
H. MIYACHI
KODAI MATH. J.
28 (2005), 301–309

THE LIMIT SETS OF QUASIFUCHSIAN PUNCTURED SURFACE

GROUPS AND THE TEICHMÜLLER DISTANCES
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1. Introduction

Let S be the interior of a compact surface with negative Euler characteristic.
By virtue of Bers’ simultaneous uniformization (cf. [5]), a triple ðX ; h;YÞ, which
consists of two hyperbolic surfaces X and Y of finite area homeomorphic to S
and a homeomorphism h : X ! Y , determines a unique quasifuchsian group G
isomorphic to p1ðSÞ up to conjugation by Möbius transformations. Since G acts
discontinuously on the upper-half 3-space H3, one may expect that the relative
location between marked surfaces of the boundary at infinity of MG :¼ H3=G in
the Teichmüller space of S could be analyzed by intrinsic information from the
geometry of MG. Indeed, J. Brock ([6]) observed that the Weil-Petersson dis-
tance between marked surfaces at infinity is comparable with the volume of the
convex core of MG.

Our main theorem in this paper is to give an estimate for the Teichmüller
distance between marked surface at infinity via complex lengths of geodesics in
the quotient manifold of G. It is known that an appropriate collection of
complex lengths of elements in G determines the geometry of MG, and visa versa
(e.g. [13]).

This paper is organized as follows: Our main theorem will be stated in
§3. We will recall in §4 the width formula for the limit set of quasifuchsian
punctured surface groups by Hirotaka Akiyoshi, Makoto Sakuma and the author
([3] and [4]). Our width formula plays a crucial role to obtain our estimates
(3.1) and (3.2) below. In §5, we will prove our main theorem. Furthermore, we
give a distortion lemma for equivariant quasiconformal mappings in proving our
results.

Convention. Throughout this paper, all (hyperbolic) surfaces are of ana-
lytically finite type and have at least one puncture and we use the symbol S to
represent the interior of a compact surface with negative Euler characteristic.
Furthermore, we fix a hyperbolic structure of finite area on S.
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2. NOTATION

We shall give some notations.

2.1. Teichmüller spaces and Teichmüller distances
The Teichmüller space TeichðSÞ of S is the space of equivalence classes

of pairs ðX ; f Þ, we call it a marked surface, of a hyperbolic surface X and a
quasiconformal mapping f : S ! X . Two marked surfaces ðX ; f Þ and ðY ; gÞ
are equivalent if there is an isometry h : X ! Y such that h � f is homotopic to g
on S. We abbreviate ðX ; f Þ by X when its marking f is not essentially used in
the context.

The Teichmüller distance dT on TeichðSÞ is defined by

dTððX ; f Þ; ðY ; gÞÞ ¼ inf
h

log KðhÞ

where h runs over all quasiconformal mappings from X to Y which are ho-
motopic to g � f �1 and KðhÞ denotes the maximal dilatation of h (see [10]).

2.2. Quasifuchsian groups and Bers’ uniformization
A quasifuchsian group is a finitely generated Kleinian group given by a

quasiconformal deformation of a Fuchsian group of the first kind. By definition,
any quasifuchsian group is isomorphic to the fundamental group of a compact
surface and its limit set is a quasicircle.

Let X and Y � be hyperbolic surfaces with mutually di¤erent orientations
and h� : X ! Y � an orientation reversing homeomorphism. L. Bers ([5]) showed
that the triple ðX ; h�;Y �Þ determines a unique quasifuchsian group G (up to
conjugation) such that the boundary at infinity of MG ¼ H3=G is isometric to
X UY � and h� induces a quasiconformal reflection with respect to the limit set of
G which is commutative with each element of G. Let Y be the mirror image of
Y � and h : X ! Y the orientation preserving homeomorphism induced by h�.
In this paper, we say that G is uniformized by a triple ðX ; h;YÞ.

A quasifuchsian group G is said to be uniformized by ðX ; f Þ; ðY ; gÞ A
TeichðSÞ if G is uniformized by ðX ; g � f �1;Y Þ. In this case, a quasiconformal
mapping f : S ! X induces a quasifuchsian representation r of p1ðSÞ to PSL2ðCÞ
such that G ¼ rðp1ðSÞÞ. We also say that r is uniformized by ðX ; f Þ and ðY ; gÞ.
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2.3. Complex lengths and Bending laminations
Let r : p1ðSÞ ! PSL2ðCÞ be a representation. Take a g A p1ðSÞ so that

rðgÞ is loxodromic. We let lrðgÞ (A C=2pZ) denote the complex length asso-

ciated with g, that is, Re lrðgÞ is the hyperbolic length of the geodesic in
M ¼ H3=rðp1ðSÞÞ corresponding to g and Im lrðgÞ is the angle through which a
normal vector turns when parallely translated once around the curve. The
complex length satisfies the equation

tr2 rðgÞ ¼ 4 cosh2 lrðgÞ
2

:ð2:1Þ

Let SðSÞ be the set of free homotopy classes of non-peripheral and non-
trivial simple closed curves on S. Since lrðaga�1Þ ¼ lrðgÞ for a; g A p1ðSÞ, by
abuse of notation, we denote lrðgÞ for g A SðSÞ to represent the complex length
of an element in the conjugacy class. For g A SðSÞ, from (2.1), the suitable lift
of lrðgÞ (we use the same symbol to represent the lift, for simplicity) is a
holomorphic function on the quasifuchsian space which takes real values on the
Fuchsian slice (see [9]).

Suppose r : p1ðSÞ ! PSL2ðCÞ to be a quasifuchsian representation. If
rðp1ðSÞÞ is not Fuchsian, the boundary of the convex core M0 of M has two
components qGM0. Each component is a complete hyperbolic surface bent
along a measured geodesic lamination. The pull-backs of the measured geodesic
laminations on qGM0 via r define measured geodesic laminations plG on S, which
are called the bending laminations of r (see [7] and [9]). Let us denote by
PMLðSÞ the projective measured lamination space of S. Taking the geodesic
representatives, we recognize any element g A SðSÞ as a geodesic lamination.
Furthermore, g A SðSÞ admits a canonical transversal measure that assigns the
intersection number with the geodesic representative of g to any transversal arc.
Thus SðSÞ is canonically identified with a subset of PMLðSÞ.

3. Results

This section gives our main theorems. First we begin with the case of once
punctured tori (Theorem 1), and then we deal with the general case (Theorem 2).
Of course, the former case follows from the latter (cf. [4]). However, the former
case will be helpful for readers to understand the estimates to originate from the
intrinsic geometry of corresponding quasifuchsian manifold.

3.1. Case of once punctured tori
Assume S to be a once punctured torus. In this case, PMLðSÞ is iden-

tified with S1 ¼ RU fyg and SðSÞ is regarded as the set of rational points in
PMLðSÞ. Let ½ plG� be the projective classes of the bending laminations of a
quasifuchsian representation r of p1ðSÞ. Since ½ plþ�0 ½ pl�� (see [9]), PMLðSÞ�
f½ pl��; ½ plþ�g consists of two intervals in PMLðSÞ. This induces the decom-
position SðSÞ � f½ pl��; ½ plþ�g ¼ SL USR.
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Theorem 1. Let r be the quasifuchsian representation uniformized by two
marked surfaces X ;Y A TeichðSÞ. Then the Teichmüller distance dTðX ;YÞ be-
tween X and Y satisfies

dTðX ;Y Þb log kðjwðrÞjÞ;ð3:1Þ
where

wðrÞ ¼ 2 Im
X
g ASR

1

1þ elrðgÞ
;

kðyÞ ¼ 2

p
m

e�py=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�py

p
� �

and mðrÞ is the modulus of the unit disk slit along the real axis from 0 to r.

3.2. Case of punctured surfaces
Suppose S to be a general punctured surface. In this section, we fix a

puncture p of S and uniformize S in such a way that one of the corresponding
primitive elements to the puncture p is a parallel translation z 7! zþ 1 in the
deck transformation group of the universal covering space H2 ! S.

A simple arc d in S with both ends in the puncture p is said to be essential
if it does not bound a monogon (i.e., a disk with one point removed from its
boundary). By D (resp. ~DD) we denote the set of the isotopy classes of unoriented
(resp. oriented) essential simple arcs in S with both ends in p. We shall abuse
notation to denote a simple loop or an arc and its isotopy class by the same
symbol. For each essential arc d A D (or d A ~DD) there is a unique (up to isotopy)
pair of simple loops aðdÞ and bðdÞ such that aðdÞU bðdÞ bounds a punctured
annulus containing d (cf. Proposition 1 of [12]). These loops determine a pair of
elements of SðSÞUPðSÞ, where PðSÞ is the set of the isotopy classes of pe-
ripheral simple loops in S. We note the following facts.

1. If S is a once punctured torus, then aðdÞ ¼ bðdÞ A SðSÞ. Otherwise,
aðdÞ0 bðdÞ.

2. One of aðdÞ and bðdÞ belongs to PðSÞ if and only if d bounds a once-
punctured monogon.

Let G be the set of oriented complete simple geodesics in the hyperbolic
surface S emanating from the puncture p. Then the set ~DD is regarded as a subset
of G. Let ~GG be the set of oriented complete geodesics in H2 emanating from
y which projects to a simple geodesic in S. Then ~GG is identified with a subset
of R ¼ qH2 � fyg by associating each element ~mm A ~GG with its endpoint. This
induces an identification of G with a subset of the circle S1

p :¼ R=hz 7! zþ 1i ¼
R=Z.

Let r be a quasifuchsian (not Fuchsian) representation, and let jplGj be
the underlying geodesic lamination of the bending laminations plG of r. Then
jplGj is disjoint from a neighborhood of p, and hence we can find, for each
e ¼G, a complete simple geodesic me A G which is disjoint from jpl ej. We have
m� 0 mþ, because jplþj0 jpl�j. Since ~DD is identified with a subset of S1

p , we
obtain a partition of ~DD� fm�; mþg into two subsets, ~DDL and ~DDR.
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Theorem 2. Let r be a quasifuchsian representation of p1ðSÞ uniformized by
X ;Y A TeichðSÞ. Fix a puncture p of S and let ~DDL, aðdÞ, and bðdÞ ðd A ~DDLÞ be as
above. Then the Teichmüller distance between X and Y satisfies

dTðX ;Y Þb log kðjwðrÞjÞ;ð3:2Þ
where

wðrÞ ¼ 2 Im
X
d A~DDL

1

1þ e1=2ðlrðaðdÞÞþlrðbðdÞÞÞ
;

and k is the function in Theorem 1.

3.3. Remarks
We give three remarks concerning our estimates (3.1) and (3.2).
(1) The function mðrÞ is strictly decreasing and expressed exactly as follows

(cf. p. 60 of [11]).

mðrÞ ¼ pKð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
Þ

2KðrÞ ð0 < r < 1Þ;

where KðrÞ is the complete elliptic integral of the first kind:

KðrÞ ¼
ð1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� r2t2Þ

p :

(2) The function k is strictly increasing. Furthermore, since limr!0ðmðrÞ�
logð4=rÞÞ ¼ 0 (cf. (2.11) of p. 62 in [11]), k behaves asymptotically as

kðyÞ � 4

p
log 2þ y

� �
¼ oð1Þ

when y ! þy.
(3) Unfortunately, it seems to exist no upper bound of the Teichmüller

distance by using wðrÞ. Indeed, one can check that wðrÞ remains
bounded when r is a geometrically finite punctured torus group (cf. [3]).

4. Widths of the limit sets

In this section, we recall formulas for widths of the limit sets of quasi-
fuchsian punctured groups given in [3] and [4].

4.1. Widths of Jordan curves
Let L be a Jordan curve in ĈC which is invariant under the action of a

parallel translation z 7! zþ 2. The width widthðLÞ of L is defined to be

widthðLÞ ¼ mþðLÞ �m�ðLÞ;
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where mþðLÞ :¼ maxfIm z j z A LVCg and m�ðLÞ :¼ minfIm z j z A LVCg (see
Figure 1).

4.2. Width formula
The following is established in [3] and [4].

Theorem 3. Let p be a puncture of S and r a quasifuchsian representation
of p1ðSÞ normalized so that one of the corresponding primitive elements to p is
z 7! zþ 2. With the notation as in Theorems 1 and 2, the width widthðLÞ of the
limit set L of rðp1ðSÞÞ is equal to jwðrÞj.

5. Proof of Theorem

We begin with stating the following proposition.

Proposition 1. Let F be a K-quasiconformal mapping equivariant with
respect to the action of z 7! zþ 2, that is, F satisfies Fðzþ 2Þ ¼ F ðzÞ þ 2, and L
denote its image of RU fyg. Then

Kb kðwidthðLÞÞ;

where k is the function defined in Theorem 1.

a

b
1

PSfrag replacements

z  → z + 2
2 width (   )

Figure 1. The width of a quasicircle. This picture was drawn by using a computer program

‘‘OPTi’’ created by Professor Masaaki Wada.
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Before proving Proposition 1 we shall deduce our main theorems from this
proposition and Theorem 3. Indeed, let r be a quasifuchsian representation of
p1ðSÞ uniformized by two marked surfaces X and Y . Since kð0Þ ¼ 1 and hence
(3.1) and (3.2) are trivial for any Fuchsian representation, we may assume that r
is not Fuchsian.

Let K be the maximal dilatation of a quasiconformal mapping from X to Y
preserving their markings. Suppose that a primitive element corresponding to
p via r is z 7! zþ 2. Then, by the argument similar to that by L. Bers in [5],
we see that L is the image of a K-quasiconformal mapping F of RU fyg with
Fðzþ 2Þ ¼ FðzÞ þ 2. Therefore, by Proposition 1 and Theorem 3, we conclude
the assertion.

5.1. Distortion property of equivariant quasicircles
In this section, we give a distortion lemma for equivariant quasicircles.

Proposition 2. Let L be the image of RU fyg under a K-quasiconformal
mapping equivariant with respect to the action of z 7! zþ 2, then for z1; z2 A L,

jImðz1 � z2Þja
1

p
logððm�1ðpK=2ÞÞ�2 � 1Þ:ð5:1Þ

Furthermore, the inequality is sharp.

Remark 1. The right-hand side of the inequality (5.1) coincides with the
inverse function of k in Theorem 1.

Proof of Proposition 2. Let F be a K-quasiconformal mapping equi-
variant under the action of z 7! zþ 2 and set L ¼ FðRU fygÞ. Let z1; z2 A L.
Without loss of generality, we may assume that Imðz2 � z1Þb 0.

Set GðzÞ ¼ F ðz� F�1ðz1ÞÞ � z1 and let x2 ¼ F�1ðz2Þ þ F�1ðz1Þ. Then
Gðx2Þ ¼ z2 � z1. From the equivariance of G under z 7! zþ 2, there exists a K-
quasiconformal mapping H of C such that Hð0Þ ¼ 0, Hð1Þ ¼ 1 and H � proj ¼
proj � G where projðzÞ ¼ epiz. It follows from Lemmas 5.1 and 5.16 of [15] and
Teichmüller’s theorem (cf. e.g. [1] or [2]) that

1

2
log Kb dðepix2 ;Hðepix2ÞÞ

b dð�1;�e�p Imðz2�z1ÞÞ ¼ jFðe�pjImðz2�z1ÞjÞj;
where d is the hyperbolic distance on C� f0; 1g of constant curvature �4, and

FðxÞ ¼ 1

2
log

Kðx1=2ð1þ xÞ�1=2Þ
Kðð1þ xÞ�1=2Þ

¼ 1

2
log

2

p
mðð1þ xÞ�1=2Þ

for x > 0. Since 0 < mðrÞa p=2 for rb 1=
ffiffiffi
2

p
, we conclude that

mðð1þ e�pjImðz2�z1ÞjÞ�1=2Þb p

2K
:ð5:2Þ
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Together with the equation mðrÞ � mðð1� r2Þ1=2Þ ¼ p2=4 (cf. (2.7) of p. 61 in [11]),
we deduce the assertion. The equality in (5.1) is attained by a lift (with respect
to proj) of a K-quasiconformal mapping which fixes 0, 1 and y, and maps �1 to
�xK < 0 with dð�1;�xKÞ ¼ ðlog KÞ=2 (cf. Lemma 3 of [1]). r

5.2. Proof of Proposition 1
Since L is invariant under the action of z 7! zþ 2, we can find z1; z2 A L

such that Imðz1Þ ¼ m�ðLÞ and Imðz2Þ ¼ mþðLÞ. Then by Proposition 2, we
have

widthðLÞ ¼ Imðz2 � z1Þ

a
1

p
logððm�1ðpK=2ÞÞ�2 � 1Þ

¼ k�1ðKÞ:

Since k is strictly increasing, we complete the proof of Proposition 1.
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