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1. Introduction

K. Amano et al. proposed a numerical conformal mapping from a multiply-
connected domain to some typical slit domains by charge simulation method and
gave the effective result. Further H. Ogata, D. Okano, K. Amano try a nu-
merical conformal mapping from an infinitely-connected domain called periodic
structure domain to a periodic parallel slit domain. The periodic structure
domain is a domain in the complex plane C as follow

D =C-— |J{z+ma;ze Dy},

meZ

where Dy is a simply connected closed domain surrounded by a closed Jordan
curve, a is a positive constant such that DyN{z+ma;ze Dy} =0 for every
positive integer m. The periodic parallel slit domain is a domain in the complex
plane C as follow
S=C- U Sm((ﬂv d7 ZO)?
meZ

where S,(p,d, z0) = {z0 + ma + tde’;0 < t < 1}(z0 € Dy) is a rectilinear slit from
2o +ma with inclination ¢(—7n/2 < ¢ <n/2) and length d. They proved the
existence of such a conformal mapping f from a periodic structure domain D to
a periodic parallel slit domain S with slits given inclination ¢ such that

f(z+a)=f(z) +a(ze D), f(z)~z+c (MRzis fixed, Iz= +w0),

where ¢ is a complex constant. We note the uniqueness of the conformal
mapping f, because it is important for getting required mapping numerically.
Further, we will note that there exists uniquely a normalized conformal mapping
from more general periodic domain to a periodic parallel slit domain. We don’t
know, generally, the value of function theoretic quantities for a given domain.
Conformal mappings by numerical method may be able to give them approx-
imately. We wish those data of quantities sublimate to quality and gives theo-
retical meaning. Conversely it seems that function theoretic quantities play a
role of getting good approximation of required conformal mapping.
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2. Periodic domains

Let ¢ be a complex number whose real part is positive and consider a
parallel displacement g.(z) =z+¢. We call a domain G = C periodic domain
of period ¢ if g. gives a conformal mapping from G onto G and there exists
a positive constant M such that GNB = B, where B={z=x+i;0 <x < R,
|yl > M — |3 ¢| > 0}. Further, when the boundary 0G of G in the extended
complex plane C consists of vertical (horizontal) slit segments and {0}, we call G
vertical (horizontal) slit periodic domain.

A periodic domain G of period ¢ is mapped to a domain G; = C by ¢;(z) =

i
exp(%). Note that g;(z+c¢) =gi(z) and G; has punctures {0} and {co}.

By a classical theorem there exists a conformal mapping g, from G; U {0} U {0}
to a radial slit domain whose each boundary component lies on a radial line,
where ¢>(0) =0, ga(o0) = co. If the number of boundary components of Gj is
finite and ¢»(z) =z + .2, @,z " at a neighborhood of oo, then g»(z) is unique.
Here we get a composite function F(z) =log g, o ¢gi(z) which is a conformal
mapping from G to a horizontal slit periodic domain Gy of period 2z. As a

Vi
boundary behavior it may be F(z) :Tmz—&— O(1) at 0. For ¢>0 f,(z)=
% log g2 0gi(z) is a conformal mapping from G to a vertical slit periodic
domain Gy of period 27 and f,(z) =z+ O(1) at oo. Similarly, using a con-

formal mapping g, (§>(z) =z+ >~ buz™") from G;U{0} U{oo} to a circular
slit domain, we can get a conformal mapping f, = 2Ll log g, 0 g1(z) from G to a
7

horizontal slit periodic domain such that f;,(z) =z+4 O(1) at .

3. Periodic slit conformal mapping

We would like to show a slight extension of previous assertion.

PROPOSITION.  For a periodic domain G(3 0) of period c, there exists a vertical
slit periodic domain Gy of period 2n and a conformal mapping f from G to Gy
such that

f(0)=0, f:G— Gy conformal, foge.=guof.

Further, if G has a countable number of the boundary components, then Gy and f
are uniquely determined.

Proof. Let two points zj,z, € G be equivalent if there exists m € Z such
that z; = z; + mc and denote z; ~ z;. By this equivalence relation the quotient
space R = G/~ becomes a punctured Riemann surface and IT denotes the pro-
jection from G to R. Let +0o (—o0) be the puncture whose neighborhood corre-
sponds to {z=x+;0<x<Re,y>M} {z=x+,0<x<Re,y< —M}).
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2miz

When we take local variables {w = exp (T) } and {w = exp (Tmz> } at the

puncture {+o0} and {—0}, R= RU {400} U{—00} becomes a Riemann surface.

For the function f in Proposition, df is regarded as a holomorphic dif-
ferential on R. Let C, be a cycle which is realized as a segment from iM to
iM +c. Then

JC df = 2.

The residue of df is —i at {+oo} and i at {—oo}.
Let T" be a real Hilbert space which consists of square integrable real
differentials on R and has the Dirichlet’s inner product:

(w,0) :Jw/\*a for w,g€T,

where o is a conjugate differential of . We use the following subspaces of I':
I'y ={weT;w is harmonic},

Iep ={weTl;(w,0) =0 for any o eI},}.

The = {w € F/,;J w = 0 for dividing regular closed curve y},

T = { € Ty (,%6) = 0 for any o € D).

Note that the differential in I, is exact on a planar domain R and T}, may be
denoted by I}, on R. Set

Ao = {0+ io;w,0 €T, },
Ahm = {CO + iO’; wE 1ﬂhma g€ FhS(’}v >“/\hm = {*w§ wE Ahm}v
Ahse - {CO + iU; w e F/lxea g€ rhm}v *Ahse = {*CU, w e Ahse}~

A meromorphic differential 7 on R has Aj,-behavior (Apse-behavior) if there
exists an @ € Ay + Ao (@ € Apse + Aeo) such that 7 =w on a neighborhood of
the boundary of R.

If /" and f; satisfy the conditions stated in Proposition and the boundary
components of G is countable, by Proposition 2 of [4], [5] we know there exists
@ € Apm + Aep such that d(f — f1) — o has a compact support. Then d(f — fi) —
@ € Apm + Neo. Above all d(f — f1) € Apn.  On the other hand, since d(f — fi)
is holomorphic on R,

d(f - fl) =—i% d(f - fl) € Ahm N *Ahse = {O}
This show the uniqueness of required mapping.

For the sake of showing the existence of required mapping, we note that
there exists a third kind of meromorphic differential ¥, ., _o, with Ay,-behavior
such that W, _., has the residue —i on {+oo} and i on {—oo} (cf. [3]). Since
W, —o is semiexact in a neighborhood of the boundary, the function
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@) =] Wenom
y

is determined independently of the choice of regular curve y which start from 0 to
z. The f gives the mapping to a vertical slit domain and satisfies that f(0) = 0,

z+c

flz4+¢) = J Wi —o oIl
0

z iM
:J \P+oo,7%OH+J Viw, —woll
0

z

z+c

+J “P+w,fooon+J Yiw, —woll
C

iM+c
= f(z) + 2x.
Therefore f og. =gy 0 f and we have the assertion of Proposition.
Using a third kind of meromorphic differential ‘I’i%ﬁ% on R with Ay,-

. . . d d .
behavior, which has residue _Ei at {+oo} and ﬂi at {+o0}, we get a function

fd(z) = J Tioo,foo oIl
y
This f4(z) is a periodic function which satisfies f;(z+ ¢) = fy(z) +d and the
image domain is a periodic vertical slit domain with period d. By Theorem 4
in [5] each boundary component of f;(R) lies on a line segment parallel to the
imaginary axis. It satisfies that

—id J < d o-2me

—id d .
| —-+0(1) = ~flogw]} T+ 0(1) =iy + O(1)

Ja(iy) =

Particularly, f.(z) is a periodic function satisfying f.(z + ¢) = f.(z) + ¢ and be-
have as z+ ¢ when imaginary part of z is sufficiently large.

Similarly, by using meromorphic differential with Aj,-behavior, we can get
a conformal mapping to a periodic horizontal slit domain.

4. Remarks to the charge simulation method for conformal mapping

Koebe’s mapping theorem is as follows. Any multiply connected domain G
in the extended complex domain is mapped to a parallel slit domain. Let zo € G
and consider the class F(G,zp) of univalent meromorphic functions on G such
that each function g in F(G,z) has the following Laurent development at zg:

24 2l gz (20 = 0)

DTN L v =) (o).

Z— I
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Then there exists uniquely fj, € F(G,zy) (f, € F(G,z)) such that

s Rarlg) =ah), (it Ral) =)
geF(G,z) 9eF(G,z)
and f;, (f,) gives a conformal mapping from G onto a horizontal (vertical) slit
domain and is called an extremal horizontal (vertical) slit mapping. It is difficult
to know the extremal values R a;(f;), R a1(f,) for a given domain G generally.
We are concerned to know their approximated values by numerical method.
Here we introduce the charge simulation method for conformal mappings
by K. Amano and show some examples. Let M, be a Jordan domain considered
as a conductor, M = Ule M;, and G=C— M be an n-multiply connected
domain. Roughly speaking, charge simulation method is approximation of the
real part of conformal mapping from G to a vertical slit domain by a finite sum
of logarithmic function (green function) whose poles (charges) are set in the
conductor M. We take the approximation function F;, (F,) of f, (f») as follows:
let o denote & or v and

*Z+ZZQ;,IOg = 8ri)s

where (;; is a charge point in M, and Q7 is amount of charge at {,;. By the
condition that F,(z) must be single value on G, it is needed that

N,
dF, =0 2. =0
J.OM/ o ) ;szz

Hence we can write the following form

n Ny,—1 Z:
Fy(z —z—ZZQ/ logi/”

z—{s i1
n N;—1 C _ é’ X
= Z Z 0 (x) <log ————|+iarg 7/”>,
— i=1 zZ— C/ i+1

Z_g /,i+1

where Q}(a) = Zk 1 O - Since the boundary dM,, is mapped on a slit, binding
condition is required at points {z,, ; = Xu j + iVm, /} _12..N, On every oM,

Im Fh(zi71,j) = I/mv Re Fv(zm,j) = Um»

where V,, (U,) is the imaginary (real) part of the point on horizontal (vertical)
slit on which dM,, is mapped. We have the following simultaneous equations
of dimension ), | N, for unknown number {Q;(oc)}le’zwn, =12, N1 and

{ Vm}m:l‘Z,mn ({ l]m}m:l,Z,mn):

n N/,l ) z _C .
Z ZQ;(h) argw—m— I/m:_ym,j (m:1727"'7n7j:1727"'7Nm)a

/=1 =1 Zmj = i1
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n Ny,—1
(z 3™ 0i(1) log
/=1 i=1

ij_g/i
%_l]ﬂl

Zm,j — C/,i+1
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= —Xp,j (m:1,2,...n,j:1,2,...,Nm)>.

The solution of simultaneous linear equations gives the required mapping.

Example.
We give the boundary of material as the following form:

oM, = {X + 1Y X =y COS(l‘) + X, Y =Tm Siﬂ(l) + ym}a

where x,, + iy, is a center of M,, and for an angle 7€ [0,27] the radius

I (1) = am + by, €08(2) + ¢y c08(21) + d,y, cos(31) + b,, sin(t)

The charge points are located at

+ ¢}, sin(2¢) 4+ d,, sin(31).

m

{Pmm ©08(4;) + X + (Pt sin(;) + ym)}j:O,l...,N,,,_h

and binding boundary points are located at

{rm cos(;) + X + i(rm sin(t;) + yin)}j:O,l,.wNm—l?

2nj

where 0 < p,, <1, t; = N N,, is the number of charge points on M,,.

m

Example 1.
When G = {z;]|z| > 2} U {0}, we have

For p, = 0.6, we have

AE =zt p@=z-t and @) =4 @) =4

Nl al(Fh) al(Fv) al(Fh) _al(Fv)

3 | 4.0801702521770426 | —3.8709989168130141 | 7.9511691689900567
10 | 3.9999866712311313 | —4.0000005587595524 | 7.9999872299906833
20 | 3.9999999997985189 | —3.9999999999406501 | 7.9999999997391686
30 | 3.9999999999999977 | —3.9999999999999995 | 7.9999999999999973
31 | 3.9999999999999995 | —4.0000000000000035 | 8.0000000000000035
32 | 3.9999999999999995 | —3.9999999999999924 | 7.9999999999999920
33 1 3.9999999999999982 | —4.0000000000000035 | 8.0000000000000017 |.
34 | 4.0000000000000017 | —4.0000000000000079 | 8.0000000000000106
35 | 4.0000000000000017 | —4.0000000000000017 | 8.0000000000000035
40 | 4.0000000000000115 | —4.0000000000000133 | 8.0000000000000248
50 | 3.9999999999999928 | —3.9999999999996660 | 7.9999999999996589
60 | 3.9999999999999809 | —4.0000000000024620 | 8.0000000000024424
80 | 3.9999999999343924 | —3.9999999998757065 | 7.9999999998100985

100 | 3.9999999862123849 | —3.9999999836610617 | 7.9999999698734463
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When N; is about 30, we got best approximation. It is judged visually and
suggested from the data of a;(F;,) and a;(F,).

Example 2.

Let n="7, N,, =20,
\m | 1 2 3 4 5 6 7
Xm | O -7 —10 2 10 -9 -2
Ym | O -10 6 -10 -2 -2 9
am | 2 2 2 2 2 2 2
b | 0 0 0 0.1 | —0.1 | =0.1 0.1
em | 0 0.1 0 —0.1 0.1 0.1 | —0.1
dn | 0 0 0.1 0.1 | —=0.1 | —0.1 0.1
b, |0 0 0 0 0 0 0
¢, |0 —0.1 0 —0.1 0.1 | —0.1 | —0.1
d, |0 0 —0.1 0.1 | =0.1 | —0.1 0.1
Pm | 0.6 0.4 0.5 0.5 0.4 0.4 0.5

From these data we show the figure of G, horizontal slit domain F,(G), vertical
slit domain F,(G) and (F, + F,)(G). In figure G, white holes are conductors
{M,,}, points in the holes are charge points and each shadowed annular domain
is a boundary neighborhood. The slits of F;(G) are looked like straight but there
are non straight slits in F,(G). It is known that the complement of (f; + f,)(G)
consists of convex sets. However the white holes in Figure (Fj, + F,)(G) are not
always convex. Visual estimation of approximation of mapping by such a the-
oretical fact is effective.

Figure of G Figure of F,(G)
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Figure of F,(G) Figure of (Fj, + F,)(G)

We have the location of horizontal slits of F,(G) and the location of vertical
slits of F,(G) as follows:

Vi =—0.1271785729 | U; = —0.4395905987
Vy, = —8.7250929885 | U, = —6.3244275738
V3 = 4.9936400236 U; = —8.8404996986

V4 = —8.7776892726
Vs = —1.9696910082
Ve = —1.8096235983
V7 =7.6064915766

Us = 1.4094530922
Us = 8.4893133217
Us = —7.9712762687
U; = —2.1892279424

We get

al (E1)
28.452087696850522746672

ay (FL)
—28.436246840677430469668

a (Ez) —daj (Fv)
56.888334537527953216340

where a;(Fy,) — a(F,) is called span of G. By these numerical experiments, it
seems that the approximation Fj, is better than that of F, and that the extremal
values a;(f;) and a;(f,) play a role of getting better approximated slit map-
pings. The location of charge points {{,;} and chosen boundary points {z,, ;} is
important factor in this charge simulation method. It should be that {z,, ;} are
located according to the geometrical form of the boundary 6G. As for {{,;} we
note the following. The value Re a;(f,) giving as an extremal value is a re-
markable quantity. The first coefficient a;(F,) of Laurent development of F; is
as follows:
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n N/—

Z Z 0/(2)(Cr,iv1 — o).

When a charge point { ;= & ¢+ iy is a little moved, the behavior of value
Re a(F,) is given by

0 n @
o5 k) =0 +ZZ Q” )€1 — &0

0 N—1
R a)(F, Z Z (’)Q/ f/,m — &)

On the other hand, the following is satisfied for m=1,2,....,n and j=
1,2,.

aﬂk s

ns

n Nl o0ih Zmj—Cri OV
Z Z affh : 0,

Zm‘j - Z_.//,iJrl

N 0L (W) (Ymj — M) — O (M) (Ymj — i)

2 2 = Oa
(Xm,./ = Chos)” + (Ymj — M)
. N’ZI 004 (h mi—=Cri WV
/=1 i=1 ar]k s j = 4// i+1 ar]k,s
_Q;l( ) (m,j = €k = O (1) (xim,j — ikv):()
(xm Jj = fk,s) (ym,j - 771@3)
SRS aQ/ J Z.:{,i N 6Um
o o ks . mj = Crivtl  OCks
7Q)€(U)(Xm/ Sks) — O (0) (o — &k, v):()
(mj — Exs)’ (J/m,j — )’
n N/*l 5Q}(U) log = j _ g/’i B aUm
— = M, Zmj — Crivt] O
Q) = s = Qi Oy = 1e) _

(xi71,j - ék,s)z + (ym,j - ”k.s)z

0Q)(h) 0Q)(v) OV, a[]m} and {5Q}(h) 00;(v) OV
s | 0y "0 0 s Mps Oy Oy

oy, . ; ’
3 m} are sought as the solutions of these simultaneous equations. These are
77/(,.?

substituted in the expressions of ?‘R a,(F,) and
k,s

Unknown numbers {

d R a;(F,) and their sign
a77k7s
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of L‘R a1 (F,) and L‘R a(F,) are known. Thus we are able to control
aék‘s ank.s

the value R a(F,) by the location of charge points. For example, when
0

aék.s
direction. Since f}, gives the maximal value R a;(f}) in its extremal problem, if
k.5 1s moved as N a;(F),) becomes larger, it is expected that the changed Fj, will
give well approximated mapping of f,. Although the mapping in the class
F(G,zy) must be univalent, F, is not always univalent. This is a knotty point.

Rai(F,) >0, Ra(F,) becomes larger as {; ; is moved to real positive
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