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INVARIANT TRACE FIELDS OF ONCE-PUNCTURED TORUS

BUNDLES

J. O. Button

Abstract

We show that there exist hyperbolic once-punctured torus bundles with 2-generator

fundamental groups which have invariant trace fields of arbitrarily high degree. We

also answer a question of Bowditch on stabilisers of Marko¤ triples.

1. Introduction

Given a Kleinian group G, that is a discrete subgroup of PSLð2;CÞ, we have
the trace field Qðtr GÞJC which is the field generated by the traces of elements
in G (or rather by their representatives in SLð2;CÞ). Throughout this paper we
are only interested in the case when G is finitely generated. Then the trace field
is also finitely generated over Q by [6]; however in general Qðtr GÞ will contain
transcendental elements. We also have the invariant trace field Qðtr Gð2ÞÞ of
G, where Gð2Þ ¼ hg2 j g A Gi and has finite index in G so that Qðtr Gð2ÞÞ is a
subfield of Qðtr GÞ that is also finitely generated. The invariant trace field has
the advantage that it is an invariant of the commensurability class of G if G is
non-elementary (see [9] Theorem 3.3.4).

Let M be a complete hyperbolic 3-manifold so that we can regard it as
H3=G where G is a torsion free Kleinian group. Assuming that G is non-
elementary, we know that M has finite volume if and only if it is closed or is
homeomorphic to the interior of a compact 3-manifold with all boundary com-
ponents being tori (we call these the cusps). In this case Qðtr GÞ, and hence the
invariant trace field Qðtr Gð2ÞÞ, is a number field (see [9] Theorem 3.1.2), namely
a finite extension over Q which has the form QðyÞ for y an algebraic integer
which satisfies a unique irreducible monic polynomial in Z½t� called the minimal
polynomial. Thus a question that immediately arises here is what number fields
can arise as the trace field or invariant trace field of a finite volume hyperbolic
3-manifold. This is Problem 3.61 in [8] and also it is asked in [9] Section 5.6
where it is pointed out that this is a wide open question. As any number field
QðyÞ that occurs comes equipped with a pair of complex conjugate embeddings
into C by considering G (or Gð2Þ) as a subgroup of PSLð2;CÞ whose traces will
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not all be real, it must have at least one complex place. If QðyÞ has exactly one
complex place then there exist closed hyperbolic 3-manifolds M with p1M being
arithmetic and having invariant trace field QðyÞ; conversely the invariant trace
fields of arithmetic Kleinian groups do have exactly one complex place. There
are also examples of closed hyperbolic 3-manifolds whose invariant trace field is

a quadratic extension of Q cos
2p

n

� �
for n a su‰ciently large integer, for instance

the polyhedral groups obtained from triangular prisms and the Fibonacci mani-
folds in [9] Section 4.7.3 and 4.8.2 respectively.

However when we consider cusped hyperbolic 3-manifolds, those which are
arithmetic will all have an imaginary quadratic number field for their invariant
trace field, thus we will not find number fields with degree greater than 2 by this
means. There is a construction which produces invariant trace fields of cusped
finite volume hyperbolic 3-manifolds that are of arbitrarily high degree in [9]
Theorem 5.6.4; here it is shown that for any positive square free integers
d1; . . . ; dr the field Qð

ffiffiffiffiffiffiffiffiffi
�d1

p
; . . . ;

ffiffiffiffiffiffiffiffi
�dr

p
Þ occurs as an invariant trace field, and this

is achieved by building up 3-manifolds via cutting and pasting along incom-
pressible thrice punctured spheres. This method will produce 3-manifolds that
may well become more and more complicated topologically as the degree of the
invariant trace field increases. Another approach might be to take an infinite
family of well understood cusped 3-manifolds and show that the degrees of the
trace fields in this family are unbounded. This is done in [7] for the family of
hyperbolic twist knots and it is proved that the degree of the trace field is in fact
the number of twists.

Another family of cusped hyperbolic 3-manifolds which appears in many
guises throughout the literature is the family of hyperbolic once-punctured torus
bundles. These can be regarded as amongst the most well understood of finite
volume hyperbolic 3-manifolds. In this note we prove that there exist hyper-
bolic once-punctured torus bundles with invariant trace field (hence also their
trace field) having arbitrarily high degree. The particular once-punctured torus
bundles that we examine all have 2-generator fundamental groups, thus making
them particularly basic examples of fibred hyperbolic 3-manifolds with (invariant)
trace fields of arbitrarily high degree. In addition we show that their invariant
trace fields have no real places. Another possible point of interest is provided by
Thurston’s famous conjecture that every finite volume hyperbolic 3-manifold has
a finite cover which fibres over the circle: if this turns out to be true then the
fields that can occur as invariant trace fields of finite volume hyperbolic 3-
manifolds are precisely the ones that occur for hyperbolic fibre bundles. Also
our construction also allows us to answer a question of Bowditch on stabilisers of
Marko¤ triples.

2. Once-punctured torus bundles

We know by the work of Thurston that if we have an orientation preserving
homeomorphism of a compact orientable surface S then the interior of the
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mapping torus M has a hyperbolic structure if and only if the homeomorphism is
pseudo-Anosov. We can view this group-theoretically: we have

p1M ¼ ht; x1; . . . ; xn : R; txit
�1 ¼ f�ðxiÞi

where p1S ¼ hx1; . . . ; xni is the fibre subgroup, which will be normal in p1M.
Here R is empty if S has boundary and consists of the one standard relation of
p1S if S is closed, and f� is the automorphism of p1S induced by the glueing
homeomorphism f of S. Each element of p1M has a unique expression of the
form ktm where k A p1S, and we multiply by the rule k1t

mk2t
n ¼ k1f

m
� ðk2Þtmþn.

We are considering the situation where the fibre is a once-punctured torus, so that
p1S ¼ F2 is the free group on two elements, say x and y, with the com-
mutator z ¼ xyx�1y�1 a peripheral element representing the boundary curve.
The mapping class group (group of orientation preserving self-homeomorphisms
of S up to isotopy) is very well understood in this case. We can think of an
element of the mapping class group as an outer automorphism of F2; as all
automorphisms are induced by homeomorphisms of S we have that the mapping
class group can be identified with the orientation preserving outer automorphisms
(those that send the commutator z to a conjugate of itself rather than its inverse).
This group is well known to be SLð2;ZÞ, generated by the elements L, R and e
where

Lðx; yÞ ¼ ðxy; yÞ corresponds to
1 0

1 1

� �
;

Rðx; yÞ ¼ ðx; yxÞ corresponds to
1 1

0 1

� �
;

and eðx; yÞ ¼ ðx�1; y�1Þ corresponds to
�1 0

0 �1

� �
:

The pseudo-Anosov elements are precisely those representing hyperbolic elements
of SLð2;ZÞ (those whose trace has modulus greater than 2). Every hyperbolic
element of SLð2;ZÞ has a ‘‘left-right’’ decomposition in that it is conjugate to an
element of the form

e jRm1Ln1 � � �RmkLnk

for mi; ni > 0 and j ¼ 0 or 1. Also this is unique up to a cyclic permutation.
We need to show how, given a hyperbolic once-punctured torus bundle, it is

straightforward to find its invariant trace field. We use [9] Corollary 4.3.2 which
tells us that the invariant trace field of a hyperbolic surface bundle is the same as
that of the fibre subgroup. But our fibre subgroup p1S is a two generator group
so we can use the following: Given ðA;BÞ A SLð2;CÞ2, let

ða; b; cÞ ¼ ðtr A; tr B; tr ABÞ A C3

be the trace triple of this ordered pair. We can also define this to be the trace
triple of an ordered pair of elements of PSLð2;CÞ, up to the change of sign of
any two elements of the triple. If the quantity a2 þ b2 þ c2 � abc (which is
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trðABA�1B�1Þ þ 2 and well defined in the case of PSLð2;CÞ) is not equal to 4
then the trace triple is a parametrisation of simultaneous conjugacy: that is,
given ðA 0;B 0Þ A SLð2;CÞ2 then there exists K A SLð2;CÞ with KAK�1 ¼ A 0 and
KBK�1 ¼ B 0 if and only if the respective trace triples are equal (and this works
for PSLð2;CÞ too, up to the action of this Klein 4-group of sign changes).
All this is well known, as is the fact that for any word wðx; yÞ A F2 there is
a trace polynomial pw A Z½t1; t2; t3� so that for ðA;BÞ A SLð2;CÞ2 we have
tr wðA;BÞ ¼ pw evaluated at its trace triple. In particular we see that the trace
field of a two generator group G ¼ hA;Bi is Qða; b; cÞ and, using [9] Lemma
3.5.7, the invariant trace field kG ¼ Qða2; b2; abcÞ provided that G is non-
elementary and a; b0 0.

In order to deal with hyperbolic once-punctured torus bundles, first note that
if we choose any generating pair ðA;BÞ for the fibre subgroup p1SaPSLð2;CÞ
then the peripheral curve of S must be represented by a parabolic element, so
that the trace of the commutator ABA�1B�1 must be �2 which implies that the
trace triple of ðA;BÞ satisfies a2 þ b2 þ c2 ¼ abc. Moreover if f� is the auto-
morphism of p1S induced by the homeomorphism f, we must have an element
T A PSLð2;CÞ with ðTAT�1;TBT�1Þ ¼ ðf�ðAÞ; f�ðBÞÞ so that its trace triple is
the same as that of ðA;BÞ. But thinking of f� as an outer automorphism of the
free group F2, we can express its action on any trace triple by noting the results
of the generators e, L, R on trace triples, which are:

Lða; b; cÞ ¼ ðc; b; bc� aÞ
Rða; b; cÞ ¼ ða; c; ac� bÞ

with e leaving the trace triple unchanged (although it will change the element T).
Therefore the trace triple corresponding to the chosen generating pair of p1S is a
fixed point under f�, at least up to the group of sign changes, and if we were to
choose a di¤erent generating pair, say ðaA; aBÞ for an automorphism a of F2,
then this would be fixed by af�a

�1.
Much more powerfully, if we know that f is pseudo-Anosov and we attempt

to solve for trace triples fixed by f� then Thurston’s work ensures that we will be
able to find such a point (and its complex conjugate) which also satisfies the
parabolic relation and such that the pair ðA;BÞ obtained from the trace triple
generates a discrete group that is free of rank 2 and is the fibre subgroup of
a hyperbolic once-punctured torus bundle. We can show that these two trace
triples will be the only fixed points of f� that represent generating pairs ðA;BÞ
giving rise to a discrete free group.

Proposition 2.1. If M is a compact orientable 3-manifold fibred over the
circle by the surface S using the homeomorphism f and y : p1M ! G is a homo-
morphism into any group G which is injective on restriction to the fibre subgroup
p1S then either y is itself injective or f� is a periodic outer automorphism.

Proof. Setting K ¼ Ker y, we have

j. o. button184



K ¼ K

p1S VK
G

Kp1S

p1S

which is a subgroup of Z ¼ p1M=p1S. So if K is non-trivial, it is a cyclic
normal subgroup hki of p1M. Thus for all s A p1S we have sks�1 ¼ kG1, but
writing k ¼ s 0tm for s 0 A p1S and m0 0 (as k B p1S) we see by abelianising that
k commutes with all of p1S. Thus the automorphism fm

� , which is conjugation
by tm, is seen to be also conjugation by ðs 0Þ�1 and so is inner. r

Corollary 2.2. If we have a trace triple ða; b; cÞ fixed by f�, where f is a
pseudo-Anosov homeomorphism of the once-punctured torus, such that the gen-
erating pair ðA;BÞ obtained from ða; b; cÞ generates a free discrete group then
hA;Bi is the fibre subgroup in PSLð2;CÞ of the hyperbolic once-punctured torus
bundle with glueing homeomorphism f.

Proof. We take the element T A PSLð2;CÞ where conjugation of ðA;BÞ by
T induces the automorphism f� of F2. But hA;Bi is free and discrete, and is a
normal subgroup of G ¼ hT ;A;Bi. This implies that G must itself be discrete
(for instance see [10] Sublemma 6.3.4); moreover G is also a homomorphic image
of the fundamental group of the hyperbolic once punctured torus bundle obtained
from f�. Thus by Proposition 2.1, as f is not periodic we have that our
homomorphism is an isomorphism of this fundamental group onto a discrete
subgroup of PSLð2;CÞ. Thus by Mostow-Prasad-Marden rigidity, this iso-
morphism is just conjugation or anti-conjugation. r

Moreover we do not have to worry about f� fixing our trace triple only up
to sign changes; if G ¼ hT ;A;Bi is the fundamental group of the finite volume
hyperbolic 3-manifold that we are trying to find then it is discrete and without 2-
torsion, so that a result of Culler [4] states that we can find a lift G ¼ hT ;A;Bi
of G in SLð2;CÞ, namely a subgroup of SLð2;CÞ isomorphic to G and projecting
down onto it. Thus the action of T by conjugation on A and on B results in
the same words in A and B as that of T on A and on B. Hence ðA;BÞ and
ðf�ðAÞ; f�ðBÞÞ are conjugate in SLð2;CÞ so their trace triples are the same,
including signs.

The automorphisms we consider are ak ¼ L�1R�k, with the associated
homeomorphisms being pseudo-Anosov if k0 0. We have akðx; yÞ ¼
ðxkþ1y�1; yx�kÞ so that y can be eliminated from the first relation, making the
fundamental group of the fibre bundle 2-generator. On conjugation by RL�1R
it is readily seen that the ‘‘left-right’’ form of ak is RLk, but we stick with this
definition for ease of calculation.

We can show immediately by induction:

Lemma 2.3.

R�kða; b; cÞ ¼ ða; pkðaÞb� pk�1ðaÞc; pk�1ðaÞb� pk�2ðaÞcÞ
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where the polynomial pk A Z½t� satisfies the second order recurrence relation
pkþ1ðtÞ ¼ tpkðtÞ � pk�1ðtÞ and p0ðtÞ ¼ 1, p1ðtÞ ¼ t.

In fact it is easily checked that pkð2 cos yÞ ¼ sinðk þ 1Þy=sin y so they are
merely the Chebyshev polynomials of the second kind (normalised to make them
monic). We now look for the fixed points of L�1R�k.

Lemma 2.4. If L�1R�kða; b; cÞ ¼ ða; b; cÞ0 ð0; 0; 0Þ and a2 þ b2 þ c2 ¼ abc
then ða; b; cÞ ¼ ða; 3 � pkðaÞ; aÞ and a is a root of the degree k þ 2 polynomial
zkðtÞ, where

zkðtÞ ¼ ðt2 � 3ÞpkðtÞ � pk�2ðtÞ þ 6 � t2:

Proof. We have R�kða; b; cÞ ¼ Lða; b; cÞ, giving a ¼ c and hence

bðpkðaÞ � 1Þ ¼ apk�1ðaÞ; 2a2 þ b2 ¼ a2b:

Eliminating b from these two equations, cancelling a (as a ¼ 0 only gives rise to
the trivial solution) and using the identity pk�1ðaÞpkþ1ðaÞ ¼ p2

kðaÞ � 1, we obtain

ðpkðaÞ � 1ÞðpkðaÞ � 3Þ þ apk�1ðaÞ ¼ 0:

Thus ðpkðaÞ � 1ÞðpkðaÞ � 3 þ bÞ ¼ 0 but if pkðaÞ ¼ 1 we have pk�1ðaÞ ¼ 0,
pk�2ðaÞ ¼ �1. Then on returning to the original equations we would get
a ¼ ba� a but b ¼ 2 implies 4 ¼ 0. Hence we must have b ¼ 3 � pkðaÞ which
gives us a triple of ða; 3 � pkðaÞ; aÞ. Then using the equation displayed above
(and the recurrence relation) as well as the commutator condition provides us
with the following simultaneous equations in a:

p2
k � 3pk þ pk�2 þ 3 ¼ 0

p2
k þ ða2 � 6Þpk þ 9 � a2 ¼ 0

from which we obtain zkðaÞ. r

Note: we can also look for fixed points of R�k and certainly if we have
pkðaÞ ¼ 1 and pk�2ðaÞ ¼ �1 then we can take any b; c A C subject to a2 þ b2 þ
c2 ¼ abc. To see that this is easy to arrange, note that if y ¼ 2pn=k for n ¼
1; . . . ; ðk � 1Þ=2 ðk oddÞ or n ¼ 1; . . . ; k=2 � 1 ðk evenÞ then, setting a ¼ 2 cos y,
we have pkðaÞ ¼ sinðk þ 1Þy=sin y which gives us a fixed point.

But we can find fixed points of L�j in exactly the same way: we just need
pjðbÞ ¼ 1 and pj�2ðbÞ ¼ �1, thus b ¼ 2 cos f for f ¼ 2pm=j. The reason why we
raise this is because it answers a question of Bowditch. We have the action of L
and R on F ¼ fða; b; cÞ A C : a2 þ b2 þ c2 ¼ abcg via trace triples, and the group
generated by L and R (or more correctly their images when quotiented out by the
kernel of the action, namely hei) is PSLð2;ZÞ. In [2] p. 724 it says: ‘‘Another
question of interest seems to be which subgroups of PSLð2;ZÞ can stabilise
an element of Fnfð0; 0; 0Þg. The only examples I know are either finite or
virtually cyclic.’’ Of course only ð0; 0; 0Þ has stabiliser PSLð2;ZÞ and in fact it
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is straightforward to show that this is the only point in F with a finite orbit.
However we obtain:

Proposition 2.5. There exist points ða; b; cÞ A Fnfð0; 0; 0Þg whose stabilisers
contain non-abelian free groups.

Proof. As described above, given any j; kb 3 we can find a0 0 such
that ða; b; cÞ is fixed by Rk for any b and c with ða; b; cÞ A F, and b0 0 such that
ða; b; cÞ is fixed by L j for any a and c with ða; b; cÞ A F. Taking that a and that
b, we solve the quadratic equation for c to obtain a trace triple with stabiliser
containing hL j ;RkiaPSLð2;ZÞ which for j; kb 3 is a rank 2 free subgroup of
PSLð2;ZÞ of infinite index. r

Moving back to the hyperbolic once-punctured torus bundle Mk with
monodromy L�1R�k and fibre Sk, we can now find its invariant trace field.

Lemma 2.6. The invariant trace field kðp1MkÞ equals QðaÞ or Qða2Þ, where a
is a root of the polynomial zk.

Proof. We know from before that kðp1MkÞ ¼ kðp1SkÞ ¼ Qða2; b2; abcÞ as
a; b0 0 because p1Sk is torsion free, so our field is Qða2; 3 � pkðaÞÞ. This is
QðaÞ unless both pk and the minimum polynomial of a contain only terms of
even degree. r

Of course we only know that the minimum polynomial of a is a factor of zk,
not zk itself. A quick computer check up to k ¼ 100 suggests that zk is irre-
ducible over Z for even k, and for odd k it is irreducible except for the linear
factor aþ 2. However we merely need to show that these minimum polynomials
have arbitrarily high degree and we can do this by looking for irreducible factors
over Z2.

Theorem 2.7. If k ¼ 2 l � 2 where l � 1 is prime then any factor of the
polynomial zk has degree equivalent to 0, 1, 2, 3 or 4 modulo l � 1.

Proof. We examine our polynomials pkðtÞ over Z2 and spot a possible
pattern: for any k of the form 2n � 1, we find pkðtÞ1 tk which will be shown in
Lemma 2.10 below. Now over Z2 we have

zkðtÞ1 ðt2 þ 1ÞpkðtÞ þ pk�2ðtÞ þ t2

which, replacing tpk with pkþ1 þ pk�1 and pk þ pk�2 with tpk�1, becomes zkðtÞ1
tpkþ1ðtÞ þ t2. Hence putting k ¼ 2 l � 2 and using our assumption we obtain

z2 l�2ðtÞ1 t2 l þ t2:

However it is well known that over the field Zp the polynomial tp
j � t is the

product of all the irreducible polynomials whose degree divides j. Hence

z2 l�2ðtÞ1 ðt2 l�1 þ tÞ2
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is the product of the squares of all the irreducible polynomials over Z2 with
degree dividing l � 1, so for l � 1 prime the irreducible factors will all be of
degree l � 1 except for t twice and tþ 1 twice. Then the irreducible factors of
z2 l�2 over Z will each factor over Z2 into a product of these terms. r

Corollary 2.8. If Mk is the hyperbolic once-punctured torus bundle with
monodromy L�1R�k then there exist invariant trace fields kðp1MkÞ with arbitrarily
high degree.

Proof. We choose k ¼ 2 l � 2 for l � 1 prime as above and we know that
the invariant trace field kðp1MkÞ is QðaÞ or Qða2Þ so its degree is the same as
the minimum polynomial of a (or half that in the latter case if the minimum
polynomial has only even coe‰cients). The minimum polynomial mk of a
divides zk from Lemma 2.6 and from Theorem 2.7 we have that any factor of zk
has degree ðl � 1Þnþ r for n ¼ 0; 1; 2; . . . and r ¼ 0; 1; 2; 3 or 4. We just need to
eliminate mk having degree 1, 2, 3 or 4. If we have degree 1 then the invariant
trace field is real which cannot occur here. If it is degree 2 then a is a quadratic
integer (as zk is monic) so the fact that the trace triple consists of algebraic
integers means that all traces in the fibre subgroup are also algebraic integers,
because the trace polynomials pw have integer coe‰cients. This implies that
every trace in p1Mk is also an algebraic integer, using Proposition 2.8 of [1] which
states that if a subgroup of SLð2;CÞ has integral traces then so does its nor-
maliser. Thus we have a finite volume 3-manifold whose fundamental group has
an imaginary quadratic invariant trace field with all traces algebraic integers,
which means that p1Mk is arithmetic. But the paper [3] classifies arithmetic
hyperbolic once-punctured torus bundles: they are all a cyclic cover or the sister
of a cyclic cover (meaning e times a cyclic cover) of the bundles with monodromy
RL, R2L and R2L2 (note that the authors have swapped the definitions of L
and R in [3] and in [9], and here we are using the notation of [9]). But our
monodromy is (the inverse of ) RkL so is not one of these for k > 2.

As for mk having degree 3 or 4, note that zkðtÞ contains only even powers of
t for even k because pkðtÞ does. Thus mkð�tÞ also divides zkðtÞ, giving rise to a
factor of zk of degree 6 in the first case which from Theorem 2.7 we know cannot
happen for lb 8. Similarly for lb 12 we cannot have a factor of zk of degree 8,
so we must have mkðtÞ ¼ t4 þ a2t

2 þ a0. But pk also consists only of even terms,
thus making the invariant trace field Qða2Þ which is again an imaginary quadratic
number field so that we are back in the arithmetic case. r

We can also show that in the above cases the invariant trace field has no real
places.

Proposition 2.9. For positive k1 2 mod 4 the invariant trace field kðp1MkÞ
has no real places.

Proof. We need to show that the minimal polynomial mk has no real or
imaginary roots (imaginary in case the trace field is Qða2Þ), so we show this is
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true of zk. We can write zk in some useful alternative forms: setting fk to be the
Chebyshev polynomials of the first kind that are normalised to make them monic,
we have fkðtÞ ¼ 2 cos ky for t ¼ 2 cos y with fk satisfying the same recurrence
relation as that for pk. Induction and trigonometric identities then tell us that

zkðtÞ ¼ fkþ2ðtÞ þ 6 � t2

¼ 2 cosðk þ 2Þy� 2 cos 2yþ 4

¼ 4 � 4 sin
k

2
þ 2

� �
y sin

ky

2
:

Thus, setting y A R so that t A ½�2; 2�, the last identity tells us that if zk has any
roots in this interval then the di¤erence in the two sine arguments must be a
multiple of 2p, giving only the solution t ¼ �2 for k odd. Now put y ¼ if
where f A R in the second equation, so t ¼ 2 cosh f A ½2;yÞ and coshðk þ 2Þfb
cosh 2f as k is positive, giving no solutions. Then for k even there are no
solutions in ð�y;�2� either because zk is an even function.

Finally we need to consider imaginary t, so we put y ¼ if� p=2 for f A R to
obtain t ¼ 2i sinh f and we use the first equation. This tells us that

zkðtÞ ¼G2 coshðk þ 2Þfþ 4 sinh2 fþ 6

where the plus sign is taken when k=2 is odd, which is the case we want. r

Note that in [5] it is also shown that zk has no real roots; the paper finds the
correct complex place that gives rise to the discrete faithful representation of
p1Mk in PSLð2;CÞ.

We finish by confirming the lemma we needed earlier in Theorem 2.7.

Lemma 2.10. Over Z2 we have pkðtÞ1 tk for k ¼ 2n � 1.

Proof. Writing ½k; r� A Z2 for the coe‰cient of tr in pk where k A N, we
have

½k; r�1 ½k � 1; r� 1� þ ½k � 2; r�
from the recurrence relation. This gives us by induction on k that ½k; r�1 0 for
k � r odd. We claim that for k � r even we have

½k; r�1

0
B@

k þ r

2

r

1
CA;

again this follows from induction on k and the standard relation of binomial
coe‰cients. Now we need to establish that ½2n � 1; r�1 0 for 0a ra 2n � 2.
This is fine for r even, so for r ¼ 2sþ 1 and m ¼ n� 1 we show that

2m þ s

2sþ 1

� �
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is even for 0a sa 2m � 2. The determination of the exact power to which a

prime p divides the binomial coe‰cient
aþ b

a

� �
is derived on p. 31 of [11] and

dates back to Kummer in 1852. One calculates the sum of a and b in base p
and then it is the number of times we ‘‘carry over’’. In our case we are adding
a ¼ 2sþ 1 and b ¼ 2m � s� 1 in binary; the latter number’s representation is
obtained by taking the binary representation of s (consisting of m entries) and
swapping the ones and the zeroes. So taking the lowest power of 2 where a zero
appears in the binary expansion of s, a one will appear in this place for 2sþ 1
and a one will appear as well for 2m � s� 1, so that in calculating aþ b we are
guaranteed a carry over in this place, hence our binomial coe‰cient is divisible
by 2 at least once. r
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