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VANISHING THETANULLS FOR SOME DIHEDRAL AND

CYCLIC COVERINGS OF RIEMANN SURFACES
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Abstract

Let Wg ! Wz be a ramified p-sheeted covering of Riemann surfaces of genus g and

z, ðz > 0Þ where p is an odd prime. Assume that the Galois group is either dihedral or

cyclic. Assume, moreover, that the covering is full; that is, there us an integral divisor

E, of degree 2r on Wz which lifts to be canonical on Wg. Then g ¼ rp þ 1, where

rb 1. Clearly, Wg admits 22z half-canonical linear series of dimension at least r � z

arising from divisors on Wz whose double is E. Theorem 1 Of these 22z half-canonical

linear series uz ð¼ 2z�1ð2z � 1ÞÞ have dimension at least r � z þ 1. Theorem 2 Let

Wg ðg ¼ 3r þ 1; rb 3Þ admit four half canonical linear series, three of dimension r � 1,

and one of dimension r, whose sum is bi-canonical, where the half-canonical linear series

of dimension r is unique. Then Wg is a full elliptic-trigonal Riemann surface. (This

characterizes the cases z ¼ 1, p ¼ 3, gb 10)

1. Introduction

Let pgz : Wg ! Wz be an m-sheeted covering of Riemann surfaces of genus
g and z. In this paper Wz will always have positive genus. Then Wg has a
property not shared by all Riemann surfaces of genus g. This special property
may be reflected in some special property of the Jacobian of Wg. We shall
be interested in the vanishing properties of the theta function at half-periods
(vanishing theta nulls.) By Riemann’s solution to the Jacobi inversion problem,
this means that we will be interested in the existence of non-generic half-canonical
linear series on Wg. [8] Of course, we do not expect these half-canonical linear
series to exist very often, but they do occur in the case m ¼ 2. [1] We consider
the case m ¼ 3. If pgz is unramified then non-generic half-canonical linear series
exist, but with ramification one would not expect this to be true in general. The
case of interest in this paper is described in the following definition.

Definition. The covering pgz : Wg ! Wz is said to be full if there exists a
linear series g2r�z

2r on Wz which lifts to be canonical on Wg. r
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Since two-sheeted coverings are always full, this is a generalization of the
case m ¼ 2 since the existence of non-generic half-canonical linear series on Wg is
almost always obvious.

If pgz is three sheeted and non-cyclic then the Galois group is the dihedral
group of order six. It turns out that much of the analysis in the case m ¼ 3,
works equally well in the case of p-sheeted dihedral coverings where p is an odd
prime.

If pgz is full, rb z, and the lift of g2r�z
2r is canonical, then Wg now admits 22z

half canonical linear series due to the fact that g2r�z
2r 1 2gr�z

r in 22z di¤erent ways.
However, in the case of full p-sheeted ramified dihedral or cyclic coverings
a certain number, uz, of these half-canonical linear series have dimension greater
than that of gr�z

r . This is covered in Sections 5 and 6. (uz ¼ 2z�1ð2z � 1Þ ¼
number of odd theta characteristics in dimension z.)

For p ¼ 3, z ¼ 1, gb 10, we show when the existence of the four non-
generic half-canonical linear series characterizes full elliptic-trigonal Riemann
surfaces. (Section 7) However, we are unable to distinguish between the dihedral
and cyclic cases by the methods of this paper.

Section 3 concerns the existence of full ramified p-sheeted dihedral coverings
and gives a useful characterization. Section 6 concerns the cyclic case. Section
4 gives a very brief account of Weierstrass points for the case p ¼ 3. (We know
of no generalization for p > 3.) Section 2 on preliminary results is arranged so
that the last part of this section is only needed for Section 7.

It is possible for a W10 to cover tori in three sheets in four di¤erent ways.
(For W3rþ1, r > 3, a three-sheeted covering of a torus is unique.) If those four
coverings are full then it can be shown that W10 admits an elementary abelian
group of order 27. Thus the existence of this group is characterized by certain
vanishing properties of the theta function. In this case our inability to dis-
tinguished between the cyclic and dihedral cases is overcome by the abundance of
coverings. The proof involves an extensive examination of the inequality of
Castelnuove-Severi and will be presented in a sequel to this paper.

2. Definitions, classical theorems, preliminary results

Wg will always stand for a compact Riemann surface of genus g. Kg will
stand for the canonical linear series g

g�1
2g�2. The field of meromorphic functions

on Wg will be denoted MðWgÞ. If f eMðWgÞ then ð f Þa will stand for the a-places
of f counted with multiplicity so that the divisor of f , ð f Þ, is ð f Þ0 � ð f Þy. If D is
an integral divisor, jDj will stand for the complete linear series of integral divisors
linearly equivalent to D.

If p : Wg ! Wz is a t-sheeted covering and D is a divisor of degree d on Wz

then p�1ðDÞ will denote the divisor of lifted points with ramification points
counted according to multiplicity; consequently deg p�1ðDÞ ¼ td. If P eWz then
p�1ðPÞ, of degree t, will be called a complete fiber of p. If D is on Wg then pðDÞ
is the image of D of degree d.
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The fibers of a t-sheeted covering Wg ! Wq will be denoted gtðqÞ, and we
will describe the covering by saying that Wg admits a gtðqÞ. If q ¼ 0 then gtð0Þ
is a g1

t . If t ¼ 2 then Wg is said to be q-hyperelliptic (q ¼ 0, hyperelliptic; q ¼ 1,
elliptic-hyperelliptic.) If t ¼ 3 Wg is said to be q-trigonal (q ¼ 0, trigonal; q ¼ 1,
elliptic-trigonal) A linear series gr

n on Wg will be said to be compounded of gtðqÞ if
the divisors of the non-fixed points of gr

n are lifted from divisors on Wq; that is,
they are unions of divisors in gtðqÞ.

If PðX Þ is an irreducible polynomial of degree n in MðWzÞ½X � then this
polynomial defines an algebraic extension of MðWzÞ which lives on a Riemann
surface, Wg, covering Wz in n sheets. MðWzÞ is isomorphic to a subfield of
MðWgÞ of index n. In this context MðWzÞ will stand for the field on Wz or for
its isomorphic image on Wg. No confusion should result. If PðXÞ ¼ X n � f
then we will say that f ð1=nÞ defines the cyclic covering Wg ! Wz.

With one exception (Theorem 6.1) p will always stand for an odd prime. A
p-sheeted dihedral covering pgz : Wg ! Wz will have two types of ramification
points. Those of multiplicity p will be called total. Those of multiplicity 2 will
be called ordinary. The complete fibers of pgz are of three types: a single total
ramification point, ð p � 1Þ=2 ordinary ramifications points together with a single
unramified point, or p unramified points. Suppose pgz has s total ramification
points and ordinary ramification points over n points of Wz. Then the total
ramification of the covering is ð p � 1Þs þ ðð p � 1Þ=2Þn. The Riemann-Hurwitz
formula gives

2g � 2 ¼ pð2z � 2Þ þ ðð p � 1Þ=2Þð2s þ nÞð2:1Þ
where n is always even. If the covering is full then 2s þ n1 0 ðmod 2pÞ since p
divides 2g � 2.

Let Wa be a Riemann surface of genus a admitting a group of auto-
morphisms, G, isomorphic to the dihedral group of order 2p. We will always
write G ¼ hc; ji where Cp ¼ j2 ¼ e. Let Wg ¼ Wa=hji, Wh ¼ Wa=hci and
Wz ¼ Wa=G. Then a þ 2z ¼ 2g þ h. [7]

Theorem 2.1 [7]. Let gr
n be a complete linear series on Wz. Let grþc

2n (resp
grþb

pn ) be the completion of the lift of gr
n to Wh (resp Wg). Then the completion of

gr
n lifted to Wa is grþcþ2b

2pn . r

In the theorem let Dz be a divisor in gr
n on Wz. On Wa let Da be the divisor

of degree 2pn which is the lift of Dz. The vector space of meromorphic functions
on Wa which are multiples of Da is a complex represention of G of dimension
r þ c þ 2b þ 1.

Corollary 2.2. The multiplicity of the trivial representation is r þ 1. The
multiplicity of the non-trivial one dimentional representation is c. The sum of the
multiplicities of the irreducible representations of dimension two is b. r

We call attention to an important obvious fact.
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Corollary 2.3. If there is a divisor in grþcþ2b
2pn which is not invariant under

hci then b is positive. r

We now quote some classical theorems with abbreviations for later reference.
(RR) Riemann-Roch If gr

n is complete then r ¼ n � g þ i where i is the index
of specialty.

(BN) Brill-Noether If gr
n and hs

m are complete and their sum is Kg, then
n � 2r ¼ m � 2s.

(Cli¤ ) Cli¤ord’s theorem If gr
n is special then n � 2rb 0. Equality in non-

trivial cases implies Wg is hyperelliptic.
(CS) Castelnuovo-Severi inequality If Wg admits a gmðsÞ and a gnðtÞ and the

two coverings admit no non-trivial common factorizations then

gams þ nt þ ðm � 1Þðn � 1Þ
and equality has further consequences.

We now state a series of results with either proofs, references, or whose
proofs follow from standard techniques.

Lemma 2.4. Let p : Wg ! Wz be a p-sheeted covering with positive ram-
ification. Suppose A and B are integral divisors on Wz so that p�1ðAÞ1 p�1ðBÞ.
Then A1B. r

Lemma 2.5. Let A and B be integral divisors on Wg so that 2A1 pB
where deg Bb 2g. Then there exists an integral divisor C so that B ¼ 2C and
A ¼ pC. r

The material in this section from now on will be needed only in Section 7.

Lemma 2.6. Let gr
n and hs

n be two di¤erent linear series so that 2gr
n 1 2hs

n.
Then on an unramified two-sheeted covering, W2g�1, of Wg there is a linear series
grþsþ1

2n which is the completion of the lift of gr
n (and hs

n). If one of the two linear
series is simple then so also is grþsþ1

2n .

Proof. Let D and E be divisors in gr
n and hs

n respectively. Let f be
a function whose divisor is 2D � 2E. Then W2g�1 is defined by

ffiffiffi
f

p
. If D 0 is

the lift of D then the dimension of the multiples of D 0 is ðr þ 1Þ þ ðs þ 1Þ. If
gr

n is simple there are more multiples of D 0 than there are of D. So grþsþ1 is
simple. r

Lemma 2.7. Let Wg admit 4 distinct linear series, ga
n , hb

n , kc
n , and l d

n so that
i) 2ga

n 1 2hb
n 1 2kc

n 1 2l d
n

ii) ga
n þ hb

n 1 kc
n þ l d

n

Then there exists an unramified 4-sheeted Galois covering W4g�3 ! Wg (the

Galois group is the four group) and on W4g�3 there exists a gaþbþcþdþ3 which is the
completion of the lift of ga

n . If one of the four linear series on Wg is simple so also
is gaþbþcþdþ3.
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Proof. Apply the previous lemma twice. r

Lemma 2.8. Suppose Wh admits a g2ðgÞ, gb 6, and is also elliptic-trigonal.
Then Wg is elliptic-trigonal or trigonal.

Proof. Since hb 11, Wh admits a unique g3ð1Þ (CS). The involution
whose quotient is Wg must permute the divisors of g3ð1Þ. Thus Wg admits a
g3ðqÞ where q ¼ 1 or 0. r

A linear series gs
m will be said to impose t (linear) conditions on a complete gr

n

if jgr
n � gs

mj ¼ gr�t
n�m.

Lemma 2.9 [3]. Let gr
g�1 be half canonical. Let g1

m be a linear series
without fixed points where ma 2r þ 1. Then g1

m imposes at most ½m=2� conditions
on gr

g�1. r

Lemma 2.10 [3]. Let gs
m ðsb 2Þ be a simple linear series without fixed points

with m � sa 2r. Then gs
m imposes at most ½ðm � s þ 1Þ=2� conditions on any half-

canonical gr
g�1. Thus such a half-canonical gr

g�1 must be simple. r

Lemma 2.11 [3]. Suppose Wg admits a g2ðqÞ. Then every half-canonical
g

qþ1
g�1 is compounded of g2ðqÞ. (Thus gr

g�1 being simple and half-canonical implies

that ra q.) r

Lemma 2.12 ([1], p 51). Suppose Wg admits a g2ðqÞ and r ¼ ½ðg � 1Þ=2� �
qb 0. Then Wg admits many half-canonical gr

g�1’s. If g is odd the number is at
least 4q. If g is even the number is at least ðg þ 2 � 2qÞ4q. r

Lemma 2.13. Suppose Wg admits a g3ðqÞ. Let D be an integral divisor of
degree 3 so that j2Dj is compounded of g3ðqÞ. Then D is in g3ðqÞ.

Proof. Let D ¼ x þ y þ z. 2x þ 2y þ 2z is a union of 2 divisors in g3ðqÞ.
If D is not in g3ðqÞ, say 2x þ y is in g3ðqÞ. But a divisor in g3ðqÞ is determined
by any point in it, so 2x þ y ¼ y þ 2z or x ¼ z. D is in g3ðqÞ after all. r

Lemma 2.14 [3]. Suppose Wg admits a g1
4 . Let D be an integral divisor of

degree 4 not in g1
4 , so that j2Dj ¼ 2g1

4 ¼ g2
8 . Then there exist two disjoint integral

divisors of degree 2, P and Q, so that D ¼ P þ Q and j2Pj ¼ j2Qj ¼ g1
4 . r

(The proof uses the same kind of reasoning as in Lemma 2.13.)

Lemma 2.15. Suppose W3rþ1 ðrb 2Þ is trigonal and admits a half-canonical
gr

3r (necessarily compounded of g1
3 by Lemma 2.9.) Then W3rþ1 does not admit a

complete half-canonical gr�1
3r .
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Proof. Suppose the contrary. gr�1
3r is compounded of g1

3 so that gr�1
3r ¼

ðr � 1Þg1
3 þ D where D is not in g1

3 . Since K3rþ1 1 ð2rÞg1
3 we see that 2D1 2g1

3 .
Since 3r þ 1b 7, j2g1

3 j ¼ g2
6 . Lemma 2.13 gives the contradiction. r

Lemma 2.16 (Castelnuovo, [2]). Let gr
n be a simple linear series on Wg.

ðn > 2rÞ Then 2gr
n has dimension 3r � 1 þ e, eb 0.

Lemma 2.17. Suppose W3rþ1 admits a simple half-canonical gr
3r and a g1

m

which imposes two conditions on gr
3r. If r > 5 then m ¼ 4. r

Proof. Since gr
3r is simple mb 4. Let D be an integral divisor of r � 2

points in general position on W3rþ1. Then gr
3r � D ð¼ g2

2rþ2Þ gives a plane model
for W3rþ1 with r � 2 singularities of degree m � 1 and one of multiplicity
2r þ 2 � m and possibly other singularities. Then

3r þ 1a ½ð2r þ 1Þð2rÞ � ðr � 2Þðm � 1Þðm � 2Þ � ð2r þ 2 � mÞð2r þ 1 � mÞ�=2

which simplifies to: ma 4r=ðr � 1Þ. Since r > 5 we have ma 4. r

Lemma 2.18 [2]. Let gr
n and gs

m be two distinct linear series where gr
n is simple

and rb s. Then gr
n þ gs

m has dimension at least r þ 2s. r

3. Existence

Any ramified dihedral covering of odd prime order p, pgz : Wg ! Wz, arises
in accordance with the following procedure. There is given a meromorphic
function y : Wz ! P1.

ffiffiffi
y

p ð:¼ Y Þ defines a two-sheeted covering phz : Wh ! Wz,
ramified over the zeros and poles of y whose orders are odd. Let Z ¼ ð1 � YÞ=
ð1 þ YÞ. Then a p-sheeted cyclic covering pah : Wa ! Wh is defined by Zð1=pÞ

ð:¼ UÞ and is ramified over those zeros and poles of Z whose orders are not
divisible by p. The map paz :¼ phz � pah is a Galois covering with Galois group,
G, isomorphic to the dihedral group of order 2p. G ¼ hj;ci where j�U ¼ U�1

and c�U ¼ oU , op ¼ 1, and o0 1. Then Wg ¼ Wa=hji and the covering
map pag : Wa ! Wg is the Galois closure of the p-sheeted dihedral covering
pgz : Wg ! Wz. We will prove the assertions in this paragraph only in the
following special situation.

Theorem 3.1. A ramified p-sheeted dihedral covering is full if and only if it
arises by the above procedure with a y satisfying the following:

ðyÞ0 ¼ Bzn; a divisor of n distinct points; n evenð3:1Þ
ðyÞy ¼ 2Czm; Czm a divisor of degree m ð¼ n=2Þ
ðyÞ1 ¼ ð p � 2ÞDzs þ pDzt; Dzs a divisor of s distinct points; deg Dzt ¼ t

ðdeg y ¼ n ¼ 2m ¼ ðp � 2Þs þ ptÞ
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Proof. Assuming the existence of such a y, we follow the above procedure
keeping track of significant divisors.

Let
ffiffiffi
y

p ð:¼ YÞ define phz : Wh ! Wz. Let Z ¼ ð1 � YÞ=ð1 þ YÞ. Y and Z
are in MðWhÞ, and both are of degree n.

ðZÞ1 ¼ ðY Þ0 ¼ Bhn; the n ramified points of phz

ðZÞ�1 ¼ ðY Þy ¼ Chm; m complete unramified fibers of phz; deg Chm ¼ 2m ¼ n

ðZÞ0 ¼ ðY Þ1 ¼ ð p � 2ÞDhs þ pDht where Dhs and Dht lie above Dzs and Dzt

ðZÞy ¼ ðY Þ�1 ¼ ð p � 2ÞEhs þ pEht where Ehs and Eht lie above Dzs and Dzt

Now Zð1=pÞ ð:¼ UÞ defines pah : Wa ! Wh, a p-sheeted cyclic covering.
Wh ¼ Wa=hci where c�U ¼ oU , as before.

ðUÞoi ¼ Bi
an lying above Bhn; i ¼ 0; 1; 2; . . . ; p � 1: deg Bi

an ¼ n:

ðUÞ�oi ¼ C i
am lying above Chm; i ¼ 0; 1; 2; . . . ; p � 1: deg C i

am ¼ n:

ðUÞ0 ¼ ðp � 2ÞDas þ Dat

ðUÞy ¼ ðp � 2ÞEas þ Eat

where Das þ Eas are the ramified points of pah, Dat and Eat are each composed of
t complete unramified fibers of pah, and Dat þ Eat is composed of t complete fibers
of paz.

We may assume that the fixed points of j are B0
an. Now

Ka 1 p�1
az ðKzÞ þ

Xp�1

i¼0

Bi
an þ ð p � 1ÞðDas þ EasÞ

By the linear equivalence of divisors where U takes di¤erent values

Xp�1

i¼1

Bi
an 1 ðð p � 1Þ=2Þ½ð p � 2ÞðDas þ EasÞ þ ðDat þ EatÞ�: Consequently

Ka 1 p�1
az ðKzÞ þ B0

an þ ðð p � 1Þ=2Þ½pðDas þ EasÞ þ ðDat þ EatÞ�

1B0
an þ p�1

az ðKz þ ðð p � 1Þ=2Þ½Dzs þ Dzt�Þ: But

Ka 1B0
an þ p�1

ag ðKgÞ; so by Lemma 2:4

Kg 1 p�1
gz ðKz þ ðð p � 1Þ=2Þ½Dzs þ Dzt�Þ:

Thus pgz : Wg ! Wz is a full p-sheeted dihedral covering.

Now we assume for a ramified p-sheeted dihedral covering pgz : Wg ! Wz

that Kg 1 p�1
gz ðG0Þ for a fixed divisor G0 on Wz. (By Lemma 2.4 any two such

G0’s are linearly equivalent.) We must show that this covering arises from a
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meromorphic function y on Wz as described in the statement of the theorem.
We first show that there are, in deed, ordinary ramification points.

Lemma 3.2. Let pgz : Wg ! Wz be a ramified p-sheeted full covering with
only total ramification points. Then the covering is cyclic.

Proof of Lemma 3.2. Let B be the divisor of ramification points of pgz.
Then

Kg 1 ðp � 1ÞB þ p�1
gz ðKzÞ: But

Kg 1 p�1
gz ðG0Þ

for a divisor G0 on Wz. The right hand sides of these last two equivalences,
being linearly equivalent, are the zeros and poles of a function in MðWgÞ whose
pth power is a function in MðWzÞ. Thus the covering is cyclic. r

Our covering pgz is assured of ordinary ramification points. Let pag :
Wa ! Wg be the Galois closure of pgz. Let the Galois group be G ¼ hj;ci,
Wg ¼ Wa=hji and Wh ¼ Wa=hci. Let B0

an be the ramification divisor of pag, a
divisor of even degree n on Wa. Then

Ka 1B0
an þ p�1

ag ðKgÞ
Letting Kao be a divisor in Ka invariant under G we have

Kao 1B0
an þ p�1

az ðG0Þ:ð3:2Þ
Let L ¼ f f eMðWaÞ j ð f Þb p�1

az ðG0Þ � Kaog:
L is a complex representation for G. It contains a function (whose zeros

and poles are the two sides of (3.2)) with a divisor not invariant under c. Thus
it must contain an irreducible two dimensional representation h f1; f2i, where we
may assume (tp ¼ 1, t0 1)

c�f1 ¼ tf1; c�f2 ¼ t�1f2; j�f1 ¼ f2; j�f2 ¼ f1:

Let U ¼ f1=f2 and let V ¼ ð1 � UÞ=ð1 þ UÞ. Then j�V ¼ �V and so V defines
pag.

Now assume that the degree of U (and therefore V ) is n.
We assert that B0

an ¼ ðVÞ0 or ðVÞy. Observe that B0
an 1 ðVÞ0. To prove

the assertion let X be a function on Wa where ðXÞ ¼ B0
an � ðVÞ0. Since the zeros

and poles of X are invariant under j, j�X ¼ lX where l ¼ 1 or �1. Assume
l ¼ 1. Then X is invariant under j, and X has B0

an for zeros, a divisor which
contains no complete fiber of pag. Therefore X is constant and B0

an ¼ ðVÞ0. (If
l ¼ �1 replace X with VX and deduce that B0

an ¼ ðVÞy.)
We now assume that B0

an ¼ ðVÞ0. Since U ¼ ð1 � VÞ=ð1 þ VÞ we have
ðUÞ1 ¼ B0

an. Let o ¼ t2. Then c�U ¼ oU . It follows that ðUÞoi ¼ c iðB0
anÞ

ð:¼ Bi
anÞ i ¼ 0; 1; . . . ; p � 1 give the p divisors, of degree n, of the ordinary

ramification points of paz.
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Now c�U p ¼ U p and so U defines pah, and the ramification points of pah

are the zeros and poles of U whose orders are not divisible by p. Let Z ¼ U p, a
function on Wh. Let

ðZÞ0 ¼ Dh1 þ 2Dh2 þ � � � þ ð p � 1ÞDhð p�1Þ þ pDhp

where the Dhi, i ¼ 1; 2; . . . p � 1 (but not necessarily p) are pairwise coprime
divisors of points counted with multiplicity one. On Wa

ðUÞ0 ¼ Da1 þ 2Da2 þ � � � þ ðp � 1ÞDað p�1Þ þ Dap

where the Dai, i ¼ 1; 2; . . . ð p � 1Þ are ramification points of pah lying above the
Dhi, and Dap is a set of (deg Dhp) complete fibers of pah.

If F is the involution of Wh which lifts to j and if

ðZÞy ¼ Eh1 þ 2Eh2 þ � � � þ ðp � 1ÞEhð p�1Þ þ pEhp

then F interchanges the Dhi’s and the Ehi’s and

ðUÞ
y
¼ Ea1 þ 2Ea2 þ � � � þ ðp � 1ÞEað p�1Þ þ Eap

with definitions analogous to those of the Dai’s.
We now show that Dhi ¼ 0 for i0 p � 2, p. Then setting Y ¼ ð1 � ZÞ=

ð1 þ ZÞ, noting that F�Y ¼ �Y , and setting y ¼ Y 2, the proof will be complete
for deg U ¼ n. (If in the assertion above, B0

an ¼ ðVÞy then set y ¼ Y�2.)
On Wa again note that ðUÞ0 1 ðUÞy 1 ðUÞ1 1Bi

an for all i.

Ka 1
Xp�1

i¼0

Bi
an þ

Xp�1

j¼1

ðp � 1ÞðDaj þ EajÞ þ p�1
az ðKzÞ

Xp�1

i¼0

Bi
an 1B0

an þ ðð p � 1Þ=2Þ
Xp�1

j¼1

jðDaj þ EajÞ þ ðDap þ EapÞ
 !

Therefore

Ka 1B0
an þ p�1

az ðKzÞ þ ðð p � 1Þ=2ÞðDap þ EapÞ

þ
X

½ðð p � 1Þ jÞ=2 þ ðp � 1Þ�ðDaj þ EajÞ

From the last sum extract the j ¼ p � 2 term and denote what is left by a primed
summation.

Ka 1B0
an þ p�1

az ðKzÞ þ ðð p � 1Þ=2ÞðDap þ EapÞ þ ðð p � 1Þ=2ÞpðDað p�2Þ

þ Eað p�2ÞÞ þ
X 0½ �ðDaj þ EajÞ

where none of the integers in the brackets are divisible by p. Note that the
second, third, and fourth terms denote sets of complete fibers of paz, namely

p�1
az ðKz þ ðð p � 1Þ=2ÞðDzp þ Dzð p�2ÞÞÞ

for suitable divisors Dzp and Dzð p�2Þ on Wz where paz has total ramification
points above Dzð p�2Þ and is unramified above Dzp. Since
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Ka 1B0
an þ p�1

ag ðKgÞ1B0
an þ p�1

az ðG0Þ;
descending to Wg by Lemma 2.4 we have

p�1
gz ðG0Þ1 p�1

gz ðKz þ ðð p � 1Þ=2ÞðDzp þ Dzð p�2ÞÞÞ þ
X 0½ �Dgj

for suitable divisors Dgj on Wg. The Dgj ð j < pÞ are the total ramification
points for pgz. If

P 0½ �Dgz is not zero in the last equivalence then the right and
left hand sides are the zeros and poles of a function on Wg whose pth power is
a function in MðWzÞ. This implies that pgz is a cyclic covering. This con-
tradiction proves the theorem in case the degree of U is n.

Now assume that the degree of U is less than n. Then

ð f1Þ ¼ A1 þ F þ p�1
az ðG0Þ � Kao:

ð f2Þ ¼ A2 þ F þ p�1
az ðG0Þ � Kao

where ðA1;A2Þ ¼ 0, F 0 0, and F is invariant under j. Again let U ¼ f1=f2,

V ¼ ð1 � UÞ=ð1 þ UÞ, j�V ¼ �V and V defines pag. Define X by ðX Þ ¼ B0
an �

½ðVÞ0 þ F �. Then j�X ¼ lX , and l ¼ 1 or �1. If l ¼ 1, then X is invariant
under j and B0

an ¼ ðVÞ0 þ F . If l ¼ �1, then VX is invariant under j and
B0

an ¼ ðVÞy þ F . Thus F consists of part of B0
an.

We wish to show that Deg F ¼ n=2.
Assume l ¼ 1. (The case l ¼ �1 is handled in an analogous way.)

ðUÞ1 ¼ ðVÞ0 and so B0
an 1 ðUÞ1 þ F . Define B1

an :¼ cðB0
anÞ. Then B1

an ¼
cððUÞ1Þ þ cðFÞ and ðUÞo ¼ cððUÞ1Þ. Consequently ðUÞ1 þ F 1 ðUÞo þ cðF Þ.
Thus we have two functions, y1, y2 with divisors:

ðy1Þ ¼ ðUÞ1 � ðUÞo; ðy2Þ ¼ F � cðFÞ

and B0
an ¼ ðUÞ1 þ F , the ramification divisor of j. Apply CS to the two

covers y1 : Wa ! P1 and pag : Wa ! Wg. Since y1 cannot be in MðWgÞ we
have aa ðdeg y1 � 1Þ þ 2g. But a ¼ 2g � 1 þ n=2. Consequently deg y1 b n=2.
Similarly deg y2 b n=2. Since deg y1 þ deg y2 ¼ n we conclude that deg F ¼
deg A1 ¼ deg A2 ¼ n=2.

Now B0
an is part of ðVÞ0 þ ðVÞy since V defines pag. But deg F ¼

deg U ¼ deg V ¼ n=2; therefore B0
an ¼ ðVÞ0 þ ðVÞy ¼ ðUÞ1 þ ðUÞ�1 ¼ ðU 2Þ1,

and c�U 2 ¼ o2U 2.
Thus U 2 satisfies the properties of U (when deg U ¼ n), and we may proceed

with the rest of the proof as before to obtain our desired y. Similarly for the
case B0

an ¼ ðVÞy þ F . This completes the proof of the theorem. r

Note that in the first part of the theorem where we proceeded from y to the
full covering pgz, we can achieve an irreducible two dimensional representation in
L by defining f1 and f2 as follows:

ð f1Þ ¼ ðp � 2ÞDas þ Dap þ p�1
az ðG0Þ � Kao

ð f2Þ ¼ ðp � 2ÞEas þ Eap þ p�1
az ðG0Þ � Kao
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Thus we see that for a given full covering pag there are at most ðdim LÞ=2
possible y’s which give rise to it according to the procedure at the beginning of
this section. This allows us to compute, naively, the dimension, a, in moduli
space of such Wg’s.

By the Riemann Hurwitz formula for y : Wz ! P1 we have

2z � 2 ¼ �2n þ n=2 þ ð p � 3Þs þ ðp � 1Þt þ a

Since n ¼ ðp � 2Þs þ pt we have a ¼ 2z � 2 þ ðn=2Þ þ ðn þ 2sÞ=p.

4. Weierstrass points ðp ¼ 3Þ

We draw attention to the fact that for full three-sheeted dihedral coverings
(with g su‰ciently large) ordinary ramification points are Weierstrass points.

Theorem 3. If Wg ! Wz is a full three-sheeted covering and gb 4 þ 6z, then
each ordinary ramification point of the covering is a Weierstrass point.

Proof. Suppose gx
ð2g�2Þ=3 on Wz lifts to be canonical on Wg. If P is

an ordinary ramification point then xð2PÞ will be special if 2xb g. Now
xb ðð2g � 2Þ=3Þ � z, so a su‰cient condition that P be a Weierstrass point is
2ððð2g � 2Þ=3Þ � zÞb g. r

5. Half-canonical linear series on dihedral coverings

Assuming a full ramified p-sheeted dihedral covering pgz, there is a linear
series g2r�z

2r on Wz which lifts to be canonical on Wg, and so 2g � 2 ¼ 2rp. Since

2g � 2 ¼ pð2z � 2Þ þ ðð p � 1Þ=2Þð2s þ nÞ

and 2p divides 2s þ n, we see that

2rb ð2z � 2Þ þ ðp � 1Þb 2z

since pb 3. Thus g2r�z
2r is not special and is complete. Consequently g2r�z

2r 1
2gr�z

r for 22z linear series gr�z
r (which need not be complete), and so Wg admits

22z half-canonical linear series of dimension at least that of gr�z
r .

Theorem 5.1. Of those 22z half-canonical linear series uz ð¼ 2z�1ð2z � 1ÞÞ
have dimension greater than that of the corresponding gr�z

r .

Proof. Continue the notation of the previous sections.

Ka 1B0
an þ p�1

ag ðKgÞ1B0
an þ p�1

az ðg2r�z
2r Þð4:1Þ

Kg 1 p�1
gz ðg2r�z

2r Þ1 p�1
gz ðKzÞ þ Bgn þ ð p � 1ÞDgsð4:2Þ

where Dgs is the set of s total ramification points of pgz, and Bgn is the set of
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nð p � 1Þ=2 ordinary ramification points which lie in n stacks of ð p � 1Þ=2 points
over the n points of Bzn on Wz. Map the elements represented by (4.2) back
onto Wz by pgz.

pg2r�z
2r 1 pKz þ ðð p � 1Þ=2ÞBzn þ ð p � 1ÞDzs:ð4:3Þ

Now two-sheeted coverings are always full (Theorem 6.1), so there is a linear
series, f , of degree 2z � 2 þ n=2 on Wz so that

Kh 1 p�1
hz ðKzÞ þ Bhn 1 p�1

hz ð f Þ
Mapping onto Wz by phz gives

2f 1 2Kz þ Bznð4:4Þ
Rewriting (4.3):

pg2r�z
2r 1Kz þ ðð p � 1Þ=2Þð2Kz þ Bzn þ 2DzsÞ;

and so

pg2r�z
2r 1Kz þ ðð p � 1Þ=2Þð2f þ 2DzsÞ

There are, generically, uz half-canonical g0
z�1’s on Wz so that for any such g0

z�1
the last equivalence can be written

pg2r�z
2r 1 2½g0

z�1 þ ðð p � 1Þ=2Þð f þ DzsÞ�

By Lemma 2.5 there is a gr�z
r so that

g2r�z
2r 1 2gr�z

r and g0
z�1 þ ðð p � 1Þ=2Þð f þ DzsÞ1 pgr�z

rð4:5Þ
Considering pah we see that

Ka 1 p�1
ah ðKhÞ þ ðp � 1ÞðDas þ EasÞ orð4:6Þ

Ka 1 p�1
az ð f Þ þ ðp � 1ÞðDas þ EasÞ

Combining this with (4.1) we have

p�1
az ð f Þ þ ð p � 1ÞðDas þ EasÞ1 p�1

az ð2gr�z
r Þ þ B0

anð4:7Þ
Multiply (4.7) by ðp � 1Þ=2, and substitute (4.5) eliminating p�1

az ððð p � 1Þ=2Þ f Þ

p�1
az ðpgr�z

r � ðð p � 1Þ=2ÞDzs � g0
z�1Þ þ ðð p � 1Þ2=2ÞðDas þ EasÞ

1 p�1
az ðð p � 1Þgr�z

r Þ þ ðð p � 1Þ=2ÞB0
an

or

p�1
az ðgr�z

r Þ1 ðð p � 1Þ=2ÞB0
an þ ðð p � 1Þ=2ÞðDas þ EasÞ þ p�1

az ðg0
z�1Þð4:8Þ

since p�1
az ðDzsÞ1 pðDas þ EasÞ.

Thus there is a divisor equivalent to p�1
az ðgr�z

r Þ not invariant under hci.
By Corollary 2.3, the dimension of jp�1

gz ðgr�z
z Þj must be greater than that of

jgr�z
z j. r
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6. Full ramified cyclic coverings

Let Wz be a Riemann surface, and let Dz ð¼ x1 þ x2 þ � � � þ xsÞ be a divisor
on Wz of s distinct points ðsb 2Þ. A cyclic covering of prime degree p, Wg,

ramified over Dz is defined by yð1=pÞ where y eMðWzÞ and

ðyÞ ¼ a1x1 þ a2x2 þ � � � þ asxs þ pCz

where 0 < ai < p, i ¼ 1; 2; . . . ; s and
P

ai þ pðdeg CzÞ ¼ 0. We say that
fa1; a2; . . . asg are the rotation numbers for the covering. Since yðk=pÞ, k D 0
ðmod pÞ also defines Wg, the rotation numbers are only defined up to an integral
multiple mod p. The rotation numbers are also defined topologically by a
homomorphism from the fundamental group p1ðWz � Dz; �Þ onto Zp whose
kernel corresponds to the covering. The rotation numbers are the values of the
homomorphism on the paths that ‘‘circle’’ the ai’s.

Theorem 6.1. A ramified cyclic covering of prime degree p ðb2Þ is full if
and only if the rotation numbers are all equal to one another.

Proof. Set s ¼ tp. Degðð p � 1ÞDz þ pKzÞ ¼ pðð p � 1Þt þ ð2z � 2ÞÞb pð2zÞ
where ð p � 1Þt þ 2z � 2b z. Consequently, on Wz there are p2z linear series jGj
where

pG 1 ðp � 1ÞDz þ pKzð6:1Þ

If f eMðWzÞ has the right and left hand sides of (6.1) as zeros and poles then

f ð1=pÞ defines a covering p : Wg ! Wz where (h ¼ f ð1=pÞ, pðDgÞ ¼ Dz)

ðhÞ ¼ ðp � 1ÞDg þ p�1ðKzÞ � p�1ðGÞð6:2Þ

Since Kg 1 ð p � 1ÞDg þ p�1ðKzÞ the covering is full with equal rotation numbers.
But there are p2z cyclic coverings with equal rotation numbers, so they all arise in
this manner. Thus equal rotation numbers imply fullness.

For the converse reverse the argument starting with (6.2) multiplied by p and
deduce (6.1), that is, that hp eMðWzÞ and ðhpÞ ¼ ðp � 1ÞDz þ pKz � pG. r

Now we consider half-canonical linear series on Wg arising from an
equivalence 2H 1G for a solution G on Wz of (6.1). (Now pb 3) We have 22z

possible H’s with jHj ¼ gr
ðg�1Þ=p where rb ðg � 1Þ=p � z.

Let g0
z�1 be one of the uz half-canonical linear series on Wz by (6.1) the

equivalence

ðð p � 1Þ=2ÞDz þ pg0
z�1 1 pH

has p2z solutions jHj, one for each full cyclic covering Wg ! Wz ramified over Dz

On such a Wg we have

ðð p � 1Þ=2ÞDg þ p�1ðg0
z�1Þ1 p�1ðHÞð6:3Þ
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jp�1ðHÞj has dimension greater than that of jHj since the divisor on the left hand
side of (6.3) is not lifted from Wz.

We see that the vanishing of the theta function at half periods (corre-
sponding to the existence of half-canonical linear series) for a ramified full p-
sheeted cyclic covering ð pb 3Þ mimics those of full p-sheeted dihedral coverings.

Now we wish to show that in moduli space for genus g the full p-sheeted
cyclic coverings of a Wz are in the closure of the space of full p-sheeted dihedral
coverings of a Wz, assuming that

2g � 2 ¼ pð2z � 2Þ þ sð p � 1Þ; pjs; s > 0:

On a Riemann surface of genus z, pick a divisor C of s distinct points.
We want a divisor D of degree 2s=p so that 2C 1 pD. That such a D exists
follows if 2s=pb z. To insure that C and D are disjoint it is useful to have D
move in a pencil, so we will assume 2s=p > z. Thus we are assuming 4g � 4 >
p2z þ 3pz � 4p. (If p ¼ 3 and z ¼ 1 then 2g > 5). Assuming that C and D are
disjoint, let F eMðWzÞ have divisor: ðFÞ ¼ pD � 2C. Now let y ¼ 1 � lF ,
where the function y depends on the complex parameter l ð00:Þ Then

ðyÞ0 ¼ ðF Þð1=lÞ :¼ Bl

ðyÞy ¼ ðF Þy ¼ 2C

ðyÞ1 ¼ ðF Þ0 ¼ pD

Note that 4=ð1 � yÞ ¼ 4=ðlFÞ.
For all but a finite number of l’s ð00Þ Bl will consist of 2s distinct points

so we shall always make this assumption as l ! 0. For a fixed l0 0 we follow
the procedure of section 3 to obtain a full p-sheeted dihedral covering, Wg, of Wz

with ðp � 1Þ=2 ordinary ramification points lying over each of the 2s points of Bl.
Again let Y ¼ ffiffiffi

y
p

, Z ¼ ð1 � YÞ=ð1 þ YÞ, and U ¼ Zð1=pÞ. Now let T ¼
U þ U�1, a function on Wg since T is invariant under j. T satisfies an equation
of the type

T p þ QðTÞ ¼ Z þ Z�1

where Q is a polynomial of degree less than p. For example

p ¼ 3 T p þ QðTÞ ¼ T 3 � 3T

p ¼ 5 T p þ QðTÞ ¼ T 5 � 5T 3 þ 5T

But Z þ Z�1 ¼ �2 þ 4=ð1 � yÞ. Thus

T p þ QðTÞ þ 2 ¼ 4=ðlF Þ

where F is independent of l. Substituting l�ð1=pÞT for T we have

T p þ lQðl�ð1=pÞTÞ þ 2l ¼ 4=F :
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Letting l ! 0 this becomes T p ¼ 4=F , the equation of a full p-sheeted covering
of Wz with total ramification points over the s distinct points of C. (We omit
the details of passing to the limit.)

A slightly more complicated argument would deal with the case where C and
D are not disjoint.

7. Full elliptic-trigonal Riemann surfaces

Theorem 7.1. Let Wg ! W1 be a full three-sheeted covering of Riemann
surfaces of genus g and one. (g ¼ 3r þ 1, rb 3). Then Wg admits four complete
half-canonical linear series gr�1

3r , hr�1
3r , kr�1

3r , l r
3r whose sum is bicanonical (a quartet.)

The first three are composite being the lifts of linear series on W1, and the fourth is
fixed point free and simple being the completion of a lift of a linear series on W1.
l r
3r is the unique linear series of degree 3r and dimension r or greater.

Proof. Theorem 5.1 and the discussion in Section 6 insures the existence of
the four linear series. l r

3r, being the lift of a l r�1
r , is fixed point free, and having

more divisors than l r�1
r , it is simple. If another linear series G r

3r exists then
l r
3r þ Gr

3r has dimension at least 3r (Lemma 2.18) and so is canonical. Since l r
3r is

half-canonical, l r
3r ¼ G r

3r. The same result for a G rþe
3r ðeb 0Þ now follows.

On W1 let gr�1
r , hr�1

r , kr�1
r , l r�1

r be the linear series that lift to the four on
Wg. On W1 we have

gr�1
r þ hr�1

r 1 kr�1
r þ l r�1

r

so on Wg we have

gr�1
3r þ hr�1

3r 1 kr�1
3r þ l r

3r:

Since each linear series is half-canonical, their sum is bi-canonical. r

Theorem 7.2. Let Wg be a compact Riemann surface (g ¼ 3r þ 1, rb 3)
admitting a quartet gr�1

3r , hr�1
3r , k r�1

3r , l r
3r, where l r

3r is the only half-canonical linear
series on Wg of degree 3r and dimension r. Then Wg is a full elliptic-trigonal
Riemann surface.

Proof. We first show that l r
3r is simple and without fixed points. Suppose

l r
3r is composite. By Lemma 2.15 Wg is not trigonal. Therefore, Wg admits a
g2ðqÞ where Wq admits a complete l r

ð3r�f Þ=2 (where l r
3r has f fixed points), and

l r
ð3r�f Þ=2 is not special (Cli¤.) Then q ¼ ðr � f Þ=2 ðRRÞ by Lemma 2.12 Wg

admits many half-canonical G r
3r’s. This contradiction insures that l r

3r is simple.

That l r
3r is without fixed points follows from the fact that 2ðl r

3r�1Þ ¼ g3r�1þe
6r�2 , eb 0

(Lemma 2.16) and that Wg is not hyperelliptic (Cli¤.)
By Lemma 2.7 there exists an unramified 4-sheeted Galois covering

W4g�3 ! Wg and W4g�3 admits a simple g4r
12r ð12rb 36:Þ By a theorem of

Eisenbud–Harris [6, p 102] W4g�3 is trigonal, elliptic-trigonal, or admits a g1
n
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imposing two conditions on g4r
12r. By Lemma 2.17 n ¼ 4. It follows that Wg

admits one of the three mutually exclusive alternatives.
Assuming that W12rþ1 is elliptic-trigonal, it follows by Lemma 2.8 (applied

twice) that W3rþ1 is also. Fullness will follow from the following lemma.

Lemma 7.3. Let W3rþ1 ðrb 3Þ admit a simple half-canonical l r
3r and an

elliptic-trigonal covering p : W3rþ1 ! W1. If a divisor D of l r
3r contains two points

of a fiber of p, then D is the lift of a divisor of degree r on W1. Thus p is a full
covering.

Proof of Lemma 7.3. Let E be a divisor in g3ð1Þ, two points of which are
in D. Let F be another divisor in g3ð1Þ which has a point in D. Then jE þ F j
is a g1

6 on Wg (being the lift of a g1
2) and so imposes three conditions on l r

3r

(Lemma 2.9.) Thus ðE þ F ;DÞ ¼ E þ F . Now jDj ¼ l r
3r, D � ðE þ FÞ ¼ l r�3

3r�6,
and so jD � Ej ¼ l r�2

3r�3. Consequently, l r�2
3r�3 � F ¼ l r�3

3r�6. Thus F imposes one

condition on l r�2
3r�3, l r�2

3r�3 is the lift of a gr�2
r�1 on W1, and the result follows. r

Since Wg is not trigonal, to complete the proof we must show that Wg

does not admit a g1
4 . Suppose that Wg does admit a g1

4 . We will arrive at a
contradiction.

We first show that if rb 5 then l r
3r � g1

4 ð¼ l r�2
3r�4Þ is simple and without fixed

points. Remember that g1
4 imposes at most two conditions on l r

3r, and therefore,
at most two conditions on any subseries of dimension at least 2. If l r�2

3r�4 is
composite and compounded of g1

4 then l r�2
3r�4 1 ðr � 2Þg1

4 þ Df , and so 3r � 4b
4r � 8, a contradiction. If l r�2

3r�4 is compounded of a gtðqÞ then t divides 4, and
so t ¼ 2. As earlier in this proof, Wq admits a non-special gr�2

ð3r�4�f Þ=2 and

q ¼ ðr � f Þ=2. Again this leads to too many half-canonical G r
3r’s. If l r�2

3r�4 has a
fixed point then so does l r

3r ð¼ l r�2
r þ g1

4Þ, a contradiction.
We now proceed for all rb 3. For r ¼ 4 we assume that l4

12 � g1
4 ð¼ l2

8 Þ is
simple. (Note that the preceding argument shows that if l2

8 is composite then the
only possibility is j2g1

4 j ¼ l 2
8 .) If r ¼ 3 we assume that l3

9 � g1
4 ð¼ l1

5 Þ is without
fixed points. (The only other possibility is that l1

5 ¼ g1
4 þ x, where x is a fixed

point.)
By Lemma 2.10 l r�2

3r�4 imposes at most r � 1 conditions on the other linear
series in the quartet, and if rb 4 they are all simple as a consequence. (The
author is indebted to L. Donohoe [5] for the basic idea in the following discussion
as well as many of the details.)

Suppose that gr�1
3r 1 l r�2

3r�4 þ S, where S, a divisor of degree 4, is not in g1
4 .

By doubling this last equivalence, it follows that j2Sj1 2g1
4 , and Lemma 2.14

shows that S ¼ P þ Q where j2Pj1 j2Qj1 g1
4 , and ðP;QÞ ¼ 0. Then

gr�1
3r � P1 l r�2

3r�4 þ Q1 l r
3r � Qð7:1Þ

Q imposes one or two conditions on l r
3r since l r

3r is without fixed points.
If Q imposes one condition on l r

3r then P is a fixed divisor for gr�1
3r .
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Suppose Q imposes two conditions on l r
3r. Then l r

3r � Q :¼ l r�2
3r�2. By BN

l r
3r þ Q has dimension r. Since gr�1

3r 1 l r�2
3r�4 þ P þ Q, and gr�1

3r þ P1 l r
3r þ Q, we

see that gr�1
3r has Q as a fixed divisor and gr�1

3r � Q1 l r�2
3r�4 þ P.

In all cases gr�1
3r has a divisor of fixed points of degree two, Pg, and there is

another divisor Qg ð2Pg 1 2Qg 1 g1
4Þ so that

gr�1
3r � Pg 1 l r�2

3r�4 þ Qg ð:¼ gr�1
3r�2Þ

By the same argument there exist Ph, Qh (resp Pk, Qk), divisors of degree two, so
that Ph (resp Pk) is a divisor of fixed points for hr�1

3r (resp kr�1
3r ) and

hr�1
3r � Ph 1 l r�2

3r�4 þ Qh ð:¼ hr�1
3r�2Þ

kr�1
3r � Pk 1 l r�2

3r�4 þ Qk ð:¼ kr�1
3r�2Þ

We claim that gr�1
3r�2 ¼ hr�1

3r�2 ¼ kr�1
3r�2. For if the first two are not equal then

gr�1
3r�2 þ hr�1

3r�2 1 g3r�3þe
6r�4 which is special (Lemma 2.18, RR.) By Cli¤ and BN we

see that e ¼ 0, and gr�1
3r�2 þ hr�1

3r�2 þ g1
4 1Kg. By replacing g1

4 by 2Pg and noting
that gr�1

3r�2 þ Pg is half canonical we see that gr�1
3r�2 ¼ hr�1

3r�2 after all. Call this
linear series mr�1

3r�2. Then we have:

mr�1
3r�2 ¼ gr�1

3r � Pg 1 l r�2
3r�4 þ Qg

¼ hr�1
3r � Ph 1 l r�2

3r�4 þ Qh

¼ kr�1
3r � Pk 1 l r�2

3r�4 þ Qk

Consequently Qg ¼ Qh ¼ Qk ð:¼ QÞ and l r
3r 1mr�1

3r�2 þ Q. Thus 2Pg 1 2Ph 1
2Pk 1 2Q and Pg þ Ph 1Pk þ Q. By Lemma 2.7 it follows that there is a
smooth Galois covering W4g�3 ! Wg and W4g�3 admits a g3

8 which is necessarily
composite. Thus W4g�3 is elliptic-hyperelliptic and Wg is q-hyperelliptic (q ¼ 0
or 1.) We have reached the desired contradiction.

Now we must consider the exceptional cases.
For r ¼ 4 assume l 4

12 1 3g1
4 . First we show that g3

12 is simple. If not then
W13 admits a gtðqÞ where t divides 4; thus t ¼ 2. Wq admits a g3

6�f ( f fixed
points for g3

12) and Wq is hyperelliptic. Since l4
12 is simple, Lemma 2.11 implies

that qb 4. But then f ¼ 0, and g3
6 1 3g1

2 , and this gives g3
12 1 3g1

4 , a con-
tradiction. Thus g3

12 is simple.
If g3

12 has one fixed point, g3
12 ¼ g3

11 þ x, then by Lemma 2.10 l4
12 � g3

11 ¼ y
and 2x1 2y, a contradiction. If g3

12 has two fixed points then g3
12 ¼ g3

10 þ P,
l 4
12 � g3

10 ¼ Q, 2P1 2Q1 g1
4 , and so

g3
12 � P1 l 4

12 � Qð7:2Þ

If g3
12 has 3 fixed points then W13 admits a simple g3

9 . Since this implies that
ga 12 we have a contradiction. If g3

12 has no fixed points then g3
12 � g1

4 ¼ g1
8 .

l 4
12 � g1

8 ¼ l 0
4 (Lemma 2.9), and 2l0

4 1 2g1
4 . Thus l0

4 ¼ P þ Q, 2P1 2Q1 g1
4 ,

g3
12 1 g1

8 þ 2P, l 4
12 1 g1

8 þ P þ Q, or
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g3
12 � P1 l 4

12 � Q:ð7:3Þ

Exactly the same argument can be applied to h3
12 and k3

12 and we get equivalences
analogous to (7.2) and (7.3). Then we can apply the argument following (7.1)
and reach the conclusion that W13 does not admit a g1

4 .
The case r ¼ 3 starts with l 3

9 1 2g1
4 þ x ¼ g1

4 þ l1
5 where l1

5 ¼ g1
4 þ x. We

first show that g2
9 is simple. If g2

9 is composite and W10 admits a g1
4 (which

is unique) then W10 admits a g2ðqÞ where Wq admits a g2
4 and is hyperelliptic

and by Lemma 2.11 qb 3. Thus g2
4 ¼ 2g1

2 , g2
9 1 2g1

4 þ y, and 2x1 2y. This
contradiction shows that g2

9 is simple.
If g2

9 is simple it cannot admit only one fixed point (g2
9 ¼ g2

8 þ x, l 3
9 1 g2

8 þ y,
2x1 2y, contradiction, as before.) It cannot admit three fixed points (l 3

9 � g2
6 1

g1
3 , Lemma 2.10.) If g2

9 admits a fixed divisor P of degree 2, then g2
9 ¼ g2

7 þ P,

l 3
9 1 g2

7 þ Q, 2P1 2Q, and we have

l3
9 � Q1 g2

9 � Pð7:4Þ

If g2
9 is without fixed points then g2

9 1 g1
4 þ g0

5 . 2g0
5 1 2l1

5 1 2g1
4 þ 2x1 l 3

9 þ x.

2g1
4 ð1g2

8Þ1K10 � 2l 1
5 . By Cli¤ 2l1

5 ð1 2g0
5 1 l 3

10Þ has dimension 3 and so has x

for a fixed point. Consequently, x e g0
5 , g0

5 ¼ g0
4 þ x, 2g0

4 þ 2x1 2l 1
5 1 2g1

4 þ 2x,
or 2g1

4 1 2g0
4 . g0

4 1P þ Q, 2P1 2Q, ðP;QÞ ¼ 0, and we have

l3
9 � Q1 g2

9 � Pð7:5Þ

For each of the linear series g2
9 , h2

9 , k2
9 we have formulas like (7.4) and (7.5), and

we conclude the proof for the case g ¼ 10 as in the proof following formula
(7.1). For rb 3 the proof that W3rþ1 does not admit a g1

4 is complete. r

The case g ¼ 7 was considered in [4].
By CS it follows that only for ga 10 can a Wg admit several elliptic-

trigonal coverings. If W10 covers a torus in three sheets then by Lemma 2.4
there can be only one quartet lifted from this torus to W10. Thus there is a one-
to-one correspondence between full three-sheeted coverings W10 ! W1 and
quartets on W10.

References

[ 1 ] Accola, R. D. M., Riemann surfaces, theta functions and abelian automorphism groups,

Lecture Notes in Mathematics, no. 483, Springer, 1975.

[ 2 ] Accola, R. D. M., On Castelnuovo’s inequality for algebraic curves, I, Trans of the AMS

257 (1979), 357–373.

[ 3 ] Accola, R. D. M., Plane models for Riemann surfaces admitting certain half-canonical linear

series, Part II, Trans of the AMS 263 (1981), 243–259.

[ 4 ] Accola, R. D. M., Some loci in Teichmuller space for genus seven defined by vanishing

thetanulls, Manuscripta Mathematica 81 (1993), 113–127.

[ 5 ] Donohoe, L., Plane models for Riemann surfaces admitting half-canonical g2
9 ’s and g3

9 ’s.

robert d. m. accola90



[ 6 ] Harris, J., Curves in projective space, L‘universite de Montreal (1982).

[ 7 ] Kani, E., Relations between the genus and between the Hasse-Witt invariants of Galois

coverings of curves, Canadian_Math. Bull 28(3) (1985), 321–327.

[ 8 ] Lewittes, J., Riemann surfaces and the theta function, Acta Mathematica 111 (1964), 37–61.

Department of Mathematics

Brown University

Providence, RI, 02912

E-mail: raccola@math.brown.edu

vanishing thetanulls for some dihedral and cyclic coverings 91


