; 1Þ and u1 and u2 in MðRÞ.
Apply T to the both sides of the above by using t�1v ¼ ð1=T�1vðaÞÞT�1v to
deduce v ¼ mv1 þ m 0v2 with m :¼ T�1vðaÞlTu1ðaÞ and m 0 :¼ T�1vðaÞð1� lÞTu2ðaÞ
being positive numbers and v1 :¼ tu1 and v2 :¼ tu2 being in MðWRÞ. Con-
siderring v ¼ mv1 þ m 0v2 at a we see that 1 ¼ mþ m 0 so that v ¼ mv1 þ ð1� mÞv2
with m A ð0; 1Þ. Since v is extreme in MðWRÞ (i.e. v A M1ðWRÞ), we see that
v1 ¼ v2 or tu1 ¼ tu2 and a fortiori u1 ¼ u2, which proves that t�1v A M1ðRÞ,
i.e. t�1ðM1ðWRÞÞHM1ðRÞ so that tðM1ðRÞÞIM1ðWRÞ. Thus tðM1ðRÞÞ ¼
M1ðWRÞ and t : M1ðRÞ ! M1ðWRÞ is bijective since t : MðRÞ ! MðWRÞ is bi-
jective. Thus, by (15), we can conclude that

dim R ¼ card M1ðRÞ ¼ card tðM1ðRÞÞ ¼ card M1ðWRÞ ¼ dim WR

so that the essential part of the proof of the main theorem is over. The proof of
the main theorem as a whole is herewith complete. r

5. Planar parabolic surfaces

A Riemann surface R is said to be planar if it is represented as a subregion
of the complex sphere ĈC: RH ĈC. Without loss of generality we can always
suppose that the point at infinity y of ĈC is contained in R: y A R, which we
always assume in the sequel. We also restrict ourselves to consider only planar
surfaces R which are open, i.e. noncompact so that the complement

K :¼ ĈCnRð17Þ
is nonempty compact subset of ĈC whose complement R is connected. For
convenience we denote by K the class of nonempty compact subsets K of the
complex plane C :¼ ĈCnfyg with connected complement CnK or equivalently
ĈCnK with respect to C or equivalently to ĈC. Therefore the totality P of open
planar Riemann surfaces R and the totality K of nonempty compact subsets K
of C with connected complements are in bijective correspondence R 7! K by the
relation (17).

A compact subset EHC is said to be of (logarithmic) capacity zero if the
energy integral over E is infinite for any unit Borel measure m on E:

inf

ðð
log

1

jz� wj dmðzÞ dmðwÞ ¼ þy;

where the infimum is taken with respect to the family of Borel measures m on E
with mðEÞ ¼ 1. It is o¤ hand seen that E A K if the capacity of E is zero. We
denote by K0 the class of all compact subsets K of C which are of capacity
zero. Then
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K0 HK:

A mapping h : ĈC ! ½�y;þy� is said to be an Evans-Selberg potential for a given
compact subset E of C if the following three conditions are satisfied:
h A HðĈCnðE U fygÞÞ; hþ log A HðĈCnðE U f0gÞÞ, where log is the function z 7!
logjzj with logy ¼ y;

lim
z A ĈCnE; z!z

hðzÞ ¼ þy

for every z A E. Hence in particular hðyÞ ¼ limz!y hðzÞ ¼ �y. Of course
such an h need not always exist for every given E, and in fact we see that K A K0

if and only if there exists an Evans-Selberg potential h for K . In terms of
this characterization of the class K0 and the characterization of the class OG of
parabolic surfaces by the existence of Evans function given in §3, we obtain
another important characterization of the class K0: a planar open Riemann
surface R is parabolic if and only if K in (17) belongs to K0, i.e.

K0 ¼ fK A K : ĈCnK A OGg:ð18Þ
This relation with the characterization (9) of the range set ‘ in particular implies
the following inclusion relation:

‘I fdimðĈCnKÞ : K A K0g:ð19Þ
Hence to complete the proof of Theorem A by the unified fashion we only have
to show that the set on the right hand side of (19) above is identical with the set
NU f@0;@g, which we will achieve in the sequel.

We fix an arbitrary K A K0 and we are to study the Martin boundary DðRÞ
and the Martin minimal boundary D1ðRÞ of R :¼ ĈCnK . We will show that the
Martin compactification RUDðRÞ of R is (topologically) identical with ĈC, DðRÞ
with K , and D1ðRÞ also with K . To see these we may assume without loss of
generality that the disc U :¼ fz A C : jzj < 1=2g contains K, and we set D :¼
fz A C : jzj < 1g, the unit disc, so that K HU HU HD. Let gðz;wÞ be the
Green function (kernel) on V :¼ DnK . Since K is of capacity zero, gðz;wÞ can
be uniquely extended to the Green function (kernel) on D so that the Martin
kernel on R ¼ DnK is the restriction to it of the Martin kernel

kðz;wÞ :¼ gðz;wÞ
gðc;wÞ

on D, where c is an arbitrarily chosen point in DnK . By this observation one
instantly sees that the totality of Martin boundary points of DnK lying over K
is nothing but the set K itself in D so that we conclude that

DðRÞ ¼ K ; RUDðRÞ ¼ ĈC ðR ¼ ĈCnKÞð20Þ

(cf. (2) and (3) in §1). Hence a point z A DðRÞ ¼ K belongs to the minimal
Martin boundary D1ðRÞ if and only if kð� ; zÞ ¼ agð� ; zÞ (a ¼ 1=gðc; zÞ, a con-
stant) is minimal, i.e. extreme in the convex set fu A HPðDnK ; qDÞ : uðcÞ ¼ 1g.
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However, gð� ; zÞ is always minimal in HPðDnK; qDÞ for every z A K as a
consequence of the Picard principle (cf. (5) in §1). Hence we have seen that

D1ðRÞ ¼ K ðR ¼ ĈCnKÞ:ð21Þ
Since dim R ¼ card D1ðRÞ ¼ card K , we see that dimðĈCnKÞ ¼ card K so that by
(19) we conclude that

‘I fcard K : K A K0g:ð22Þ
Finally we show that

fcard K : K A K0g ¼ NU f@0;@g;ð23Þ
which with (22) implies (6) so that a unified proof for Theorem A is here
completed as announced. For each n A N, the finite set Kn :¼ f1; 2; . . . ; ng on
the real line belongs to K0 and card Kn ¼ n. Hence the set on the left hand
side of (23) contains N. Let K@0

:¼ f1=n : n A NgU f0g. Clearly K@0
A K0 and

card K@0
¼ @0. We can pick a generalized 1-dimensional Cantor set K@ in K0

(cf. e.g. p. 336 in [11]). Since card K@ ¼ @, we can now maintain fcard K : K A
K0gINU f@0;@g. Conversely, choose an arbitrary compact set KHC. The
Cantor-Bendixson theorem says that K is a union of a perfect set and a countable
set, each of which may be empty. Since the cardinal number of a nonempty
perfect set is @, we see that card K A NU f@0;@g and in particular fcard K :
K A K0gHNU f@0;@g. Hence we have established (23). r

6. Continuum hypothesis

As the possible answers to the Heins problem on harmonic dimensions to
determine the range set ‘ ¼ fdim R : R A Hg, the following three typical cases
are considered:

‘ ¼ ½1;@�;ð24Þ
‘ ¼ NU f@0;@g;ð25Þ

NU f@0;@g < ‘ < ½1;@�;ð26Þ
where < indicates the strict inclusion relation, i.e. A < B means that AHB and
A0B. If the continuum hypothesis is postulated, i.e. NU f@0;@g ¼ ½1;@�, then
Theorem A or (6) implies (24) or equivalently (25) and the Heins problem is
completely settled. If the hypothesis is negated, then the above three cases are
equally possible to hold at the present knowledge and the Heins problem should
be said to be still widely open.

Let X be a class of open Riemann surfaces R like H or OG and let us
denote by ‘ðXÞ the range set

‘ðXÞ ¼ fdim R : R A Xg
so that our original range set ‘ is ‘ ¼ ‘ðHÞ ¼ ‘ðOGÞ. It may be also in-
teresting to determine ‘ðXÞ for a given class X although there may not be any
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firm motivation to ask such a question like in the case of ‘ ¼ ‘ðHÞ ¼ ‘ðOGÞ.
Particularly important in this context is to determine ‘ðXÞ for XHH or OG,
which might open the way to the complete resolution of the Heins problem.
Recall that P is the class of planar open Riemann surfaces. What we really did
in §5 is that

‘ðOG VPÞ ¼ NU f@0;@g:ð27Þ

Let C be the class of multisheeted plane R, i.e. C is the family of every R ¼
ðR;C; pÞ, possibly branched covering surface of C with the projection p such that
card p�1ðwÞ is a constant (sheet number) for every w A C. We also denote by C0

the subclass of finitely sheeted planes, i.e. C0 consists of R A C with its sheet
number in N. What Heins did in [4] is

‘ðHVC0Þ ¼ N:ð28Þ

In this context the task to determine ‘ðHVCÞ is important. We know that
‘ðHVCÞINU f@0;@g (unpublished) and essential question left here is to de-
termine whether ‘ðHVCÞ ¼ NU f@0;@g or not.
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