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1. Introduction

K. Amano et al. proposed a numerical conformal mapping from a multiply-
connected domain to some typical slit domains by charge simulation method and
gave the e¤ective result. Further H. Ogata, D. Okano, K. Amano try a nu-
merical conformal mapping from an infinitely-connected domain called periodic
structure domain to a periodic parallel slit domain. The periodic structure
domain is a domain in the complex plane C as follow

D ¼ C� 6
m AZ

fzþma; z A D0g;

where D0 is a simply connected closed domain surrounded by a closed Jordan
curve, a is a positive constant such that D0 V fzþma; z A D0g ¼ j for every
positive integer m. The periodic parallel slit domain is a domain in the complex
plane C as follow

S ¼ C� 6
m AZ

Smðj; d; z0Þ;

where Smðj; d; z0Þ ¼ fz0 þmaþ tdeij; 0a ta 1gðz0 A D0Þ is a rectilinear slit from
z0 þma with inclination jð�p=2 < ja p=2Þ and length d. They proved the
existence of such a conformal mapping f from a periodic structure domain D to
a periodic parallel slit domain S with slits given inclination j such that

f ðzþ aÞ ¼ f ðzÞ þ aðz A DÞ; f ðzÞ@ zG c ðR z is fixed; I z )GyÞ;
where c is a complex constant. We note the uniqueness of the conformal
mapping f , because it is important for getting required mapping numerically.
Further, we will note that there exists uniquely a normalized conformal mapping
from more general periodic domain to a periodic parallel slit domain. We don’t
know, generally, the value of function theoretic quantities for a given domain.
Conformal mappings by numerical method may be able to give them approx-
imately. We wish those data of quantities sublimate to quality and gives theo-
retical meaning. Conversely it seems that function theoretic quantities play a
role of getting good approximation of required conformal mapping.
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2. Periodic domains

Let c be a complex number whose real part is positive and consider a
parallel displacement gcðzÞ ¼ zþ c. We call a domain GHC periodic domain
of period c if gc gives a conformal mapping from G onto G and there exists
a positive constant M such that GVB ¼ B, where B ¼ fz ¼ xþ iy; 0a xaR c;
jyjbM � jI cj > 0g. Further, when the boundary qG of G in the extended
complex plane ĈC consists of vertical (horizontal) slit segments and fyg, we call G
vertical (horizontal) slit periodic domain.

A periodic domain G of period c is mapped to a domain G1 HC by g1ðzÞ ¼

exp
2piz

c

� �
. Note that g1ðzþ cÞ ¼ g1ðzÞ and G1 has punctures f0g and fyg.

By a classical theorem there exists a conformal mapping g2 from G1 U f0gU fyg
to a radial slit domain whose each boundary component lies on a radial line,
where g2ð0Þ ¼ 0, g2ðyÞ ¼ y. If the number of boundary components of G1 is
finite and g2ðzÞ ¼ zþ

Py
n¼0 anz

�n at a neighborhood of y, then g2ðzÞ is unique.
Here we get a composite function FðzÞ ¼ log g2 � g1ðzÞ which is a conformal
mapping from G to a horizontal slit periodic domain GH of period 2p. As a

boundary behavior it may be FðzÞ ¼ 2pi

c
zþOð1Þ at y. For c > 0 fvðzÞ ¼

c

2pi
log g2 � g1ðzÞ is a conformal mapping from G to a vertical slit periodic

domain GV of period 2p and fvðzÞ ¼ zþOð1Þ at y. Similarly, using a con-
formal mapping ~gg2, ð~gg2ðzÞ ¼ zþ

Py
n¼0 bnz

�nÞ from G1 U f0gU fyg to a circular

slit domain, we can get a conformal mapping fh ¼
c

2pi
log ~gg2 � g1ðzÞ from G to a

horizontal slit periodic domain such that fhðzÞ ¼ zþOð1Þ at y.

3. Periodic slit conformal mapping

We would like to show a slight extension of previous assertion.

Proposition. For a periodic domain GðC 0Þ of period c, there exists a vertical
slit periodic domain GV of period 2p and a conformal mapping f from G to GV

such that

f ð0Þ ¼ 0; f : G ! GV conformal; f � gc ¼ g2p � f .

Further, if G has a countable number of the boundary components, then GV and f
are uniquely determined.

Proof. Let two points z1; z2 A G be equivalent if there exists m A Z such
that z2 ¼ z1 þmc and denote z1 @ z2. By this equivalence relation the quotient
space R ¼ G=@ becomes a punctured Riemann surface and P denotes the pro-
jection from G to R. Let þy (�y) be the puncture whose neighborhood corre-
sponds to fz ¼ xþ iy; 0a xaR c; ybMg (fz ¼ xþ iy; 0a xaR c; ya�Mg).
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When we take local variables w ¼ exp
2piz

c

� �� �
and w ¼ exp

�2piz

c

� �� �
at the

puncture fþyg and f�yg, R̂R ¼ RU fþygU f�yg becomes a Riemann surface.
For the function f in Proposition, df is regarded as a holomorphic dif-

ferential on R. Let Cþ be a cycle which is realized as a segment from iM to
iM þ c. Then ð

Cþ

df ¼ 2p:

The residue of df is �i at fþyg and i at f�yg.
Let G be a real Hilbert space which consists of square integrable real

di¤erentials on R̂R and has the Dirichlet’s inner product:

ðo; sÞ ¼
ð
o5�s for o; s A G;

where �s is a conjugate di¤erential of s. We use the following subspaces of G:

Gh ¼ fo A G;o is harmonicg;
Geo ¼ fo A G; ðo; sÞ ¼ 0 for any s A Ghg:

Ghse ¼ o A Gh;

ð
g

o ¼ 0 for dividing regular closed curve g

� �
;

Ghm ¼ fo A Gh; ðo; �sÞ ¼ 0 for any s A Ghseg:
Note that the di¤erential in Ghse is exact on a planar domain R̂R and Ghse may be
denoted by Ghe on R̂R. Set

Leo ¼ foþ is;o; s A Geog;
Lhm ¼ foþ is;o A Ghm; s A Ghseg; �Lhm ¼ f�o;o A Lhmg;
Lhse ¼ foþ is;o A Ghse; s A Ghmg; �Lhse ¼ f�o;o A Lhseg:

A meromorphic di¤erential t on R̂R has Lhm-behavior (Lhse-behavior) if there
exists an o A Lhm þLeo (o A Lhse þLeo) such that t ¼ o on a neighborhood of
the boundary of R̂R.

If f and f1 satisfy the conditions stated in Proposition and the boundary
components of G is countable, by Proposition 2 of [4], [5] we know there exists
o A Lhm þLeo such that dð f � f1Þ �o has a compact support. Then dð f � f1Þ�
o A Lhm þLeo. Above all dð f � f1Þ A Lhm. On the other hand, since dð f � f1Þ
is holomorphic on R̂R,

dð f � f1Þ ¼ �i � dð f � f1Þ A Lhm V �Lhse ¼ f0g:
This show the uniqueness of required mapping.

For the sake of showing the existence of required mapping, we note that
there exists a third kind of meromorphic di¤erential Cþy;�y with Lhm-behavior
such that Cþy;�y has the residue �i on fþyg and i on f�yg (cf. [3]). Since
Cþy;�y is semiexact in a neighborhood of the boundary, the function
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f ðzÞ ¼
ð
g

Cþy;�y �P

is determined independently of the choice of regular curve g which start from 0 to
z. The f gives the mapping to a vertical slit domain and satisfies that f ð0Þ ¼ 0,

f ðzþ cÞ ¼
ð zþc

0

Cþy;�y �P

¼
ð z
0

Cþy;�y �Pþ
ð iM
z

Cþy;�y �P

þ
ð
Cþ

Cþy;�y �Pþ
ð zþc

iMþc

Cþy;�y �P

¼ f ðzÞ þ 2p:

Therefore f � gc ¼ g2p � f and we have the assertion of Proposition.
Using a third kind of meromorphic di¤erential Cd

þy;�y on R̂R with Lhm-

behavior, which has residue � d

2p
i at fþyg and

d

2p
i at fþyg, we get a function

fdðzÞ ¼
ð
g

Cd
þy;�y �P:

This fdðzÞ is a periodic function which satisfies fdðzþ cÞ ¼ fdðzÞ þ d and the
image domain is a periodic vertical slit domain with period d. By Theorem 4
in [5] each boundary component of fdðR̂RÞ lies on a line segment parallel to the
imaginary axis. It satisfies that

fdðiyÞ ¼
�id

2p

ð e�2py=c

1

dw

w
þOð1Þ ¼ �id

2p
½log w�e

�2py=c

1 þOð1Þ ¼ d

c
iyþOð1Þ

Particularly, fcðzÞ is a periodic function satisfying fcðzþ cÞ ¼ fcðzÞ þ c and be-
have as zþ c when imaginary part of z is su‰ciently large.

Similarly, by using meromorphic di¤erential with Lhse-behavior, we can get
a conformal mapping to a periodic horizontal slit domain.

4. Remarks to the charge simulation method for conformal mapping

Koebe’s mapping theorem is as follows. Any multiply connected domain G
in the extended complex domain is mapped to a parallel slit domain. Let z0 A G
and consider the class F ðG; z0Þ of univalent meromorphic functions on G such
that each function g in F ðG; z0Þ has the following Laurent development at z0:

gðzÞ ¼
zþ

Py
n¼1 anðgÞz�n ðz0 ¼ yÞ

1

z� z0
þ
Py

n¼1 anðgÞðz� z0Þn ðz0 A CÞ:

8><
>:
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Then there exists uniquely fh A F ðG; z0Þ ( fv A FðG; z0Þ) such that

sup
g AFðG; z0Þ

R a1ðgÞ ¼ a1ð fhÞ; inf
g AFðG; z0Þ

R a1ðgÞ ¼ a1ð fvÞ
� �

;

and fh ( fv) gives a conformal mapping from G onto a horizontal (vertical) slit
domain and is called an extremal horizontal (vertical) slit mapping. It is di‰cult
to know the extremal values R a1ð fhÞ, R a1ð fvÞ for a given domain G generally.
We are concerned to know their approximated values by numerical method.

Here we introduce the charge simulation method for conformal mappings
by K. Amano and show some examples. Let Ml be a Jordan domain considered
as a conductor, M ¼ 6n

l¼1
Ml, and G ¼ ĈC�M be an n-multiply connected

domain. Roughly speaking, charge simulation method is approximation of the
real part of conformal mapping from G to a vertical slit domain by a finite sum
of logarithmic function (green function) whose poles (charges) are set in the
conductor M. We take the approximation function Fh (Fv) of fh ( fv) as follows:
let a denote h or v and

FaðzÞ ¼ zþ
Xn
l¼1

XNl

i¼1

Qa
l; i logðz� zl; iÞ;

where zl; i is a charge point in Ml and Qa
l; i is amount of charge at zl; i. By the

condition that FaðzÞ must be single value on G, it is needed thatð
qMl

dFa ¼ 0;
XNl

i¼1

Qa
l; i ¼ 0:

Hence we can write the following form

FaðzÞ � z ¼
Xn
l¼1

XNl�1

i¼1

Qi
lðaÞ log

z� zl; i

z� zl; iþ1

¼
Xn
l¼1

XNl�1

i¼1

Qi
lðaÞ log

z� zl; i

z� zl; iþ1

����
����þ i arg

z� zl; i

z� zl; iþ1

� �
;

where Qi
lðaÞ ¼

P i
k¼1 Q

a
l;k. Since the boundary qMm is mapped on a slit, binding

condition is required at points fzm; j ¼ xm; j þ iym; jgj¼1;2; ...Nm
on every qMm

Im Fhðzm; jÞ ¼ Vm; Re Fvðzm; jÞ ¼ Um;

where Vm (Um) is the imaginary (real) part of the point on horizontal (vertical)
slit on which qMm is mapped. We have the following simultaneous equations
of dimension

Pn
l¼1 Nl for unknown number fQi

lðaÞgl¼1;2;...;n; i¼1;2;...;Nl�1 and
fVmgm¼1;2;...n (fUmgm¼1;2;...n):

Xn
l¼1

XNl�1

i¼1

Qi
lðhÞ arg

zm; j � zl; i

zm; j � zl; iþ1

� Vm ¼ �ym; j ðm¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;NmÞ;

269conformal slit mappings from periodic domains



Xn
l¼1

XNl�1

i¼1

Qi
lðvÞ log

zm; j � zl; i

zm; j � zl; iþ1

����
�����Um ¼ �xm; j ðm ¼ 1; 2; . . . n; j ¼ 1; 2; . . . ;NmÞ

 !
:

The solution of simultaneous linear equations gives the required mapping.

Example.
We give the boundary of material as the following form:

qMm ¼ fxþ iy; x ¼ rm cosðtÞ þ xm; y ¼ rm sinðtÞ þ ymg;
where xm þ iym is a center of Mm and for an angle t A ½0; 2p� the radius

rmðtÞ ¼ am þ bm cosðtÞþ cm cosð2tÞþ dm cosð3tÞþ b 0
m sinðtÞ þ c 0m sinð2tÞþ d 0

m sinð3tÞ:
The charge points are located at

frmrm cosðtjÞ þ xm þ iðrmrm sinðtjÞ þ ymÞgj¼0;1...;Nm�1;

and binding boundary points are located at

frm cosðtjÞ þ xm þ iðrm sinðtjÞ þ ymÞgj¼0;1...;Nm�1;

where 0 < rm < 1, tj ¼
2pj

Nm

, Nm is the number of charge points on Mm.

Example 1.
When G ¼ fz; jzj > 2gU fyg, we have

fhðzÞ ¼ zþ 4

z
; fvðzÞ ¼ z� 4

z
and a1ð fhÞ ¼ 4; a1ð fvÞ ¼ �4:

For r1 ¼ 0:6, we have

N1 a1ðFhÞ a1ðFvÞ a1ðFhÞ � a1ðFvÞ

3 4.0801702521770426 �3.8709989168130141 7.9511691689900567
10 3.9999866712311313 �4.0000005587595524 7.9999872299906833
20 3.9999999997985189 �3.9999999999406501 7.9999999997391686
30 3.9999999999999977 �3.9999999999999995 7.9999999999999973
31 3.9999999999999995 �4.0000000000000035 8.0000000000000035
32 3.9999999999999995 �3.9999999999999924 7.9999999999999920
33 3.9999999999999982 �4.0000000000000035 8.0000000000000017 .
34 4.0000000000000017 �4.0000000000000079 8.0000000000000106
35 4.0000000000000017 �4.0000000000000017 8.0000000000000035
40 4.0000000000000115 �4.0000000000000133 8.0000000000000248
50 3.9999999999999928 �3.9999999999996660 7.9999999999996589
60 3.9999999999999809 �4.0000000000024620 8.0000000000024424
80 3.9999999999343924 �3.9999999998757065 7.9999999998100985

100 3.9999999862123849 �3.9999999836610617 7.9999999698734463
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When N1 is about 30, we got best approximation. It is judged visually and
suggested from the data of a1ðFhÞ and a1ðFvÞ.

Example 2.
Let n ¼ 7, Nm ¼ 20,

nm 1 2 3 4 5 6 7

xm 0 �7 �10 2 10 �9 �2
ym 0 �10 6 �10 �2 �2 9
am 2 2 2 2 2 2 2
bm 0 0 0 0.1 �0.1 �0.1 0.1
cm 0 0.1 0 �0.1 0.1 0.1 �0.1 .
dm 0 0 0.1 0.1 �0.1 �0.1 0.1
b 0
m 0 0 0 0 0 0 0

c 0m 0 �0.1 0 �0.1 0.1 �0.1 �0.1
d 0
m 0 0 �0.1 0.1 �0.1 �0.1 0.1

rm 0.6 0.4 0.5 0.5 0.4 0.4 0.5

From these data we show the figure of G, horizontal slit domain FhðGÞ, vertical
slit domain FvðGÞ and ðFh þ FvÞðGÞ. In figure G, white holes are conductors
fMmg, points in the holes are charge points and each shadowed annular domain
is a boundary neighborhood. The slits of FhðGÞ are looked like straight but there
are non straight slits in FvðGÞ. It is known that the complement of ð fh þ fvÞðGÞ
consists of convex sets. However the white holes in Figure ðFh þ FvÞðGÞ are not
always convex. Visual estimation of approximation of mapping by such a the-
oretical fact is e¤ective.

Figure of G Figure of FhðGÞ
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We have the location of horizontal slits of FhðGÞ and the location of vertical
slits of FvðGÞ as follows:

V1 ¼ �0:1271785729 U1 ¼ �0:4395905987
V2 ¼ �8:7250929885 U2 ¼ �6:3244275738
V3 ¼ 4:9936400236 U3 ¼ �8:8404996986
V4 ¼ �8:7776892726 U4 ¼ 1:4094530922 .
V5 ¼ �1:9696910082 U5 ¼ 8:4893133217
V6 ¼ �1:8096235983 U6 ¼ �7:9712762687
V7 ¼ 7:6064915766 U7 ¼ �2:1892279424

We get

a1ðFhÞ a1ðFvÞ a1ðFhÞ � a1ðFvÞ

28.452087696850522746672 �28.436246840677430469668 56.888334537527953216340
,

where a1ðFhÞ � a1ðFvÞ is called span of G. By these numerical experiments, it
seems that the approximation Fh is better than that of Fv and that the extremal
values a1ð fhÞ and a1ð fvÞ play a role of getting better approximated slit map-
pings. The location of charge points fzl; ig and chosen boundary points fzm; jg is
important factor in this charge simulation method. It should be that fzm; jg are
located according to the geometrical form of the boundary qG. As for fzl; ig we
note the following. The value Re a1ð faÞ giving as an extremal value is a re-
markable quantity. The first coe‰cient a1ðFaÞ of Laurent development of Fa is
as follows:

Figure of FvðGÞ Figure of ðFh þ FvÞðGÞ
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a1ðFaÞ ¼
Xn
l¼1

XNl�1

i¼1

Qi
lðaÞðzl; iþ1 � zl; iÞ:

When a charge point zk; s ¼ xk; s þ ihk; s is a little moved, the behavior of value
Re a1ðFaÞ is given by

q

qxk; s
R a1ðFaÞ ¼ Qs�1

k ðaÞ �Qs
kðaÞ þ

Xn
l¼1

XNl�1

i¼1

qQi
lðaÞ

qxk; s
ðxl; iþ1 � xl; iÞ

q

qhk; s
R a1ðFaÞ ¼

Xn
l¼1

XNl�1

i¼1

qQi
lðaÞ

qhk; s
ðxl; iþ1 � xl; iÞ:

On the other hand, the following is satisfied for m ¼ 1; 2; . . . ; n and j ¼
1; 2; . . . ;Nm,

Xn
l¼1

XNl�1

i¼1

qQi
lðhÞ

qxk; s
arg

zm; j � zl; i

zm; j � zl; iþ1

� qVm

qxk; s

þ
Qs

kðhÞðym; j � hk; sÞ �Qs�1
k ðhÞðym; j � hk; sÞ

ðxm; j � xk; sÞ2 þ ðym; j � hk; sÞ
2

¼ 0;

Xn
l¼1

XNl�1

i¼1

qQi
lðhÞ

qhk; s
arg

zm; j � zl; i

zm; j � zl; iþ1

� qVm

qhk; s

�Qs
kðhÞðxm; j � xk; s �Qs�1

k ðhÞðxm; j � xk; sÞ
ðxm; j � xk; sÞ2 þ ðym; j � hk; sÞ

2
¼ 0;

Xn
l¼1

XNl�1

i¼1

qQi
lðvÞ

qxk; s
log

zm; j � zl; i

zm; j � zl; iþ1

����
����� qUm

qxk; s

�Qs
kðvÞðxm; j � xk; sÞ �Qs�1

k ðvÞðxm; j � xk; sÞ
ðxm; j � xk; sÞ2 þ ðym; j � hk; sÞ

2
¼ 0;

Xn
l¼1

XNl�1

i¼1

qQi
lðvÞ

qhk; s
log

zm; j � zl; i

zm; j � zl; iþ1

����
����� qUm

qhk; s

�
Qs

kðvÞðym; j � hk; sÞ �Qs�1
k ðvÞðym; j � hk; sÞ

ðxm; j � xk; sÞ2 þ ðym; j � hk; sÞ
2

¼ 0:

Unknown numbers
qQi

lðhÞ
qxk; s

;
qQi

lðvÞ
qxk; s

;
qVm

qxk; s
;
qUm

qxk; s

� �
and

�
qQi

lðhÞ
qhk; s

;
qQi

lðvÞ
qhk; s

;
qVm

qhk; s
;

qUm

qhk; s

�
are sought as the solutions of these simultaneous equations. These are

substituted in the expressions of
q

qxk; s
R a1ðFaÞ and

q

qhk; s
R a1ðFaÞ and their sign
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of
q

qxk; s
R a1ðFaÞ and

q

qhk; s
R a1ðFaÞ are known. Thus we are able to control

the value R a1ðFaÞ by the location of charge points. For example, when
q

qxk; s
R a1ðFaÞ > 0, R a1ðFaÞ becomes larger as zk; s is moved to real positive

direction. Since fh gives the maximal value R a1ð fhÞ in its extremal problem, if
zk; s is moved as R a1ðFhÞ becomes larger, it is expected that the changed Fh will
give well approximated mapping of fh. Although the mapping in the class
FðG; z0Þ must be univalent, Fh is not always univalent. This is a knotty point.
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