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Abstract

We study the universal covering space M of a holomorphic family (M, 7z, R) of
Riemann surfaces over a Riemann surface R. The main result is that (1) M is to-
pologically equivalent to a two-dimensional cell, (2) M is analytically equivalent to a
bounded domain in C2, (3) M is not analytically equivalent to the two-dimensional unit
ball B, under a certain condition, and (4) M is analytically equivalent to the two-
dimensional polydisc A2 if and only if the homotopic monodoromy group of (M, 7, R) is
finite.

1. Introduction

1.1. It is well-known as Koebe’s uniformization theorem for a Riemann
surface that the universal covering space R of a complex manifold R of di-
mension one is given as follows (cf. Bers [4] and Shafarevich [22], pp. 380-
401).

(1) R is biholomorphically equivalent to the Riemann sphere C if and only if

R is also biholomorphically equivalent to C.
(2) R is biholomorphically equivalent to the complex plane C if and only if
R is biholomorphically equivalent to C, C\{0} or a torus.

(3) R is biholomorphically equivalent to the unit disc A if and only if R is

not biholomorphically equivalent to C, C, C\{0} or a torus.

1.2. However, universal coverings and fundamental groups of complex
manifolds of higher dimension are very complicated. We give some examples
(cf. Shafarevich [22], pp. 401-408).

(1) There are infinitely many different simply-connected compact complex

manifolds of dimension n > 2.
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(2) For a given finite group I, there exists a compact complex manifold of
dimension n > 2 whose fundamental group is isomorphic to T.

(3) The polydisc A" of dimension n > 2 is not biholomorphically equivalent
to the unit ball B, (Poincaré’s theorem, cf. Narashimhan [17], p. 70).

1.3. P. A. Griffiths [8] got the following uniformization theorem of quasi-
projective varieties. Here we describe the case of dimension two. Let M be a
two-dimensional, irreducible, smooth quasi-projective algebraic variety over the
complex number field. For every point p in M, there exists a Zariski neigh-
borhood M of p such that M has a holomorphic fibration (M, n, R) of Riemann
surfaces of type (g,n) with 29 — 2+ n > 0 over a hyperbolic Riemann surface R
of analytically finite type. (We give a definition of a holomorphic fibration
in the next section.) Then Griffiths proved that the universal covering space
M is topologically equivalent to a two-dimensional cell and biholomorphically
equivalent to a bounded domain of holomorphy in C? by using the theory of
simultaneous uniformization of Riemann surfaces due to Bers.

1.4. In this paper we study some function-theoretic properties of the
universal covering space M of a holomorphic family of Riemann surfaces
(M,n,R). Our Main results are follows:

THEOREM 1. The universal covering space M of a holomorphic family of
Riemann surfaces (M, 7, R) of type (g,n) is not biholomorphically equivalent to the
two-dimensional unit ball By provided that (M, R) is locally trivial, n > 0, or R is
not compact.

By Rosay’s theorem [19] we have a corollary.

COROLLARY 1. The universal covering space M of a holomorphic family of
Riemann surfaces (M, n, R) of type (g,n) is not biholomorphically equivalent to any
two-dimensional strongly pseudoconvex domains provided that (M,n, R) is locally
trivial, n > 0, or R is not compact.

THEOREM 2. The universal covering space M of a holomorphic family of
Riemann surfaces (M, 7, R) is biholomorphically equivalent to the two-dimensional
polydisc A if and only if all the fibers S; = n~! (1) are biholomorphically equivalent.

As a corollary we have the following (see Imayoshi [9]).
COROLLARY 2. The universal covering space M of a holomorphic family of
Riemann surfaces (M, 7, R) is biholomorphically equivalent to the two-dimensional

polydisc A* if and only if the homotopic monodromy group M of (M, r, R) is finite.

In the case where R has punctures, i.e., it is not compact, these results were
obtained in Imayoshi [9]. In this paper we do not assume that R has punctures.
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However, in Theorem 1, if R is compact, we assume that (M, 7, R) is locally
trivial, or n > 0, i.e., every fiber S; has punctures. It is known that a Kodaira
surface M has a locally non-trivial fibration (M,n,R) of type (g,0) over a
compact Riemann surface R (Kas [12], Kodaira [14]), and its universal covering
M is not biholomorphically equivalent to B, (Atiyah [1], Shabat [20], [21]). It is
not known whether except for a kind of Kodaira surfaces there exits a locally
non-trivial holomorphic family of Riemann surfaces of type (g,0) over a compact
Riemann.

1.5. This paper is organized as follows: In §2 we give a definition of
holomorphic families (M, 7, R) of Riemann surfaces and some examples of these
families. In §3 we explain briefly Teichmiiller theory used in this paper. In §4,
using Teichmiiller theory we construct canonically a universal covering space M
and its universal covering transformation group ¢. Theorem 1 is proved in §5,
and Theorem 2 is proved in §6 and §7.

2. Holomorphic families of Riemann surfaces

2.1. A holomorphic family (M,r, R) of Riemann surfaces over a Riemann
surface R is defined as follows. Let M be a two-dimensional complex manifold,
C a one-dimensional analytic subset of M or an empty set, and R be a Riemann
surface. Assume that a proper holomorphic map #: M — R satisfies two
conditions: R

(i) by setting M = M\C and 7 =#|M, the holomorphic map = is of

maximal rank at every point of M, and

(i) the fiber S, =7n'(¢) over each t€ R is a Riemann surface of fixed

analytically finite type (g,n), where g is the genus of S, and n is the
number of punctures of S,, i.e., it is obtained by removing n distinct
points from a compact Riemann surface of genus g.

We call such a triple (M, n, R) a holomorphic family of Riemann surfaces of
type (g,n) over R. We assume throughout this paper that 2g — 2 +n > 0, and R
is a hyperbolic Riemann surface of analytically finite type.

2.2. We give some examples of holomorphic families of Riemann sur-
faces.

Example 1. Take two hyperbolic Riemann surfaces R, Sy of analytically
finite type. Let My = Ry x Sy and 7y : My = Ry x Sy — Ry be the canonical
projection. Then (My,ny, Ry) is a holomorphic family of Riemann surfaces of
type (go,n0), where (go,no) is the type of S.

A holomorphic family (M,n, R) is said to be globally trivial if there exist
biholomorphic maps F: M — My=Ryx Sy and f:R— Ry with nmyo F =
fomn. A holomorphic family is said to be locally trivial if it is analytically a
local tirivial fiber bundle.
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_ The wuniversal covering My of M, is biholomorphically equivalent to
Ro x Sop =~ A%, Poincaré’s Theorem shows that M, is not biholomorphically
equivalent to the unit ball B,. This is a trivial example of Theorems 1 and 2.

Example 2. Let R be a hyperbolic Riemann surface of analytically finite
type (g,n). Let M ={(p,q) e Rx R|p+#¢q} and n: M — R be the canonical
projection. Then (M,7n,R) is a locally non-tirivial holomorphic family of
Riemann surfaces of type (9,7 +1). Theorems 1 and 2 imply that the universal
covering M of M is biholomorphically equivalent to neither A> nor Bs.

Example 3. Set R=C\{0} and M = {(x, y,1) e C* x R| > = x> —1}. Let
7 : M — R be the canonical projection. Then (M, 7, R) is a holomorphic family
of Riemann surfaces of type (1,1), which is locally trivial, but not globally
trivial. In this case M is biholomorphically equivalent to A2

Example 4. Set R=C\{0,1} and M =/{(x,y,0)eC*xR|y>=
x(x=1)(x—1)}. Let m: M — R be the canonical projection. Then (M,x,R)
is a holomorphic family of Riemann surfaces of type (1,1), which is not locally
trivial. Hence Theorems 1 and 2 show that M of M is biholomorphically
equivalent to neither A? nor B..

Example 5. Kodaira [14] constructed a locally non-trivial holomorphic
family (M,7,R) of Riemann surfaces of type (¢,0) over a closed Riemann
surface R. See also Atiyah [1], Barth, Peters and Van de Ven [2], Kas [12], and
Riera [18]. We call such a complex surface M a Kodaira surface.

Since this family is not locally trivial, Theorem 2 implies that M is not
biholomorphically equivalent to A? (cf. Atiyah [1], p. 79). It is also known that
M is not biholomorphically equivalent to B, (see Atiyah [1], p. 79).

Example 6. As stated in §1, for a two-dimensional, irreducible, smooth
quasi-projective algebraic surface M over the complex number field and for
every point p € M, there exists a Zariski neighborhood M of p such that M
has a holomorphic fibration (M,n, R) of Riemann surfaces over a Riemann
surface R.

3. Teichmiiller theory

3.1. In order to construct canonically a universal covering space M of
a holomorphic family (M,n,R) of Riemann surfaces of type (g,n), we use
Teichmiiller theory. We shall explain it in brief (refer to Bers [5], and Imayoshi
and Taniguchi [10]).

Let S be a fixed Riemann surface of analytically finite type (g,n) with
29 —2+n>0. A marked Riemann surface (S, f,S’) is a Riemann surface S’ of
analytically finite type (g,n) with a quasiconformal map f: S — S’. We define
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an equivalence relation between marked surfaces (S, f1,S)) and (S, f3,S,) if there
exists a conformal map 4 :S; — S, such that the self-map f5'oho fi: S — S
is homotopic to the identity. We denote by [S, f,S’] the equivalence class of
a representative (S, f,S’). The Teichmiiller space T(S) of a Riemann surface S
is the set of all these equivalence classes [S, f,S’]. Let Mod(S) be the set of all
homotopy classes [fo] of quasiconformal self-maps fo: S — S. We call Mod(S)
the Teichmiiller modular group of R. Every element [fy] acts on T(R) by

ol (1S, /.S =[S, fo fg ", 8.

3.2. Let G be a finitely generated Fuchsian group of the first kind with
no elliptic elements acting on the upper half-plane U such that the quotient
space S = U/G is of type (g,n). Let Ouom(G) be the set of all quasiconformal
automorphisms w of U leaving 0, 1, oo fixed and satisfying wGw™! = PSL(2,R),
where PSL(2,R) is the set of all real Mobius transformations. Two elements wy
and wy of Qe (G) are equivalent if w; = wy on the real axis R. The Teichmiiller
space T(G) of G is the set of all equivalence classes [w] obtained by classifying
Ouorm(G) by the above equivalence relation.

Let L*(U,G), be the complex Banach space of (equivalence classes of)
bounded complex-valued measurable functions 4 on U satisfying

g’ - v
Hoy 5=t geG, and |lu||, <1

For an element e L* (U, G), denote by w, the element in Q,m,(G) with
Beltrami coefficient . Let W# be the quasiconformal automorphism of the
Riemann sphere C such that W# has the Beltrami coefficient x« on the upper half-
plane U, and comformal on the lower half-plane L, and

(3.1) WH(z) :i*l* O(|z+1il)

as z — —i. This map W*# is uniquely determined by [w,] up to the equivalence
relation, i.e., w, =w, on R if and only if W#=W" on L. We set T3(G) =
{{W*|ueL*(U,G),}, which is called the Bers Teichmiiller space of G.

Let ¢, be the Schwarzian derivative of W# on L. Then ¢, is an element of
the space By(L,G) of bounded holomorphic quadratic differentials for G on L.
The space B»(L,G) is a (3g — 3 + n)-dimensional complex vector space. Bers
proved that the map sending [W#] into ¢, is a biholomorphic map of 7j3(G) onto
a holomorphically convex bounded domain of B,(L,G), which is denoted the
same notation 7p(G).

Denote by N(G) the set of all quasiconformal automorphisms @ of U with
wGw™!' = G. Two elements w;,w; € N(G) are equivalent if w; = w, o g on the
real axis R for some gy € G. Denote by [w] the equivalence class of a repre-
sentative w. Let Mod(G) be the set of all equivalence classes [w] in N(G). We
call Mod(G) the Teichmiiller modular group of G. Every element [w] acts on
T(G) by
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(] (1W]) = [Fowow™],

where [w] € T(G) and A e PSL(2,R) with Aowow ™! € Quom(G).

4. Construction of the universal covering space M of a holomorphic
family (M, 7, R) of Riemann surfaces

4.1. We shall describe a way to construct a universal covering space M of a
given holomorphic family (M, 7z, R) of Riemann surfaces of type (g,n) by using
Teichmiiller theory. This is due to Griffiths [8].

Let (M,n,R) be a holomorphic family of Riemann surfaces of type
(g,n) over R. Take a universal covering p : A — R with covering transformation
group I'.  Then there exists a holomorphic map ® : A — T(S) sending 7 € A into
(S, fe, Sy, where f;:S — S, is a quasiconformal map moving continuously
with resptect to the parameter 7. We call this holomorphic map ® : A — T(S) a
representation of (M, 7, R) into a Teichmiiller space 7(S). The representation ®
induces a group homomorphism ®, : I' — Mod(S) satisfying ® oy = ®.(y) o ®
for all yeT.

4.2. Identify T'(S) with T4(G). Then we obtain a representation ¥ : A —
T3(G) of (M,n, R) into T(G) and a biholomorphic map F; : D./G; — S for
each 7 e A, where W(7) = [W*0], D, = WO (U), and G, = WHOG(Wr)™! =
PSL(2,C).

We set

M ={(t,w)|teA,we D.}.

This set M is topologically equivalent to a two-dimensional cell. From (3.1)
Koebe’s one-quarter theorem shows that D. < {|w| <2} for all 7€ A, and so
M is a bounded domain in C>. It is also shown that M is a domain of
holomorphy. Let 7#: M — A be the holomorphic map sending (z,w) into t.
Then the fiber 77!(z) of (M,7,A) over t is biholomorphically equivalent D..

Let IT: M — M be the holomorphic map sending (z,w) into F:(w). Then
II: M — M is the universal covering of M constructed by Griffiths [§].

4.3.  We shall explicitly express the elements of the covering transformation
group % of the the universal covering I1: M — M. For each element y € I, the
homotopic monodromy M, of y for (M,n,R) is the element of the Teichmiiller
modular group Mod(G) with ® oy = .#,0 ®. The subgroup .# ={M,|yeT}
of Mod(G) is called the homotopic monodromy group of (M, n, R) with respect to
the representation ®.

Denote by N(G) the set of all quasiconformal automorphisms @ of U with
wGw™' = G. Take an element w, € N(G) inducing %, ie., [w,] = .4, We
may assume that w,.s = @, ocws for all y,6 eI

For each €A, let [w,y] be the point of T(G) with Beltrami coefficient
u(r) e L*(U, G), corresponding to the ¥(7) € T3(G). For every g e G, we set
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Wy(e) = Jo Wy(z) © (CU}' o 9)71 € Qnorm(G)’ where 4 is a real Mobius transformation.
Note that wyz) = Wy ()-
If we set

(7.9)(zw) = (2(2), WD o (@, 0 ) o (WHD) (),

then the map (y,g) is an analytic automorphism of M (see Bers [3], Theorem 2,
p. 95). We set

H(y,g)(z,w) = WD o (w,09) o (W) ().
Then H(y,g)(z,-): D; — Dy 1is a conformal map such that G, =

H(y,g)(z, )G (H(y,9)(x, -))71 and H(y,g)(t,-) induces a conformal map of D./G,

onto Dy(f)/GV(T) . . . ) )
Now the covering transformation group % of the universal covering

IT: M — M is identified with the set I x G. By definition, we have the relation

(y,9) 0 (0,h) = (yo&a)(;_l ogowsoh)

for all y,0 € T and g,/ € G, which implies that ¢ is a semi-direct product of I" by
G. Note that (y,9) = (d,h) if and only if y=0 and g =h.

5. Proof of Theorem 1

5.1. In this section we shall give a proof of Theorem 1. We use the
notation in §3 and §4.

If (M,n,R) is locally trivial, then the representation ¥ of (M,r, R) into a
Teichmiiller space 7(G) is constant. Hence M = A x Dy = A x A, which implies
that M is not biholomorphically equivalent to the unit ball B, by Poincaré’s
Theorem.

If the base surface R is not compact, the assertion of Theorem 1 is shown in
Imayoshi [9], pp. 584-586.

5.2. Let us consider the case n >0, ie., every fiber S, =7r"!(¢) is not
compact. Assume that there exists a biholomorphic map F = (F}, F) : M — B..

We may assume that for every ®.(y)=[f,] € Mod(S), yeI, the quasi-
conformal self-map f, : S — S fixes each puncture of S. In fact, the subgroup
M= {[f,] € D.(T) ] f, fixes every puncture of S} of ®@,(T") is a normal subgroup
A of finite index. Let I'"'={yel|[f,]e.#"}. Then I'' is a normal sub-
group of I and T'/T" is canonically isomorphic to .#/.#'. Hence T is a normal
subgroup of ' of finite index. Then there exists a unramified finite-sheeted
covering p, : R" — R such that the fundamental group of R’ is isomorphic to T’
and the covering transformation group of p,: R’ — R is isomorphic to ['/T".
Let z' : M’ — R’ be the fiber product of 7: M — R by p,: R’ — R, ie., M' =
{(p,t") e M x R |n(p) = py(t')} and n'(p,t') = t'. Then the fiber n'~!(¢') of M’
over ¢’ is biholomorphic to the fiber 7 !(py(¢')) of M over py(t'), and the
monodromy of (M’,zn’,R') with respect to arbitrary y' e I'" is [f{,) ] € 4.
Since M is biholomorphically equivalent to B, we see that the universal covering
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space M’ of M’ is also biholomorphically equivalent to B,. Therefore we may
consider (M', 7', R’) in place of (M,=x,R).

_5.3. Now suppose that there exists a biholomorphic map F = (Fi,F) :
M — B,, and that for every ®.(y) = [f,] € Mod(S), y eI, the quasiconformal
self-map f,: S — S fixes each puncture of S. We may also assume that for
every puncture po of S there exists a neighborhood U, of py such that f,(p) = p
for all pe U,.

We set #) = p(0), and S =S, = n ! (tp) = U/G. Take a cusp point {; € 0U
for G. From the assumption that the quasiconformal self-map f,:S — S in-
ducing @, (y) fixes each puncture of S it follows that for W.(y) = [w,] € Mod(G)
there exists an element g, € G such that

(5.1) gy 0 0y (W) =w
for any point w in a cusped region belonging to {; for G.
We set
1
Wo(z)=——
=) z+1°
Go = W'G(w" !,

Co= W) e 0Dy = oW (U).

5.4. Consider the holomorphic motion V' of 0Dy given by
V) = WHD o (WO 7'(0), (1,0) € A x 3Dy,
Note that V' is Gy-equivariant, that is, it satisfies the relation

(52) Vi(9(Q) = g7 (V*({)) on AxdDo

for all g€ Gy, where ¢g° = W9 ogo (W“(T))fl. Then an equivariant version
of Slodkowski’s extension theorem implies that the Gp-equivariant holomorphic
motion V' of 0Dy can be extended to a holomorphic motion of C (still called V')
in such a way that (5.2) holds for all gy € Gy, T€ A, and w e C (see Earle, Kra
and Krushkal’ [7], p. 928).

Take a sequence {w,},—, in a cusped region belonging to {, for G, with

lim,_.,, w, = ;. We define a holomorphic map A — M by
SH(T) = (T7 VT(WH))v

which is a holomorphic_section of (M JII,A). Here IT: M — A is the holo-
morphic map given by Il(t,w) = 7.
We put 7, = (w./)*l 0 g, 0w, and

Hy(t,w) = Hiy 1) (2, w)
= WHOE) 60, 0 hy o (WHEY (1),
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From (5.1) we get

(5.3) H, (7, WF (w,)) = WD) 6wy 0, 0 (w,)
— WwHO@) 4 g, 0 ,(wy)
- W”(V(’»(wn).

Let dp. be the Poincaré distance on D,. Then we obtain the following lemma:

Lemma 1. There exists a positive constant K depending on y and t such that

(5.4) dp, oy (Hy(z, V¥ (wy)), V7O () < K.

Proof. Noting H, : D — D, is conformal and (5.3), we get
(55)  dp,(Hy(z, VE(wa)), VI ()
< dp, o (H,(t, V7 (wn)), Hy(7, WH (w,)))
+dp, (o) (Hy(x, WO (w,)), V7O (wy,))
= dp (W* (), VF(wn)) + dp, oy (W0 (), V7 (o0,)).

Since V'* is quasiconformal on C by a theorem due to Mané, Sud and Sullivan
(cf. Bers and Royden [6], Theorem 1, p. 492), and V'* and W*() have the same
boundary values on 0D, Theichmiiller’s theorem implies that there exists a
positive constant K; such that

(5.6) dp (WD (w,), V(w,)) < Ki

for any n (see Theichmiiller [24], and Kra [15], Lemma 1, p. 234). Similarly, we
find a positive constant K, so that

(5.7) dp, (o) (WD) (1), V71 (w,)) < K>

for any n. Hence from (5.5), (5.6) and (5.7) we have

(5.8) dp, (o) (H (7, VE(wy)), V7O (wy)) < Ky + K>

for any n. O

5.5. Since B, is a bounded domain, we may assume that {Fos,}
converges uniformly on compact subsets of A. We may also assume that

(5.9) lim Fos,(tr) = lim F(z, V(wy,)) = (1,0) € B,
n—oo n—oo
for every 7€ A (see Imayoshi [9], pp. 584-585).
Let F,: % — Aut(B,) be the group homomorphism defined by

Fo(y,g)=F.yg)oF
for every (y,9) e 9 =T X G.
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Setting x, = (,h,), we show that

F.(x,)(1,0) = (1,0)
for all ye I as follows. Consider

(5.10) Foy,(t, Vi(wn) = Fu(x,) o F(z, V(W)
From (5.9) we have
(5.11) lim F(1,) o F(z, V" (w) = F.(2,)(1,0).

Let dp, be the Kobayashi distance on B,. (For the Kobayashi distance
refer to Jarnicki and Pflug [11], and Kobayashi [13].) The distance decreasing
property for holomorphic maps with respect to Kobayashi distances guarantees
that

(5.12) d, (F(7(2), H, (z, V¥ (0))), F(2(2), V7 (0,)))

< dp,, (H,(z, V(ws)), V7 (w,)) < K.
From (5.9) and (5.12) we conclude that
(5.13) lim Foy,(z, Vi(w,) = lim F(y(x), Bz, V*(w,)

= (1,0).
Therefore form (5.10), (5.11) and (5.13) we have
F*(){/,)(l,()) = (LO)
for any yeT.

By the same way as Imayoshi [9], pp. 585-587 we can prove Theorem 1 and
Corollary 1. This completes the proof of Theorem 1 and Corollary 1.

6. Proof of Theorem 2 for n >0
6.1. We recall the following three lemmas:

LEMMA 2. Any analytic automorphism of A* = (|z| < 1) x (|w| < 1) is either
one of following two types:

(I) (4, B)(z,w) = (A(z), B(w)),

(1) (4. B)(zw) = (A(w), B(2)).
where A, B € Aut(A).

(See Narashimhan [17], Proposition 3, p. 68.)

Lemma 3. Two Mébius transformations A and B are commutative if and only
if Fix(4) = Fix(B), i.e, they have the same set of fixed points provided that neither
is the identity and provided that A or B is not a transformation of order two.

(See Lehner [16], Theorems 1 and 2, p. 72.)



240 YOICHI IMAYOSHI AND MINORI NISHIMURA

LEMMA 4. Let A be a hyperbolic or loxodromic transformation and let B be a
Mébius transformation which has one and only one fixed point in common with A.
Then the sequence {Bo A" o B~ o A™}" | of Mdbius transformations converges to
a Mobius transformation as n — oo or —oo, so the group {A,B) generated by A
and B is not discrete.

(See Lehner [16], Theorem 2E, p. 94.)

6.2. Assume that (M,n, R) is a holomorphic family of Riemann surfaces
of type (g,n) with n> 0 and there exists a biholomorphic map F = (F}, F) :
M — A

First assume that for every @.(y) = [f,] € Mod(S), y e I', the quasiconformal
self-map f, : § — S fixes every puncture of S, and that F,(y,g) is of type (I) for
all (y,9)e9 =T xG.

We use the notation in §3, §4 and §5. Let gy be a parabolic element of G
with fixed point {;. Set {, = W”<T)(CO*) € 0D;, te A. For any y e I' there exists
an element g, € G satisfying (5.1). We put

hy = w;l 0 g, © (y,
Hy(T, L) = H(y,h,)(ﬁ ) = WwH(@) o (w}, o hy) o (W,U(r))—] (CT)'

Then we obtain

(61) Cy(r) = H"/(Ta Cr)
We put
(62) (A'/a BV) © F = F © (% h)’)7

where (4, B,) € Aut(A?).
Using the holomorphic motion V' in §5.4, we define a sequence {(¢,,¥,)}
of holomorphic maps from A into A% by

(6.3) (@(); ¥, (7)) = (Fi (7, VE(wa)), Fa(z, VE (W)

We may assume that {(¢,,¥,)},~, converges uniformly to a holomorphic map

(@0, o) : A — A% on compact subsets of A. Then the maximum theorem for
holomorphic functions yields one of the following four cases:

(1) (90, ) (A) < A.

(2) (@y,¥,) is constant on A with value (cj,c;) € (0A)

(3) @, is constant on A with value ¢; € 0A, and Y, (A) = A.

4) ¢o(A) = A, and ), is constant on A with value ¢, € 0A.
Since F is a proper map, case (1) does not occur. We show that case (2)
neither occurs as follows. Assume that (¢,,1,) is constant on A with value
(¢1,¢2) € (0A)%. From (5.8), (6.1), (6.2) and (6.3), for any y e I' we obtain

(64) A},(Cl) = (1, and By(Cz) = (.

©
n=1

2
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Take two elements y,0 € I with y0 # dy. Then we have (y,%,) o (0, hs) # (0, hs) o
(y,h,), and so (4,,B,) o (As, Bs) # (As, Bs) o (4,,B,). Hence we get

(6.5) A,A5 # AsA,, or B,B;# BsB,.

Therefore Lemmas 3, 4, (6.4) and (6.5) imply that F.(%) is not discrete. This is
a contradiction.

In case (3) we see that y, is not constant as follows. Suppose that y, is
constant with value ¢; € A. From (5.8), (6.1), (6.2) and (6.3), for any ye " we
have

(66) Ay(cl) = (1, and By(Cz) = ().

Let ¢f be the reflection of ¢; with respect to the unit circle 0A. Since
A, € Aut(A), we see that

(6.7) A,(er) = ¢
for any yeI'. Hence Lemma 3, (6.6) and (6.7) imply that
(6.8) A,As = AsA,

for all y,0eT.

Take two elements y,0 e ' with y0 #Jy. Then we have (y,h,) o (6,hs) #
(0,hs) o (y,hy), and so (A4,,B,)o (As, Bs) # (As, Bs) o (4,,B,). Noting (6.8) we
get

(6.9) B,B; # BsB,.

Therefore Lemmas 3, 4, (6.8) and (6.9) imply that F.(%) is not discrete. This is
a contradiction.

Now assume that ¢, is constant on A with value ¢; € 0A and ,: A — Aisa
non-constant holomorphic map. Let F o (1,g) = (4o, By) o F. Then from (6.1),
(6.2) and (6.3) we obtain

90(7) = Ao 0 9(7) = Ao(c1) = c1, and () = Bo © Yo(7).

Since Y, is not constant, we see that Ag(c;) = ¢;, and By = 1, and so F.(1,g) =
(Ap, 1), where Ay is of infinite order and has a fixed point ¢; € JA. By a theorem
due to Shimizu [23] (Theorem 2, p. 39), we see that

41 = {4, € Aut(A) | (4q, By) = F.(1,9), g € G},

are discrete.

If Fp[p : D — A is not constant, then F|, induces a non-constant holo-
morphic map [F],:D./G; — A/%;. Since the Riemann surface D./G; is of
analytically finite type, we see that [F>], has a holomorphic extension to the
compactification of D;/G,;. Hence we have y(z) € 0A, and so by the maxi-
mum principle we conclude that i, is constant on A, which is a contradiction.
Therefore, F, is constant on D, for all T € A, and F,(1,g) is of form (4,,1) for
any g € G, ie.,
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gl* = {AG € Aut(A) | (Al/7 1) = F*(lvg)7g € G}

Therefore S, = D;/G. = A/%; for every 1€ A. Similarly, in case (4) we can
show that all fibers S, are biholomorphically equivalent.

6.3. Next we prove that F.(y,g) is of type (I) for all (y,9)e 4 =T X G
provided that for every ®.(y) = [f,] € Mod(S), y eI, the quasiconformal self-
map f,:S — S fixes every puncture of S. Assume that ¥; = {(4,B)|(4,B) =
Fo(y,g)oF~!is of type (I),(y,g9) e [ X G} is a subgroup of %* of index two.
By the same argument as in §6.2 we see that one of the following two cases holds:

(1) Fy is constant and F, is non-constant on D, for all 7€ A.

(2) F» is constant and Fj is non-constant on D, for all 7€ A.

In case (1), if (4, B) = (4,B) = F o (y,g) o F~! is of type (II) for some (7, g), then
we have Fi(y(t), H, 4(7,w)) = Ao Fy(t,w). Since Fy is constant and 4o F, is
non-constant on D,, we have a contradiction. Hence every F o (y,g) o F~! is of
type (I). Similarly it follows that in case (2), every F o (y,g) o F~! is of type (I).

6.4. If T has an element y such that ®,(y) = [f,] € Mod(S) does not fix a
puncture of S, then the same reasoning as one in §5.2 implies that all fibers S, are
biholomorphically equivalent.

7. Proof of Theorem 2 for a compact complex surface M

7.1. We shall give a proof of Theorem 2 in the case where M is compact,
that is, the base surface R is compact and n =0, i.e., every fiber S; = z~!(¢) is
also compact. ~

Assume that there exists a biholomorphic map F = (Fy, F>) : A* - M. We
also assume that every element of 4* = F~'4F is of type (I).

We shall show that F = (F), F,) satisfies the following:

0F) oF;

—_ 2 _ 2
(7.1) 62_0 on A°, or 6W—O on A“.

In order to obtain (7.1) we show that

(7.2) lim oh (Zp, W) X ﬂ(zn, wy) =0

n—ow OW ow
for any point ({5, wo) € 9A x A and any sequence {(z,,w,)}.~, of points in A
with lim,,_ o (z,, w,) = ({o, wo)-
Suppose that (7.2) does not hold for some ({y, wo) and {(z4,wn)},—;. Then
there exists a positive constant & and a subsequence {(z,,wy)}; such that
OF, OF
(7.3) 5_112 (an Wn,') X 71}2 (Zi’l,'a Wn,‘) = &

for all ;.
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Since M is a bounded domain, we may assume that the sequence

{F(zy,-)},2, of holomorphic maps F(ﬂ/, ):A=(w| < 1) — M converges to a

holomorphic map ¢ = (¢1,¢2):A—>M uniformly on compact subsets of A,
where M is the closure of M.

Let Z be a fundamental set for ¥*. Note that # € A?, for M is compact.
Then we can find a sequence {(a;,b;)};Z; of points in # and a sequence
{4, Bj} 2, of elements in ¥* such that

(4, B)(aj, by) = (Aj(ay), Bj(b)) = (zu, w,)-

We may assume that (a;,b;) converges to a point (ag,bo) € A>. We may also
assume that (A, B;) converges to ((p,By) uniformly on compact subsets of
A%, where (, is the constant map with value {, and By e Aut(A). Because
conditions lim;_.,, a; = ap € A and lim;_,, 4;(a;) = {y € 0A imply lim;_.,, 4; = {o,
and conditions lim;_,, b; = by € A and lim;_,, B;(b;) = wy € A imply lim; .., B; =
By € Aut(A).

We put F,(4;,B)=Fo(A4;,B)oF ' =(y,9)€%=TxG. Then we
have

(7.4) Fi(4;(aj), Bi(b;)) = y; 0 Fi(aj, b)),
(7.5) F>(4;(a;), Bi(by)) = Hi(Fi(a;, b)), F>(a;, b)),
where Hj = Hy, ).

Since F:A>— M is biholomorphic, we see that (77, 95) o F(aj, b)) =
F(zy,,wy,) converges to a boundary point ¢(wo) = (¢(wo), 9, (wo)) of M.

If ¢;(wo) € 0A = (|z| < 1), then we may assume that {y;}; converges to a
constant map ¢;(wo) uniformly on compact subsets of A, because y; € Aut(A),
lim; ., Fi(a;, b;) = Fi(ao, bo) € A, and lim;_.., y; 0 Fi(a), by) = limj .o, Fi(zy, by)
= ¢,(wy) € dA. Hence from

dyj o Fj (aj, W) _ dF, (Aj(aj), Bj(W))

dw dw
B dF, (z,,j, Bi(w))
N dw
0F)
= W(zn/.,Bj(w)) x Bj(w)
we obtain
. 0F , B
jlingo W(anBj(W)) x By(w) = 0.

Since B;(b;) = w,, and Bj(w) # 0, we conclude that

. OF
Iim —(z,.,w,.) = 0.
/l»nvl ow (2 w,) =0
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Since lim; .., 0F>/0w(zy, wy,,) exists, we have

/ll>n31C ?(znﬂwn]) an (20, W) = 0,

which is a contradiction to (7.3).

If ¢,(wo) € A= (|z| <1), then we may assume that there exists an element
70 € I such that y; =y, for any j. In fact, assuming y, converges to a holo-
morphic map y, : A — A uniformly on compact subsets of A, the assumptions
lim; ... Fi(aj,b;) = Fi(ao,bo) € A and lim; ., y;0 Fi(a;,b;) — ¢(wo) € A imply
that y, € Aut(A), and the discreteness of I" implies that y; = y; for all sufficiently
large j and k. Let t; = Fi(a;,b;) and 79 = Fi(ao,bo). Then H(tj,-): D, —
D, is conformal and we may assume that {Hj(7;,-)}Z, converges to a
holomorphic map Hy : Dy, — D, (z,) uniformly on compact subsets of D,,. Since
Ho(F(ao,bo)) = ¢2(wo) € 0D, (), We see that Hy is constant on D,,. Hence from

dH; o F(aj,w) _ dFy(4;(a)), B;(w))

dw dw
_ dFy(zn, Bi(w))
B dw
oF,

= =~ (20, Bj(w)) x Bj(w)

we obtain

lim @(znﬂBj(w)) x By(w) = 0.

j—o 0w
Since Bj(b;) = w,, and By(w) # 0, we conclude that
OF

lim —z(z,, s Wy ) = 0.
J—o0 a J J

Since lim; .., 0F;/0w(z,;, w,,) exists, we have

0F) 0F,
lim —— (z,,, wy;) ¥ T

o Ow (anv an) =0,

which is a contradiction to (7.3).

Therefore we have (7.2) for any point ({o,wo) € 0A X A and any sequence
{(znywn)},, of points in A? with lim,— o (24, wn) = ({o,wo). Then Radd’s
theorem implies

_ = — 2
(7.6) = aw 0 on A-.

(See Narashimhan [17], Theorem 1, p. 53). Hence we have

F F
(7.7) %:0 on A*, or Q:O on AZ,
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By a similar way as above we obtain

aFl 2 2

. — = A — = A
(7.8) 2 0 on A°, or 2 0
Since

oR o

0z Ow

det
o o
0z Ow

does not vanish at every point of A%, from (7.7) and (7.8) we see that one of the
following two relations holds:

(i) 0F/0z=0F,/ow=0 on A’

(ii) 0F/ow = 0F,/0z =0 on A*.

If relation (i) holds, then Fj(z,w)= Fi;(w), i.e., F) is independent on z.
Then F~'o(l,g)oF is of form (A4, 1) and of type (I) for every g e G. Thus
setting .o/% = {4, (4,,1) = F 1o (1,9) 0 F,ge G}, we see that

Sp(r) = D-[/GT = A/%g

for any 7€ A, which concludes that all the fibers S; are biholomorphically
equivalent.

If relation (ii) holds, then Fi(z,w) = Fi(z), and F~'o(l,g)o F is of form
(1,By) and of type (I) for every ge G. Thus we have

Sp(r) = DT/G = A/%g

for any 7€ A, where 4. = {B,|(1,B,) = F~'o(l,g9)oF,ge G}. Hence all the
fibers S; are biholomorphically equivalent.

7.2. Let M be compact, and assume that there exists a biholomorphic map
F=(F,F,):A* - M, and 4* = F~'9F has an element of type (II). Let %;
be the set all elements of type (I) in 4*, which is a normal subgroup of 4* of
index two. Using ¥ in place of ¥*, the same way as in §7.1 we see that
Fi(z,w) = Fi(w) or Fi(z,w) = Fi(z). If Fi(z,w) = F;(w), then F~1o(1,g)0 F is
of form (A4, 1) and of type (I) for every g € G. Hence by the same reasoning as
above we obtain

Sp(f) = DT/GT = A/&fg

for any 7e A, which concludes that all the fibers S; are biholomorphically
equivalent.
Similarly if Fi(z,w) = Fi(z), then we see that

S/,(T> = DT/GT = A/,@é

Hence all the fibers S, are biholomorphically equivalent.
This completes the proof of Theorem 2 in the case where M is compact.
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7.3. In the case where the base surface R is not compact, a proof of
Theorem 2 is given Imayoshi [9], pp. 587-596.

If all the fibers S, =n"'(s) are biholomorphically equivalent, then the
representation W of (M, R) into T(G) is constant, and so M = A x Dy = (A)*.
This completes the proof of Theorem 2.

Finally we note that a proof of Corollary 2 is given in Imayoshi [9], p. 587.
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