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Abstract

We study the universal covering space ~MM of a holomorphic family ðM; p;RÞ of

Riemann surfaces over a Riemann surface R. The main result is that (1) ~MM is to-

pologically equivalent to a two-dimensional cell, (2) ~MM is analytically equivalent to a

bounded domain in C2, (3) ~MM is not analytically equivalent to the two-dimensional unit

ball B2 under a certain condition, and (4) ~MM is analytically equivalent to the two-

dimensional polydisc D2 if and only if the homotopic monodoromy group of ðM; p;RÞ is
finite.

1. Introduction

1.1. It is well-known as Koebe’s uniformization theorem for a Riemann
surface that the universal covering space ~RR of a complex manifold R of di-
mension one is given as follows (cf. Bers [4] and Shafarevich [22], pp. 380–
401).

(1) ~RR is biholomorphically equivalent to the Riemann sphere ĈC if and only if
R is also biholomorphically equivalent to ĈC.

(2) ~RR is biholomorphically equivalent to the complex plane C if and only if
R is biholomorphically equivalent to C, Cnf0g or a torus.

(3) ~RR is biholomorphically equivalent to the unit disc D if and only if R is
not biholomorphically equivalent to ĈC, C, Cnf0g or a torus.

1.2. However, universal coverings and fundamental groups of complex
manifolds of higher dimension are very complicated. We give some examples
(cf. Shafarevich [22], pp. 401–408).

(1) There are infinitely many di¤erent simply-connected compact complex
manifolds of dimension nb 2.
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(2) For a given finite group G, there exists a compact complex manifold of
dimension nb 2 whose fundamental group is isomorphic to G.

(3) The polydisc Dn of dimension nb 2 is not biholomorphically equivalent
to the unit ball Bn (Poincaré’s theorem, cf. Narashimhan [17], p. 70).

1.3. P. A. Gri‰ths [8] got the following uniformization theorem of quasi-
projective varieties. Here we describe the case of dimension two. Let M̂M be a
two-dimensional, irreducible, smooth quasi-projective algebraic variety over the
complex number field. For every point p in M̂M, there exists a Zariski neigh-
borhood M of p such that M has a holomorphic fibration ðM; p;RÞ of Riemann
surfaces of type ðg; nÞ with 2g� 2þ n > 0 over a hyperbolic Riemann surface R
of analytically finite type. (We give a definition of a holomorphic fibration
in the next section.) Then Gri‰ths proved that the universal covering space
~MM is topologically equivalent to a two-dimensional cell and biholomorphically
equivalent to a bounded domain of holomorphy in C2 by using the theory of
simultaneous uniformization of Riemann surfaces due to Bers.

1.4. In this paper we study some function-theoretic properties of the
universal covering space ~MM of a holomorphic family of Riemann surfaces
ðM; p;RÞ. Our Main results are follows:

Theorem 1. The universal covering space ~MM of a holomorphic family of
Riemann surfaces ðM; p;RÞ of type ðg; nÞ is not biholomorphically equivalent to the
two-dimensional unit ball B2 provided that ðM; p;RÞ is locally trivial, n > 0, or R is
not compact.

By Rosay’s theorem [19] we have a corollary.

Corollary 1. The universal covering space ~MM of a holomorphic family of
Riemann surfaces ðM; p;RÞ of type ðg; nÞ is not biholomorphically equivalent to any
two-dimensional strongly pseudoconvex domains provided that ðM; p;RÞ is locally
trivial, n > 0, or R is not compact.

Theorem 2. The universal covering space ~MM of a holomorphic family of
Riemann surfaces ðM; p;RÞ is biholomorphically equivalent to the two-dimensional
polydisc D2 if and only if all the fibers St ¼ p�1ðtÞ are biholomorphically equivalent.

As a corollary we have the following (see Imayoshi [9]).

Corollary 2. The universal covering space ~MM of a holomorphic family of
Riemann surfaces ðM; p;RÞ is biholomorphically equivalent to the two-dimensional
polydisc D2 if and only if the homotopic monodromy group M of ðM; p;RÞ is finite.

In the case where R has punctures, i.e., it is not compact, these results were
obtained in Imayoshi [9]. In this paper we do not assume that R has punctures.
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However, in Theorem 1, if R is compact, we assume that ðM; p;RÞ is locally
trivial, or n > 0, i.e., every fiber St has punctures. It is known that a Kodaira
surface M has a locally non-trivial fibration ðM; p;RÞ of type ðg; 0Þ over a
compact Riemann surface R (Kas [12], Kodaira [14]), and its universal covering
~MM is not biholomorphically equivalent to B2 (Atiyah [1], Shabat [20], [21]). It is
not known whether except for a kind of Kodaira surfaces there exits a locally
non-trivial holomorphic family of Riemann surfaces of type ðg; 0Þ over a compact
Riemann.

1.5. This paper is organized as follows: In §2 we give a definition of
holomorphic families ðM; p;RÞ of Riemann surfaces and some examples of these
families. In §3 we explain briefly Teichmüller theory used in this paper. In §4,

using Teichmüller theory we construct canonically a universal covering space ~MM
and its universal covering transformation group G. Theorem 1 is proved in §5,
and Theorem 2 is proved in §6 and §7.

2. Holomorphic families of Riemann surfaces

2.1. A holomorphic family ðM; p;RÞ of Riemann surfaces over a Riemann
surface R is defined as follows. Let M̂M be a two-dimensional complex manifold,
C a one-dimensional analytic subset of M̂M or an empty set, and R be a Riemann
surface. Assume that a proper holomorphic map p̂p : M̂M ! R satisfies two
conditions:

(i) by setting M ¼ M̂MnC and p ¼ p̂pjM, the holomorphic map p is of
maximal rank at every point of M, and

(ii) the fiber St ¼ p�1ðtÞ over each t A R is a Riemann surface of fixed
analytically finite type ðg; nÞ, where g is the genus of St and n is the
number of punctures of St, i.e., it is obtained by removing n distinct
points from a compact Riemann surface of genus g.

We call such a triple ðM; p;RÞ a holomorphic family of Riemann surfaces of
type ðg; nÞ over R. We assume throughout this paper that 2g� 2þ n > 0, and R
is a hyperbolic Riemann surface of analytically finite type.

2.2. We give some examples of holomorphic families of Riemann sur-
faces.

Example 1. Take two hyperbolic Riemann surfaces R0, S0 of analytically
finite type. Let M0 ¼ R0 � S0 and p0 : M0 ¼ R0 � S0 ! R0 be the canonical
projection. Then ðM0; p0;R0Þ is a holomorphic family of Riemann surfaces of
type ðg0; n0Þ, where ðg0; n0Þ is the type of S0.

A holomorphic family ðM; p;RÞ is said to be globally trivial if there exist
biholomorphic maps F : M ! M0 ¼ R0 � S0 and f : R ! R0 with p0 � F ¼
f � p. A holomorphic family is said to be locally trivial if it is analytically a
local tirivial fiber bundle.
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The universal covering ~MM0 of M0 is biholomorphically equivalent to
~RR0 � ~SS0 GD2. Poincaré’s Theorem shows that ~MM0 is not biholomorphically
equivalent to the unit ball B2. This is a trivial example of Theorems 1 and 2.

Example 2. Let R be a hyperbolic Riemann surface of analytically finite
type ðg; nÞ. Let M ¼ fðp; qÞ A R� R j p0 qg and p : M ! R be the canonical
projection. Then ðM; p;RÞ is a locally non-tirivial holomorphic family of
Riemann surfaces of type ðg; nþ 1Þ. Theorems 1 and 2 imply that the universal
covering ~MM of M is biholomorphically equivalent to neither D2 nor B2.

Example 3. Set R ¼ Cnf0g and M ¼ fðx; y; tÞ A C2 � R j y2 ¼ x3 � tg. Let
p : M ! R be the canonical projection. Then ðM; p;RÞ is a holomorphic family
of Riemann surfaces of type ð1; 1Þ, which is locally trivial, but not globally
trivial. In this case ~MM is biholomorphically equivalent to D2.

Example 4. Set R ¼ Cnf0; 1g and M ¼ fðx; y; tÞ A C2 � R jy2 ¼
xðx� 1Þðx� tÞg. Let p : M ! R be the canonical projection. Then ðM; p;RÞ
is a holomorphic family of Riemann surfaces of type ð1; 1Þ, which is not locally
trivial. Hence Theorems 1 and 2 show that ~MM of M is biholomorphically
equivalent to neither D2 nor B2.

Example 5. Kodaira [14] constructed a locally non-trivial holomorphic
family ðM; p;RÞ of Riemann surfaces of type ðg; 0Þ over a closed Riemann
surface R. See also Atiyah [1], Barth, Peters and Van de Ven [2], Kas [12], and
Riera [18]. We call such a complex surface M a Kodaira surface.

Since this family is not locally trivial, Theorem 2 implies that ~MM is not
biholomorphically equivalent to D2 (cf. Atiyah [1], p. 79). It is also known that
~MM is not biholomorphically equivalent to B2 (see Atiyah [1], p. 79).

Example 6. As stated in §1, for a two-dimensional, irreducible, smooth

quasi-projective algebraic surface M̂M over the complex number field and for
every point p A M̂M, there exists a Zariski neighborhood M of p such that M
has a holomorphic fibration ðM; p;RÞ of Riemann surfaces over a Riemann
surface R.

3. Teichmüller theory

3.1. In order to construct canonically a universal covering space ~MM of
a holomorphic family ðM; p;RÞ of Riemann surfaces of type ðg; nÞ, we use
Teichmüller theory. We shall explain it in brief (refer to Bers [5], and Imayoshi
and Taniguchi [10]).

Let S be a fixed Riemann surface of analytically finite type ðg; nÞ with
2g� 2þ n > 0. A marked Riemann surface ðS; f ;S 0Þ is a Riemann surface S 0 of
analytically finite type ðg; nÞ with a quasiconformal map f : S ! S 0. We define
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an equivalence relation between marked surfaces ðS; f1;S1Þ and ðS; f2;S2Þ if there
exists a conformal map h : S1 ! S2 such that the self-map f �1

2 � h � f1 : S ! S
is homotopic to the identity. We denote by ½S; f ;S 0� the equivalence class of
a representative ðS; f ;S 0Þ. The Teichmüller space TðSÞ of a Riemann surface S
is the set of all these equivalence classes ½S; f ;S 0�. Let ModðSÞ be the set of all
homotopy classes ½ f0� of quasiconformal self-maps f0 : S ! S. We call ModðSÞ
the Teichmüller modular group of R. Every element ½ f0� acts on TðRÞ by

½ f0��ð½S; f ;S 0�Þ ¼ ½S; f � f �1
0 ;S 0�:

3.2. Let G be a finitely generated Fuchsian group of the first kind with
no elliptic elements acting on the upper half-plane U such that the quotient
space SGU=G is of type ðg; nÞ. Let QnormðGÞ be the set of all quasiconformal

automorphisms w of U leaving 0, 1, y fixed and satisfying wGw�1 HPSLð2;RÞ,
where PSLð2;RÞ is the set of all real Möbius transformations. Two elements w1

and w2 of QnormðGÞ are equivalent if w1 ¼ w2 on the real axis R. The Teichmüller
space TðGÞ of G is the set of all equivalence classes ½w� obtained by classifying
QnormðGÞ by the above equivalence relation.

Let LyðU ;GÞ1 be the complex Banach space of (equivalence classes of )
bounded complex-valued measurable functions m on U satisfying

m � g g
0

g 0 ¼ m; Eg A G; and kmky < 1:

For an element m A LyðU ;GÞ1 denote by wm the element in QnormðGÞ with
Beltrami coe‰cient m. Let W m be the quasiconformal automorphism of the
Riemann sphere ĈC such that W m has the Beltrami coe‰cient m on the upper half-
plane U , and comformal on the lower half-plane L, and

W mðzÞ ¼ 1

zþ i
þOðjzþ ijÞð3:1Þ

as z ! �i. This map W m is uniquely determined by ½wm� up to the equivalence
relation, i.e., wm ¼ wn on R if and only if W m ¼ W n on L. We set TbðGÞ ¼
f½W m� j m A LyðU ;GÞ1g, which is called the Bers Teichmüller space of G.

Let fm be the Schwarzian derivative of W m on L. Then fm is an element of
the space B2ðL;GÞ of bounded holomorphic quadratic di¤erentials for G on L.
The space B2ðL;GÞ is a ð3g� 3þ nÞ-dimensional complex vector space. Bers
proved that the map sending ½W m� into fm is a biholomorphic map of TbðGÞ onto
a holomorphically convex bounded domain of B2ðL;GÞ, which is denoted the
same notation TbðGÞ.

Denote by NðGÞ the set of all quasiconformal automorphisms o of U with
oGo�1 ¼ G. Two elements o1;o2 A NðGÞ are equivalent if o1 ¼ o2 � g0 on the
real axis R for some g0 A G. Denote by ½o� the equivalence class of a repre-
sentative o. Let ModðGÞ be the set of all equivalence classes ½o� in NðGÞ. We
call ModðGÞ the Teichmüller modular group of G. Every element ½o� acts on
TðGÞ by
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½o��ð½w�Þ ¼ ½l � w � o�1�;
where ½w� A TðGÞ and l A PSLð2;RÞ with l � w � o�1 A QnormðGÞ.

4. Construction of the universal covering space ~MM of a holomorphic
family ðM; p;RÞ of Riemann surfaces

4.1. We shall describe a way to construct a universal covering space ~MM of a
given holomorphic family ðM; p;RÞ of Riemann surfaces of type ðg; nÞ by using
Teichmüller theory. This is due to Gri‰ths [8].

Let ðM; p;RÞ be a holomorphic family of Riemann surfaces of type
ðg; nÞ over R. Take a universal covering r : D ! R with covering transformation
group G. Then there exists a holomorphic map F : D ! TðSÞ sending t A D into
½S; ft;SrðtÞ�, where ft : S ! SrðtÞ is a quasiconformal map moving continuously
with resptect to the parameter t. We call this holomorphic map F : D ! TðSÞ a
representation of ðM; p;RÞ into a Teichmüller space TðSÞ. The representation F
induces a group homomorphism F� : G ! ModðSÞ satisfying F � g ¼ F�ðgÞ �F
for all g A G.

4.2. Identify TðSÞ with TbðGÞ. Then we obtain a representation C : D !
TbðGÞ of ðM; p;RÞ into TðGÞ and a biholomorphic map Ft : Dt=Gt ! SrðtÞ for

each t A D, where CðtÞ ¼ ½W mðtÞ�, Dt ¼ W mðtÞðUÞ, and Gt ¼ W mðtÞGðW mðtÞÞ�1 H
PSLð2;CÞ.

We set
~MM ¼ fðt;wÞ j t A D;w A Dtg:

This set ~MM is topologically equivalent to a two-dimensional cell. From (3.1)
Koebe’s one-quarter theorem shows that Dt H fjwj < 2g for all t A D, and so
~MM is a bounded domain in C2. It is also shown that ~MM is a domain of
holomorphy. Let ~pp : ~MM ! D be the holomorphic map sending ðt;wÞ into t.
Then the fiber ~pp�1ðtÞ of ð ~MM; ~pp;DÞ over t is biholomorphically equivalent Dt.

Let P : ~MM ! M be the holomorphic map sending ðt;wÞ into FtðwÞ. Then
P : ~MM ! M is the universal covering of M constructed by Gri‰ths [8].

4.3. We shall explicitly express the elements of the covering transformation
group G of the the universal covering P : ~MM ! M. For each element g A G, the
homotopic monodromy Mg of g for ðM; p;RÞ is the element of the Teichmüller
modular group ModðGÞ with F � g ¼ Mg �F. The subgroup M ¼ fMg j g A Gg
of ModðGÞ is called the homotopic monodromy group of ðM; p;RÞ with respect to
the representation F.

Denote by NðGÞ the set of all quasiconformal automorphisms o of U with
oGo�1 ¼ G. Take an element og A NðGÞ inducing Mg, i.e., ½og� ¼ Mg. We
may assume that og�d ¼ og � od for all g; d A G.

For each t A D, let ½wmðtÞ� be the point of TðGÞ with Beltrami coe‰cient
mðtÞ A LyðU ;GÞ1 corresponding to the CðtÞ A TbðGÞ. For every g A G, we set
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wnðtÞ ¼ l � wmðtÞ � ðog � gÞ�1 A QnormðGÞ, where l is a real Möbius transformation.
Note that wnðtÞ ¼ wmðgðtÞÞ.

If we set

ðg; gÞðt;wÞ ¼ ðgðtÞ;W mðgðtÞÞ � ðog � gÞ � ðW mðtÞÞ�1ðwÞÞ;
then the map ðg; gÞ is an analytic automorphism of ~MM (see Bers [3], Theorem 2,
p. 95). We set

Hðg; gÞðt;wÞ ¼ W mðgðtÞÞ � ðog � gÞ � ðW mðtÞÞ�1ðwÞ:
Then Hðg; gÞðt; �Þ : Dt ! DgðtÞ is a conformal map such that GgðtÞ ¼
Hðg; gÞðt; �ÞGtðHðg; gÞðt; �ÞÞ�1 and Hðg; gÞðt; �Þ induces a conformal map of Dt=Gt

onto DgðtÞ=GgðtÞ.
Now the covering transformation group G of the universal covering

P : ~MM ! M is identified with the set G� G. By definition, we have the relation

ðg; gÞ � ðd; hÞ ¼ ðg � d;o�1
d � g � od � hÞ

for all g; d A G and g; h A G, which implies that G is a semi-direct product of G by
G. Note that ðg; gÞ ¼ ðd; hÞ if and only if g ¼ d and g ¼ h.

5. Proof of Theorem 1

5.1. In this section we shall give a proof of Theorem 1. We use the
notation in §3 and §4.

If ðM; p;RÞ is locally trivial, then the representation C of ðM; p;RÞ into a

Teichmüller space TðGÞ is constant. Hence ~MM ¼ D�D0 GD� D, which implies
that ~MM is not biholomorphically equivalent to the unit ball B2 by Poincaré’s
Theorem.

If the base surface R is not compact, the assertion of Theorem 1 is shown in
Imayoshi [9], pp. 584–586.

5.2. Let us consider the case n > 0, i.e., every fiber St ¼ p�1ðtÞ is not

compact. Assume that there exists a biholomorphic map F ¼ ðF1;F2Þ : ~MM ! B2.
We may assume that for every F�ðgÞ ¼ ½ fg� A ModðSÞ, g A G, the quasi-

conformal self-map fg : S ! S fixes each puncture of S. In fact, the subgroup
M 0 ¼ f½ fg� A F�ðGÞ j fg fixes every puncture of Sg of F�ðGÞ is a normal subgroup
M of finite index. Let G 0 ¼ fg A G j ½ fg� A M 0g. Then G 0 is a normal sub-
group of G and G=G 0 is canonically isomorphic to M=M 0. Hence G 0 is a normal
subgroup of G of finite index. Then there exists a unramified finite-sheeted
covering r0 : R

0 ! R such that the fundamental group of R 0 is isomorphic to G 0

and the covering transformation group of r0 : R
0 ! R is isomorphic to G=G 0.

Let p 0 : M 0 ! R 0 be the fiber product of p : M ! R by r0 : R
0 ! R, i.e., M 0 ¼

fðp; t 0Þ A M � R 0 j pðpÞ ¼ r0ðt 0Þg and p 0ðp; t 0Þ ¼ t 0. Then the fiber p 0�1ðt 0Þ of M 0

over t 0 is biholomorphic to the fiber p�1ðr0ðt 0ÞÞ of M over r0ðt 0Þ, and the
monodromy of ðM 0; p 0;R 0Þ with respect to arbitrary g 0 A G 0 is ½ fðr0Þ�ðg 0Þ� A M 0.
Since ~MM is biholomorphically equivalent to B2, we see that the universal covering
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space ~MM 0 of M 0 is also biholomorphically equivalent to B2. Therefore we may
consider ðM 0; p 0;R 0Þ in place of ðM; p;RÞ.

5.3. Now suppose that there exists a biholomorphic map F ¼ ðF1;F2Þ :
~MM ! B2, and that for every F�ðgÞ ¼ ½ fg� A ModðSÞ, g A G, the quasiconformal
self-map fg : S ! S fixes each puncture of S. We may also assume that for
every puncture p0 of S there exists a neighborhood Up0 of p0 such that fgðpÞ ¼ p
for all p A Up0 .

We set t0 ¼ rð0Þ, and S ¼ St0 ¼ p�1ðt0ÞGU=G. Take a cusp point z�0 A qU
for G. From the assumption that the quasiconformal self-map fg : S ! S in-
ducing F�ðgÞ fixes each puncture of S it follows that for C�ðgÞ ¼ ½og� A ModðGÞ
there exists an element gg A G such that

gg � ogðwÞ ¼ wð5:1Þ

for any point w in a cusped region belonging to z�0 for G.
We set

W 0ðzÞ ¼ 1

zþ 1
;

G0 ¼ W 0GðW 0Þ�1;

z0 ¼ W 0ðz�0 Þ A qD0 ¼ qW 0ðUÞ:

5.4. Consider the holomorphic motion V t of qD0 given by

V tðzÞ ¼ W mðtÞ � ðW 0Þ�1ðzÞ; ðt; zÞ A D� qD0:

Note that V is G0-equivariant, that is, it satisfies the relation

V tðgðzÞÞ ¼ gtðV tðzÞÞ on D� qD0ð5:2Þ

for all g A G0, where gt ¼ W mðtÞ � g � ðW mðtÞÞ�1. Then an equivariant version
of Slodkowski’s extension theorem implies that the G0-equivariant holomorphic
motion V of qD0 can be extended to a holomorphic motion of ĈC (still called V t)
in such a way that (5.2) holds for all g0 A G0, t A D, and w A ĈC (see Earle, Kra
and Krushkal’ [7], p. 928).

Take a sequence fwngyn¼1 in a cusped region belonging to z0 for G0 with

limn!y wn ¼ z0. We define a holomorphic map D ! ~MM by

snðtÞ ¼ ðt;V tðwnÞÞ;

which is a holomorphic section of ð ~MM; ~PP;DÞ. Here ~PP : ~MM ! D is the holo-
morphic map given by ~PPðt;wÞ ¼ t.

We put hg ¼ ðogÞ�1 � gg � og and

Hgðt;wÞ ¼ Hðg;hgÞðt;wÞ

¼ W mðgðtÞÞ � og � hg � ðW mðtÞÞ�1ðwÞ:
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From (5.1) we get

Hgðt;W mðtÞðwnÞÞ ¼ W mðgðtÞÞ � og � hg � ðwnÞð5:3Þ

¼ W mðgðtÞÞ � gg � ogðwnÞ

¼ W mðgðtÞÞðwnÞ:

Let dDt
be the Poincaré distance on Dt. Then we obtain the following lemma:

Lemma 1. There exists a positive constant K depending on g and t such that

dDgðtÞðHgðt;V tðwnÞÞ;V gðtÞðwnÞÞaK :ð5:4Þ

Proof. Noting Hg : Dt ! DgðtÞ is conformal and (5.3), we get

dDgðtÞðHgðt;V tðwnÞÞ;V gðtÞðwnÞÞð5:5Þ

a dDgðtÞðHgðt;V tðwnÞÞ;Hgðt;W mðtÞðwnÞÞÞ

þ dDgðtÞðHgðt;W mðtÞðwnÞÞ;V gðtÞðwnÞÞ

¼ dDt
ðW mðtÞðwnÞ;V tðwnÞÞ þ dDgðtÞðW mðgðtÞÞðwnÞ;V gðtÞðwnÞÞ:

Since V t is quasiconformal on ĈC by a theorem due to Mañé, Sud and Sullivan
(cf. Bers and Royden [6], Theorem 1, p. 492), and V t and W mðtÞ have the same
boundary values on qD0, Theichmüller’s theorem implies that there exists a
positive constant K1 such that

dDt
ðW mðtÞðwnÞ;V tðwnÞÞaK1ð5:6Þ

for any n (see Theichmüller [24], and Kra [15], Lemma 1, p. 234). Similarly, we
find a positive constant K2 so that

dDgðtÞðW mðgðtÞÞðwnÞ;V gðtÞðwnÞÞaK2ð5:7Þ
for any n. Hence from (5.5), (5.6) and (5.7) we have

dDgðtÞðHgðt;V tðwnÞÞ;V gðtÞðwnÞÞaK1 þ K2ð5:8Þ
for any n. r

5.5. Since B2 is a bounded domain, we may assume that fF � sngyn¼0

converges uniformly on compact subsets of D. We may also assume that

lim
n!y

F � snðtÞ ¼ lim
n!y

F ðt;V tðwnÞÞ ¼ ð1; 0Þ A qB2ð5:9Þ

for every t A D (see Imayoshi [9], pp. 584–585).
Let F� : G ! AutðB2Þ be the group homomorphism defined by

F � ðg; gÞ ¼ F�ðg; gÞ � F
for every ðg; gÞ A G ¼ GyG.
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Setting wg ¼ ðg; hgÞ, we show that

F�ðwgÞð1; 0Þ ¼ ð1; 0Þ
for all g A G as follows. Consider

F � wgðt;V tðwnÞÞ ¼ F�ðwgÞ � F ðt;V tðwnÞÞ:ð5:10Þ
From (5.9) we have

lim
n!y

F�ðwgÞ � Fðt;V tðwnÞÞ ¼ F�ðwgÞð1; 0Þ:ð5:11Þ

Let dB2
be the Kobayashi distance on B2. (For the Kobayashi distance

refer to Jarnicki and Pflug [11], and Kobayashi [13].) The distance decreasing
property for holomorphic maps with respect to Kobayashi distances guarantees
that

dB2
ðF ðgðtÞ;Hgðt;V tðwnÞÞÞ;FðgðtÞ;V gðtÞðwnÞÞÞð5:12Þ

a dDgðtÞ ðHgðt;V tðwnÞÞ;V gðtÞðwnÞÞaK :

From (5.9) and (5.12) we conclude that

lim
n!y

F � wgðt;V tðwnÞÞ ¼ lim
n!y

FðgðtÞ;Hgðt;V tðwnÞÞÞð5:13Þ

¼ ð1; 0Þ:
Therefore form (5.10), (5.11) and (5.13) we have

F�ðwgÞð1; 0Þ ¼ ð1; 0Þ
for any g A G.

By the same way as Imayoshi [9], pp. 585–587 we can prove Theorem 1 and
Corollary 1. This completes the proof of Theorem 1 and Corollary 1.

6. Proof of Theorem 2 for n > 0

6.1. We recall the following three lemmas:

Lemma 2. Any analytic automorphism of D2 ¼ ðjzj < 1Þ � ðjwj < 1Þ is either
one of following two types:

(I) ðA;BÞðz;wÞ ¼ ðAðzÞ;BðwÞÞ,
(II) ðA;BÞðz;wÞ ¼ ðAðwÞ;BðzÞÞ,

where A;B A AutðDÞ.

(See Narashimhan [17], Proposition 3, p. 68.)

Lemma 3. Two Möbius transformations A and B are commutative if and only
if FixðAÞ ¼ FixðBÞ, i.e, they have the same set of fixed points provided that neither
is the identity and provided that A or B is not a transformation of order two.

(See Lehner [16], Theorems 1 and 2, p. 72.)

239universal coverings of holomorphic families of riemann surfaces



Lemma 4. Let A be a hyperbolic or loxodromic transformation and let B be a
Möbius transformation which has one and only one fixed point in common with A.
Then the sequence fB � An � B�1 � A�ngyn¼1 of Möbius transformations converges to
a Möbius transformation as n ! y or �y, so the group hA;Bi generated by A
and B is not discrete.

(See Lehner [16], Theorem 2E, p. 94.)

6.2. Assume that ðM; p;RÞ is a holomorphic family of Riemann surfaces
of type ðg; nÞ with n > 0 and there exists a biholomorphic map F ¼ ðF1;F2Þ :
~MM ! D2.

First assume that for every F�ðgÞ ¼ ½ fg� A ModðSÞ, g A G, the quasiconformal
self-map fg : S ! S fixes every puncture of S, and that F�ðg; gÞ is of type (I) for
all ðg; gÞ A G ¼ GyG.

We use the notation in §3, §4 and §5. Let g0 be a parabolic element of G
with fixed point z�0 . Set zt ¼ W mðtÞðz�0 Þ A qDt, t A D. For any g A G there exists
an element gg A G satisfying (5.1). We put

hg ¼ o�1
g � gg � og;

Hgðt; ztÞ ¼ Hðg;hgÞðt; ztÞ ¼ W mðgðtÞÞ � ðog � hgÞ � ðW mðtÞÞ�1ðztÞ:

Then we obtain

zgðtÞ ¼ Hgðt; ztÞ:ð6:1Þ

We put

ðAg;BgÞ � F ¼ F � ðg; hgÞ;ð6:2Þ

where ðAg;BgÞ A AutðD2Þ.
Using the holomorphic motion V t in §5.4, we define a sequence fðjn;cnÞg

y
n¼1

of holomorphic maps from D into D2 by

ðjnðtÞ;cnðtÞÞ ¼ ðF1ðt;V tðwnÞÞ;F2ðt;V tðwnÞÞÞ:ð6:3Þ

We may assume that fðjn;cnÞg
y
n¼1 converges uniformly to a holomorphic map

ðj0;c0Þ : D ! D2 on compact subsets of D. Then the maximum theorem for
holomorphic functions yields one of the following four cases:

(1) ðj0;c0ÞðDÞHD2.
(2) ðj0;c0Þ is constant on D with value ðc1; c2Þ A ðqDÞ2.
(3) j0 is constant on D with value c1 A qD, and c0ðDÞHD.
(4) j0ðDÞHD, and c0 is constant on D with value c2 A qD.

Since F is a proper map, case (1) does not occur. We show that case (2)
neither occurs as follows. Assume that ðj0;c0Þ is constant on D with value
ðc1; c2Þ A ðqDÞ2. From (5.8), (6.1), (6.2) and (6.3), for any g A G we obtain

Agðc1Þ ¼ c1; and Bgðc2Þ ¼ c2:ð6:4Þ
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Take two elements g; d A G with gd0 dg. Then we have ðg; hgÞ � ðd; hdÞ0 ðd; hdÞ �
ðg; hgÞ, and so ðAg;BgÞ � ðAd;BdÞ0 ðAd;BdÞ � ðAg;BgÞ. Hence we get

AgAd 0AdAg; or BgBd 0BdBg:ð6:5Þ
Therefore Lemmas 3, 4, (6.4) and (6.5) imply that F�ðGÞ is not discrete. This is
a contradiction.

In case (3) we see that c0 is not constant as follows. Suppose that c0 is
constant with value c2 A D. From (5.8), (6.1), (6.2) and (6.3), for any g A G we
have

Agðc1Þ ¼ c1; and Bgðc2Þ ¼ c2:ð6:6Þ
Let c�1 be the reflection of c1 with respect to the unit circle qD. Since
Ag A AutðDÞ, we see that

Agðc�1 Þ ¼ c�1ð6:7Þ
for any g A G. Hence Lemma 3, (6.6) and (6.7) imply that

AgAd ¼ AdAgð6:8Þ
for all g; d A G.

Take two elements g; d A G with gd0 dg. Then we have ðg; hgÞ � ðd; hdÞ0
ðd; hdÞ � ðg; hgÞ, and so ðAg;BgÞ � ðAd;BdÞ0 ðAd;BdÞ � ðAg;BgÞ. Noting (6.8) we
get

BgBd 0BdBg:ð6:9Þ
Therefore Lemmas 3, 4, (6.8) and (6.9) imply that F�ðGÞ is not discrete. This is
a contradiction.

Now assume that j0 is constant on D with value c1 A qD and c0 : D ! D is a
non-constant holomorphic map. Let F � ð1; g0Þ ¼ ðA0;B0Þ � F . Then from (6.1),
(6.2) and (6.3) we obtain

j0ðtÞ ¼ A0 � j0ðtÞ ¼ A0ðc1Þ ¼ c1; and c0ðtÞ ¼ B0 � c0ðtÞ:
Since c0 is not constant, we see that A0ðc1Þ ¼ c1, and B0 ¼ 1, and so F�ð1; g0Þ ¼
ðA0; 1Þ, where A0 is of infinite order and has a fixed point c1 A qD. By a theorem
due to Shimizu [23] (Theorem 2, p. 39), we see that

G�
1 ¼ fAg A AutðDÞ j ðAg;BgÞ ¼ F�ð1; gÞ; g A Gg;

G�
2 ¼ fBg A AutðDÞ j ðAg;BgÞ ¼ F�ð1; gÞ; g A Gg

are discrete.
If F2jDt

: Dt ! D is not constant, then F2jDt
induces a non-constant holo-

morphic map ½F2�t : Dt=Gt ! D=G�
2 . Since the Riemann surface Dt=Gt is of

analytically finite type, we see that ½F2�t has a holomorphic extension to the
compactification of Dt=Gt. Hence we have c0ðtÞ A qD, and so by the maxi-
mum principle we conclude that c0 is constant on D, which is a contradiction.
Therefore, F2 is constant on Dt for all t A D, and F�ð1; gÞ is of form ðAg; 1Þ for
any g A G, i.e.,
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G�
1 ¼ fAg A AutðDÞ j ðAg; 1Þ ¼ F�ð1; gÞ; g A Gg:

Therefore SrðtÞ GDt=Gt GD=G�
1 for every t A D. Similarly, in case (4) we can

show that all fibers St are biholomorphically equivalent.

6.3. Next we prove that F�ðg; gÞ is of type (I) for all ðg; gÞ A G ¼ GyG
provided that for every F�ðgÞ ¼ ½ fg� A ModðSÞ, g A G, the quasiconformal self-
map fg : S ! S fixes every puncture of S. Assume that G�

0 ¼ fðA;BÞ j ðA;BÞ ¼
F � ðg; gÞ � F �1 is of type (I); ðg; gÞ A GyGg is a subgroup of G� of index two.
By the same argument as in §6.2 we see that one of the following two cases holds:

(1) F1 is constant and F2 is non-constant on Dt for all t A D.
(2) F2 is constant and F1 is non-constant on Dt for all t A D.

In case (1), if ðA;BÞ ¼ ðA;BÞ ¼ F � ðg; gÞ � F �1 is of type (II) for some ðg; gÞ, then
we have F1ðgðtÞ;Hðg;gÞðt;wÞÞ ¼ A � F2ðt;wÞ. Since F1 is constant and A � F2 is
non-constant on Dt, we have a contradiction. Hence every F � ðg; gÞ � F �1 is of
type (I). Similarly it follows that in case (2), every F � ðg; gÞ � F �1 is of type (I).

6.4. If G has an element g such that F�ðgÞ ¼ ½ fg� A ModðSÞ does not fix a
puncture of S, then the same reasoning as one in §5.2 implies that all fibers St are
biholomorphically equivalent.

7. Proof of Theorem 2 for a compact complex surface M

7.1. We shall give a proof of Theorem 2 in the case where M is compact,
that is, the base surface R is compact and n ¼ 0, i.e., every fiber St ¼ p�1ðtÞ is
also compact.

Assume that there exists a biholomorphic map F ¼ ðF1;F2Þ : D2 ! ~MM. We
also assume that every element of G� ¼ F �1GF is of type (I).

We shall show that F ¼ ðF1;F2Þ satisfies the following:

qF1

qz
¼ 0 on D2; or

qF1

qw
¼ 0 on D2:ð7:1Þ

In order to obtain (7.1) we show that

lim
n!y

qF1

qw
ðzn;wnÞ �

qF2

qw
ðzn;wnÞ ¼ 0ð7:2Þ

for any point ðz0;w0Þ A qD� D and any sequence fðzn;wnÞgyn¼1 of points in D2

with limn!yðzn;wnÞ ¼ ðz0;w0Þ.
Suppose that (7.2) does not hold for some ðz0;w0Þ and fðzn;wnÞgyn¼1. Then

there exists a positive constant e0 and a subsequence fðznj ;wnj Þg
y
j¼1 such that

qF1

qw
ðznj ;wnj Þ �

qF2

qw
ðznj ;wnj Þ

����
����b e0ð7:3Þ

for all j.
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Since ~MM is a bounded domain, we may assume that the sequence
fFðznj ; �Þg

y
j¼1 of holomorphic maps Fðznj ; �Þ : D ¼ ðjwj < 1Þ ! ~MM converges to a

holomorphic map j ¼ ðj1; j2Þ : D ! ~MM uniformly on compact subsets of D,

where ~MM is the closure of ~MM.
Let F be a fundamental set for G�. Note that FTD2, for M is compact.

Then we can find a sequence fðaj; bjÞgyj¼1 of points in F and a sequence
fAj;Bjgyj¼1 of elements in G� such that

ðAj ;BjÞðaj; bjÞ ¼ ðAjðajÞ;BjðbjÞÞ ¼ ðznj ;wnj Þ:

We may assume that ðaj; bjÞ converges to a point ða0; b0Þ A D2. We may also
assume that ðAj;BjÞ converges to ðz0;B0Þ uniformly on compact subsets of
D2, where z0 is the constant map with value z0 and B0 A AutðDÞ. Because
conditions limj!y aj ¼ a0 A D and limj!y AjðajÞ ¼ z0 A qD imply limj!y Aj ¼ z0,
and conditions lim j!y bj ¼ b0 A D and limj!y BjðbjÞ ¼ w0 A D imply limj!y Bj ¼
B0 A AutðDÞ.

We put F�ðAj;BjÞ ¼ F � ðAj;BjÞ � F �1 ¼ ðgj ; gjÞ A G ¼ GyG. Then we
have

F1ðAjðajÞ;BjðbjÞÞ ¼ gj � F1ðaj ; bjÞ;ð7:4Þ

F2ðAjðajÞ;BjðbjÞÞ ¼ HjðF1ðaj; bjÞ;F2ðaj; bjÞÞ;ð7:5Þ

where Hj ¼ Hðgj ;gjÞ.

Since F : D2 ! ~MM is biholomorphic, we see that ðgj; gjÞ � F ðaj; bjÞ ¼
Fðznj ;wnj Þ converges to a boundary point jðw0Þ ¼ ðj1ðw0Þ; j2ðw0ÞÞ of ~MM.

If j1ðw0Þ A qD ¼ ðjtj < 1Þ, then we may assume that fgjg
y
j¼1 converges to a

constant map j1ðw0Þ uniformly on compact subsets of D, because gj A AutðDÞ,
limj!y F1ðaj; bjÞ ¼ F1ða0; b0Þ A D, and limj!y gj � F1ðaj; bjÞ ¼ limj!y F1ðznj ; bnj Þ
¼ j1ðw0Þ A qD. Hence from

dgj � F1ðaj;wÞ
dw

¼ dF1ðAjðajÞ;BjðwÞÞ
dw

¼
dF1ðznj ;BjðwÞÞ

dw

¼ qF1

qw
ðznj ;BjðwÞÞ � B 0

j ðwÞ

we obtain

lim
j!y

qF1

qw
ðznj ;BjðwÞÞ � B 0

0ðwÞ ¼ 0:

Since BjðbjÞ ¼ wnj and B 0
0ðwÞ0 0, we conclude that

lim
j!y

qF1

qw
ðznj ;wnj Þ ¼ 0:
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Since limj!y qF2=qwðznj ;wnj Þ exists, we have

lim
j!y

qF1

qw
ðznj ;wnj Þ �

qF2

qw
ðznj ;wnj Þ ¼ 0;

which is a contradiction to (7.3).
If j1ðw0Þ A D ¼ ðjtj < 1Þ, then we may assume that there exists an element

g0 A G such that gj ¼ g0 for any j. In fact, assuming gj converges to a holo-
morphic map g0 : D ! D uniformly on compact subsets of D, the assumptions
limj!y F1ðaj; bjÞ ¼ F1ða0; b0Þ A D and limj!y gj � F1ðaj; bjÞ ! jðw0Þ A D imply
that g0 A AutðDÞ, and the discreteness of G implies that gj ¼ gk for all su‰ciently
large j and k. Let tj ¼ F1ðaj ; bjÞ and t0 ¼ F1ða0; b0Þ. Then Hjðtj; �Þ : Dtj !
Dg0ðtjÞ is conformal and we may assume that fHjðtj; �Þgyj¼1 converges to a
holomorphic map H0 : Dt0 ! Dg0ðt0Þ uniformly on compact subsets of Dt0 . Since
H0ðFða0; b0ÞÞ ¼ j2ðw0Þ A qDg0ðt0Þ, we see that H0 is constant on Dt0 . Hence from

dHj � Fðaj;wÞ
dw

¼ dF2ðAjðajÞ;BjðwÞÞ
dw

¼
dF2ðznj ;BjðwÞÞ

dw

¼ qF2

qw
ðznj ;BjðwÞÞ � B 0

j ðwÞ

we obtain

lim
j!y

qF2

qw
ðznj ;BjðwÞÞ � B 0

0ðwÞ ¼ 0:

Since BjðbjÞ ¼ wnj and B 0
0ðwÞ0 0, we conclude that

lim
j!y

qF2

qw
ðznj ;wnj Þ ¼ 0:

Since limj!y qF1=qwðznj ;wnj Þ exists, we have

lim
j!y

qF1

qw
ðznj ;wnj Þ �

qF2

qw
ðznj ;wnj Þ ¼ 0;

which is a contradiction to (7.3).
Therefore we have (7.2) for any point ðz0;w0Þ A qD� D and any sequence

fðzn;wnÞgyn¼1 of points in D2 with limn!yðzn;wnÞ ¼ ðz0;w0Þ. Then Radó’s
theorem implies

qF1

qw
� qF2

qw
¼ 0 on D2:ð7:6Þ

(See Narashimhan [17], Theorem 1, p. 53). Hence we have

qF1

qw
¼ 0 on D2; or

qF2

qw
¼ 0 on D2:ð7:7Þ
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By a similar way as above we obtain

qF1

qz
¼ 0 on D2; or

qF2

qz
¼ 0 on D2:ð7:8Þ

Since

det

qF1

qz

qF1

qw

qF2

qz

qF2

qw

0
BBB@

1
CCCA

does not vanish at every point of D2, from (7.7) and (7.8) we see that one of the
following two relations holds:

(i) qF1=qz ¼ qF2=qw ¼ 0 on D2,
(ii) qF1=qw ¼ qF2=qz ¼ 0 on D2.
If relation (i) holds, then F1ðz;wÞ ¼ F1ðwÞ, i.e., F1 is independent on z.

Then F �1 � ð1; gÞ � F is of form ðAg; 1Þ and of type (I) for every g A G. Thus
setting A�

G ¼ fAg j ðAg; 1Þ ¼ F �1 � ð1; gÞ � F ; g A Gg, we see that

SrðtÞ GDt=Gt GD=A�
G

for any t A D, which concludes that all the fibers St are biholomorphically
equivalent.

If relation (ii) holds, then F1ðz;wÞ ¼ F1ðzÞ, and F �1 � ð1; gÞ � F is of form
ð1;BgÞ and of type (I) for every g A G. Thus we have

SrðtÞ GDt=Gt GD=B�
G

for any t A D, where B�
G ¼ fBg j ð1;BgÞ ¼ F �1 � ð1; gÞ � F ; g A Gg. Hence all the

fibers St are biholomorphically equivalent.

7.2. Let M be compact, and assume that there exists a biholomorphic map
F ¼ ðF1;F2Þ : D2 ! ~MM, and G� ¼ F �1GF has an element of type (II). Let G�

0

be the set all elements of type (I) in G�, which is a normal subgroup of G� of
index two. Using G�

0 in place of G�, the same way as in §7.1 we see that
F1ðz;wÞ ¼ F1ðwÞ or F1ðz;wÞ ¼ F1ðzÞ. If F1ðz;wÞ ¼ F1ðwÞ, then F �1 � ð1; gÞ � F is
of form ðAg; 1Þ and of type (I) for every g A G. Hence by the same reasoning as
above we obtain

SrðtÞ GDt=Gt GD=A�
G

for any t A D, which concludes that all the fibers St are biholomorphically
equivalent.

Similarly if F1ðz;wÞ ¼ F1ðzÞ, then we see that

SrðtÞ GDt=Gt GD=B�
G:

Hence all the fibers St are biholomorphically equivalent.
This completes the proof of Theorem 2 in the case where M is compact.
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7.3. In the case where the base surface R is not compact, a proof of
Theorem 2 is given Imayoshi [9], pp. 587–596.

If all the fibers St ¼ p�1ðtÞ are biholomorphically equivalent, then the
representation C of ðM; p;RÞ into TðGÞ is constant, and so ~MM ¼ D�D0 G ðDÞ2.
This completes the proof of Theorem 2.

Finally we note that a proof of Corollary 2 is given in Imayoshi [9], p. 587.
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