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VANISHING THETANULLS FOR SOME DIHEDRAL AND
CYCLIC COVERINGS OF RIEMANN SURFACES
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Abstract

Let W, — W. be a ramified p-sheeted covering of Riemann surfaces of genus g and
z, (z > 0) where p is an odd prime. Assume that the Galois group is either dihedral or
cyclic. Assume, moreover, that the covering is full; that is, there us an integral divisor
E, of degree 2r on W. which lifts to be canonical on W,. Then g=rp+1, where
r>1. Clearly, W, admits 2% half-canonical linear series of dimension at least r — z
arising from divisors on W. whose double is E. Theorem 1 Of these 2% half-canonical
linear series u, (=2°7'(2°—1)) have dimension at least r —z+ 1. Theorem 2 Let
W, (g =3r+1,r > 3) admit four half canonical linear series, three of dimension r — 1,
and one of dimension r, whose sum is bi-canonical, where the half-canonical linear series
of dimension r is unique. Then W is a full elliptic-trigonal Riemann surface. (This
characterizes the cases z=1, p=3, g > 10)

1. Introduction

Let m,. : W, — W. be an m-sheeted covering of Riemann surfaces of genus
g and z. In this paper W. will always have positive genus. Then W, has a
property not shared by all Riemann surfaces of genus g. This special property
may be reflected in some special property of the Jacobian of W,. We shall
be interested in the vanishing properties of the theta function at half-periods
(vanishing theta nulls.) By Riemann’s solution to the Jacobi inversion problem,
this means that we will be interested in the existence of non-generic half-canonical
linear series on W,. [8] Of course, we do not expect these half-canonical linear
series to exist very often, but they do occur in the case m = 2. [1] We consider
the case m = 3. If m,. is unramified then non-generic half-canonical linear series
exist, but with ramification one would not expect this to be true in general. The
case of interest in this paper is described in the following definition.

DEFINITION.  The covering 7. : W, — W. is said to be full if there exists a

linear series g3/~° on W. which lifts to be canonical on W,. O
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Since two-sheeted coverings are always full, this is a generalization of the
case m = 2 since the existence of non-generic half-canonical linear series on W is
almost always obvious.

If n,. is three sheeted and non-cyclic then the Galois group is the dihedral
group of order six. It turns out that much of the analysis in the case m = 3,
works equally well in the case of p-sheeted dihedral coverings where p is an odd
prime.

If 7, is full, r > z, and the lift of g3'~* is canonical, then W, now admits 2%
half canonical linear series due to the fact that g3'—> = 2¢/~* in 2% different ways.
However, in the case of full p-sheeted ramified dihedral or cyclic coverings
a certain number, u., of these half-canonical linear series have dimension greater
than that of g/~°. This is covered in Sections 5 and 6. (u,=2"1(2-1) =
number of odd theta characteristics in dimension z.)

For p=3, z=1, g > 10, we show when the existence of the four non-
generic half-canonical linear series characterizes full elliptic-trigonal Riemann
surfaces. (Section 7) However, we are unable to distinguish between the dihedral
and cyclic cases by the methods of this paper.

Section 3 concerns the existence of full ramified p-sheeted dihedral coverings
and gives a useful characterization. Section 6 concerns the cyclic case. Section
4 gives a very brief account of Weierstrass points for the case p = 3. (We know
of no generalization for p > 3.) Section 2 on preliminary results is arranged so
that the last part of this section is only needed for Section 7.

It is possible for a Wiy to cover tori in three sheets in four different ways.
(For W3,41, r> 3, a three-sheeted covering of a torus is unique.) If those four
coverings are full then it can be shown that W), admits an clementary abelian
group of order 27. Thus the existence of this group is characterized by certain
vanishing properties of the theta function. In this case our inability to dis-
tinguished between the cyclic and dihedral cases is overcome by the abundance of
coverings. The proof involves an extensive examination of the inequality of
Castelnuove-Severi and will be presented in a sequel to this paper.

2. Definitions, classical theorems, preliminary results

W, will always stand for a compact Riemann surface of genus g. K, will
stand for the canonical linear series ggg:lz. The field of meromorphic functions
on W, will be denoted M(W,). 1If f'e M(W,) then (f), will stand for the a-places
of f counted with multiplicity so that the divisor of f, (f),1s (f), — (f),. IfDis
an integral divisor, |D| will stand for the complete linear series of integral divisors
linearly equivalent to D.

If 7: Wy, — W, is a t-sheeted covering and D is a divisor of degree d on W.
then n~!(D) will denote the divisor of lifted points with ramification points
counted according to multiplicity; consequently deg n~!(D) =td. If Pe W, then
n~!(P), of degree 1, will be called a complete fiber of n. 1f D is on W, then n(D)
is the image of D of degree d.
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The fibers of a t-sheeted covering W, — W, will be denoted y,(¢), and we
will describe the covering by saying that W, admits a y,(q). If ¢ =0 then y,(0)
isagl. If =2 then W, is said to be ¢- hyperelhptlc (¢ = 0, hyperelliptic; g = 1,
elliptic-hyperelliptic.) If t=3 W, is said to be g-trigonal (q 0, trigonal; ¢ =1,
elliptic-trigonal) A linear series g, on W, will be said to be compounded of y,(q) 1f
the divisors of the non-fixed points of g; are lifted from divisors on W,; that is,
they are unions of divisors in y,(q).

If P(X) is an irreducible polynomial of degree n in M(W.)[X] then this
polynomial defines an algebraic extension of M(W.) which lives on a Riemann
surface, W,, covering W. in n sheets. M(W.) is isomorphic to a subfield of
M(W,) of index n. In this context M (W) will stand for the field on W. or for
its isomorphic image on W,. No confusion should result. If P(X)=X"— f
then we will say that f /) defines the cyclic covering W, — W..

With one exception (Theorem 6.1) p will always stand for an odd prime. A
p-sheeted dihedral covering n,. : W, — W. will have two types of ramification
points. Those of multiplicity p w111 be called fotal. Those of multiplicity 2 will
be called ordinary. The complete fibers of m,. are of three types: a single total
ramification point, (p — 1)/2 ordinary ramifications points together with a single
unramified point, or p unramified points. Suppose 7,. has s total ramification
points and ordinary ramification points over n points of W,. Then the total
ramification of the covering is (p —1)s+ ((p —1)/2)n. The Riemann-Hurwitz
formula gives

(2.1) 29 —-2=p2z=2)+((p—1)/2)(2s + n)

where n is always even. If the covering is full then 2s+#n =0 (mod 2p) since p
divides 2¢g — 2.

Let W, be a Riemann surface of genus a« admitting a group of auto-
morphisms, G, isomorphic to the dihedral group of order 2p. We will always
write G = (Y, 9> where ¥ = 9> =e. Let W, = W,/{p), W)= W,/{y)> and
W.=W,/G. Then a+2z=2g+h. [7]

THEOREM 2.1 [7]. Let g} be a complete linear series on W.. Let gy (resp
g;;b) be the completion of the lift of g, to Wy, (resp W,). Then the completion of
gl lifted to W, is ggn"”b. O

In the theorem let D. be a divisor in g, on W.. On W, let D, be the divisor
of degree 2pn which is the lift of D,. The vector space of meromorphic functions
on W, which are multiples of D, is a complex represention of G of dimension
r+c+2b+1.

COROLLARY 2.2. The multiplicity of the trivial representation is r + 1. The
multiplicity of the non-trivial one dimentional representation is ¢. The sum of the

multiplicities of the irreducible representations of dimension two is b. O

We call attention to an important obvious fact.
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COROLLARY 2.3. [f there is a divisor in g’+c+2b which is not invariant under

Yy then b is positive. O

We now quote some classical theorems with abbreviations for later reference.

(RR) Riemann-Roch If ¢! is complete then » = n — g + i where 7 is the index
of specialty.

(BN) Brill-Noether 1f g) and h;, are complete and their sum is K, then
n—2r=m-—2s.

(Clift) Clifford’s theorem If g] is special then n —2r > 0. Equality in non-
trivial cases implies W, is hyperelliptic.

(CS) Castelnuovo-Severi inequality If W, admits a y,,(s) and a y,(¢) and the
two coverings admit no non-trivial common factorizations then

g<ms+nt+(m—1)(n—-1)
and equality has further consequences.

We now state a series of results with either proofs, references, or whose
proofs follow from standard techniques.

LemMA 2.4. Let m: Wy — W. be a p-sheeted covering with positive ram-
ification. Suppose A and B are integral divisors on W, so that n='(A) = n~'(B).
Then A = B. O

LemmAa 2.5. Let A and B be integral divisors on W, so that 2A = pB
where deg B > 2g. Then there exists an integral divisor C so that B=2C and
A= pC. Ul

The material in this section from now on will be needed only in Section 7.

LeEMMA 2.6. Let g) and h) be two different linear series so that 2g) = 2h;.
Then on an unramified two- sheeted covering, Wzg 1, of Wy there is a linear series
gé*”l which is the completion of the lift of g}, (and h}). If one of the two linear
series is simple then so also is g5

Proof. Let D and E be divisors in g, and h} respectively. Let f be
a function whose divisor is 2D —2E. Then W5, is defined by \/_ If D' is
the lift of D then the dimension of the multiples of D’ is (r+ 1)+ (s+1). If
g’ is simple there are more multiples of D’ than there are of D. So g"™*! is
simple. O

LemMa 2.7.  Let W, admit 4 distinct linear series, g, hb ke, and ld so that
i) 2¢¢ = 2h? = 2k¢ =214
if) g5+ hy = ki + 1
Then there exists an unramified 4-sheeted Galois covering Way_3 — W, (the
Galois group is the four group) and on Wy, there exists a g+t0+<+4+3 \which is the

completion of the lift of gi. 1f one of the four linear series on W is simple so also
is gatbrerds,
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Proof.  Apply the previous lemma twice. O

LemMa 2.8. Suppose W), admits a y,(g), g = 6, and is also elliptic-trigonal.
Then W, is elliptic-trigonal or trigonal.

Proof. Since h > 11, W, admits a unique p;(1) (CS). The involution
whose quotient is W, must permute the divisors of y;(1). Thus W, admits a
73(q) where ¢ =1 or 0. O

A linear series g;, will be said to impose t (linear) conditions on a complete g,
if 19, = gl = 9570

Lemma 2.9 [3]. Let g, | be half canonical. Let gl be a linear series
without fixed points where m <2r+ 1. Then g} imposes at most [m/2] conditions
on gy, O

Lemma 2.10 [3].  Let g5, (s = 2) be a simple linear series without fixed points
with m — s < 2r. Then g}, imposes at most [(m — s+ 1)/2] conditions on any half-
canonical 9571- Thus such a half-canonical 9571 must be simple. O

Lemma 2.11 [3].  Suppose W, admits a y,(q). Then every half-canonical
g;’fll is compounded of y,(q). (Thus g, being simple and half-canonical implies
that r < q.) O

Lemma 2.12 ([1], p 51). Suppose W, admits a y,(q) and r = [(g —1)/2] —
q=0. Then W, admits many half-canonical g, \’s. If g is odd the number is at
least 44. If g is even the number is at least (g+ 2 — 2q)49. O

Lemma 2.13. Suppose Wy admits a y;(q). Let D be an integral divisor of
degree 3 so that |2D| is compounded of y5(q). Then D is in y;(q).

Proof. Let D=x+y+2z 2x+2y+2zis a union of 2 divisors in y;(q).
If D is not in y;(¢q), say 2x + y is in p3(¢). But a divisor in y;(¢) is determined
by any point in it, S0 2x+ y=y+2z or x==z. D is in y;(gq) after all. [

LemMMA 2.14 [3].  Suppose W, admits a g}. Let D be an integral divisor of
degree 4 not in g}, so that |2D| = 2g} = g3. Then there exist two disjoint integral
divisors of degree 2, P and Q, so that D= P+ Q and 2P| = 20| = g,. O

(The proof uses the same kind of reasoning as in Lemma 2.13.)
LemmaA 2.15.  Suppose Wi, (r = 2) is trigonal and admits a half-canonical

g3, (necessarily compounded of g% by Lemma 2.9.) Then Wi,y does not admit a
complete half-canonical ggr‘l.
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Proof. Suppose the contrary. g5 is compounded of g} so that gj ' =
(r—1)g} + D where D is not in g}. Since K31 = (2r)g} we see that 2D = 2g1.
Since 3r+1>7, |2gi| =g2. Lemma 2.13 gives the contradiction. O

Lemma 2.16 (Castelnuovo, [2]). Let g, be a simple linear series on W,.
(n>2r) Then 2g! has dimension 3r—1+¢, ¢ > 0.

LEMMA 2.17.  Suppose Wi, admits a simple half-canonical g5 and a g}
which imposes two conditions on g5,.. If r>5 then m = 4. O

Proof. Since g}, is simple m >4. Let D be an integral divisor of r—2
points in general position on Wi..;. Then g5 — D (= g3,.,) gives a plane model
for Wiy with r—2 singularities of degree m —1 and one of multiplicity
2r +2 —m and possibly other singularities. Then

3r+1<[2r+1)2r)—(r—=2)(m—=1)(m—=2) = 2r+2—m)(2r+1—m)]/2

which simplifies to: m < 4r/(r—1). Since r > 5 we have m < 4. O

LemMma 2.18 [2].  Let g] and g}, be two distinct linear series where g is simple
and v >s. Then g, +g,, has dimension at least r+ 2s. O

3. Existence

Any ramified dihedral covering of odd prime order p, n,. : W, — W., arises
in accordance with the following procedure. There is given a meromorphic
function y : W. — P V¥ (:=Y) defines a two-sheeted covering 7. : W), — W.,
ramified over the zeros and poles of y whose orders are odd. Let Z=(1-7Y)/
(1+Y). Then a p-sheeted cyclic covering 7., : W, — W), is defined by Z(1/?)
(:= U) and is ramified over those zeros and poles of Z whose orders are not
divisible by p. The map n,. := 7. o ny, 1s a Galois covering with Galois group,
G, isomorphic to the dihedral group of order 2p. G = {p, > where ¢p*U = U~!
and YU =wU, o’=1, and w #1. Then W, = W,/{p) and the covering
map 7y, : W, — W, is the Galois closure of the p-sheeted dihedral covering
ny.: Wy — W.. We will prove the assertions in this paragraph only in the
following special situation.

THEOREM 3.1. A ramified p-sheeted dihedral covering is full if and only if it
arises by the above procedure with a y satisfying the following:

(3.1) (»)g = Bzn, a divisor of n distinct points, n even
(»),, =2C,, C., a divisor of degree u (=n/2)
(»); =(p—2)D= + pD;, D.; a divisor of s distinct points, deg D., =t

(deg y=n=2u=(p—2)s+pt)
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Proof.  Assuming the existence of such a y, we follow the above procedure
keeping track of significant divisors.

Let \/y (:=Y) define mj.: W), = W.. LetZ=(1-Y)/(1+7Y). Yand Z
are in M(W,), and both are of degree n.

(2), =
(Z)
(Z)o
(2).,

Now Z(1/p) (:=U) defines n,, : W, — W), a p-sheeted cyclic covering.
Wy, = W,/{¥) where y*U = wU, as before.

o = Buy, the n ramified points of =,

)

)y = Chy, 4 complete unramified fibers of 7.; deg Cp, =2u=n
)y = (p — 2)Dys + pDy, where Dy, and Dy, lie above D, and D
)_1 = (p — 2)En + pEj, where Ej, and Ej, lie above D.; and D

(Y
(Y
(Y
(Y

(U)o' = B!, lying above By, i=0,1,2,...,p—1. deg B, =
(U)-o' = C,, lying above Cp,, i=0,1,2,...,p—1. deg C;, =n.
(U)y=(p—2)Dus + Du
(U)@ = (P - Z)Eas + Eu

where D, + E, are the ramified points of =,,, D, and E, are each composed of
t complete unramified fibers of =, and D, + E,, is composed of ¢ complete fibers
of m,..

We may assume that the fixed points of ¢ are Bgn. Now

K =T Z (Da‘\' + Eas)

By the linear equivalence of divisors where U takes different values

p-l
ZBclm =((p—1)/2)[(p — 2)(Dus + Eus) + (Dur + Eqr)].  Consequently
i=1

K, =m,, (K )+ BO +((p = 1)/2)[p(Das + Eus) + (Dar + Eur)]

= BO + 7, "(K-+((p— 1)/2)[D=s + D). But
K,= B —|—7171(Kg)7 so by Lemma 2.4
Ky =7 (K- + ((p = 1)/2)[Dzs + D))

Thus 7, : W, — W. is a full p-sheeted dihedral covering.

Now we assume for a ramified p-sheeted dihedral covering n,. : W, — W.
that K, =7, '(Gy) for a fixed divisor Gy on W,. (By Lemma 2.4 any two such
Gy’s are l1nearly equivalent.) We must show that this covering arises from a
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meromorphic function y on W. as described in the statement of the theorem.
We first show that there are, in deed, ordinary ramification points.

Lemma 3.2, Let ny. : Wy — W. be a ramified p-sheeted full covering with
only total ramification points. Then the covering is cyclic.

Proof of Lemma 3.2. Let B be the divisor of ramification points of ..
Then
K,=(p-1)B+n(K.). But

gz \rz
Ky = ”__](GO)

for a divisor Gy on W.. The right hand sides of these last two equivalences,
being linearly equivalent, are the zeros and poles of a function in M (W) whose
pth power is a function in M(W,). Thus the covering is cyclic. O

Our covering m,. is assured of ordinary ramification points. Let 7, :
W, — W, be the Galois closure of m,.. Let the Galois group be G = {p,y>,
W, = W,/<{p> and W), = W,/{y>. Let B be the ramification divisor of 7, a
divisor of even degree n on W,. Then

Ka = Bgn + n;gl (K(l)
Letting K,, be a divisor in K, invariant under G we have
(3.2) Ko = B + 1.1 (Go).

Let L={feMW,)|(f) =, (Go) — Ku}-

L is a complex representation for G. It contains a function (whose zeros
and poles are the two sides of (3.2)) with a divisor not invariant under . Thus
it must contain an irreducible two dimensional representation <f}, f>>, where we
may assume (¢ =1, t# 1)

V=t Vh=vh ohi=h 9fh=h
Let U= fi/fpand let V= (1—-U)/(1+ U). Then ¢*V = —V and so V defines
Tag-

Now assume that the degree of U (and therefore V') is n.

We assert that B, = (V), or (V). Observe that B = (V),. To prove
the assertion let X be a function on W, where (X) = B% — (V),. Since the zeros
and poles of X are invariant under ¢, ¢*X = 21X where A =1 or —1. Assume
J=1. Then X is invariant under ¢, and X has BY for zeros, a divisor which
contains no complete fiber of 7,,. Therefore X is constant and BY, = (V),. (If
4= —1 replace X with VX and deduce that B? = (V)_.)

We now assume that BY = (V),. Since U= (1—-V)/(14+ V) we have
(U), =BY. Let o=1> Then y*"U=wU. It follows that (U),i=y'(B>)
((=B!) i=0,1,...,p—1 give the p divisors, of degree n, of the ordinary
ramification points of ..
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Now y*U? = U? and so U defines 7., and the ramification points of 7,
are the zeros and poles of U whose orders are not divisible by p. Let Z = U?, a
function on W,. Let

(Z)() =Dy +2Dpp+ -+ (p - 1)Dh(p—l) + pth

where the Dj;, i=1,2,...p—1 (but not necessarily p) are pairwise coprime
divisors of points counted with multiplicity one. On W,

(U)O =Dy +2Dp+ -+ (pf 1)Da(p—l) +Dap

where the D, i=1,2,...(p— 1) are ramification points of 7., lying above the
Dy;, and D, is a set of (deg Dy,) complete fibers of 7.
If @ is the involution of W) which lifts to ¢ and if

(Z)m =FEn+2Ep+---+ (p - 1)Evh(p—l) + pEpp
then @ interchanges the Dj’s and the Ej’s and
(U)/ =E +2Ep+--+(p— 1)Ea(p71) + Eyp

with definitions analogous to those of the D,’s.

We now show that Dj; =0 for i # p—2, p. Then setting ¥ =(1—-2)/
(14 Z), noting that ®*Y = —Y, and setting y = Y2, the proof will be complete
for deg U =n. (If in the assertion above, B = ( )m then set y = Y72)

On W, again note that (U), = (U), = (U), = B}, for all i.

o0

p—1 p—1
Ki= Y B+ (p—1)(Dy+ Ey) + 1) (K)
i=0 j=1

—1

S|

J(Daj + E4) + (Dyp + Eap)> Therefore
1

ZB(Im_BO ( l)/2)<

Ko= B+ n—luc) (P 1)/2)(Dgy + Eup)
+ 30~ D)2+ (p— DDy + Ey)

From the last sum extract the j = p — 2 term and denote what is left by a primed
summation.

K, EBO +7T71(K—)+(( - 1)/2)(Dap+Eap)+(( - 1)/2) ( a(p-2)
+Eyp-2) +Z (D + Ey)

where none of the integers in the brackets are divisible by p. Note that the
second, third, and fourth terms denote sets of complete fibers of 7., namely

T (Ko + ((p = 1)/2)(Dzp + D=(-2)))

for suitable divisors D, and D.,_5 on W. where m,. has total ramification
points above D.(, ;) and is unramified above D_,. Since

J
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K,=B), +m, (K,) = B, +m,(G),
descending to W, by Lemma 2.4 we have

7 (Go) = m (Ko ((p = 1)/2)(Dep + Degyp2)) + 311D

for suitable divisors ng on W,. The D, (j < p) are the total ramification
points for 7,.. If 3'[ |D,. is not zero in the last equivalence then the right and
left hand sides are the zeros and poles of a function on W, whose pth power is
a function in M(W.). This implies that m,. is a cyclic covering. This con-
tradiction proves the theorem in case the degree of U is n.

Now assume that the degree of U is less than n. Then

(fi) = A1+ F + .} (Go) —
(f2) = A2+ F + 7.} (Go) —

where (A;,4,) =0, F #0, and F is invariant under ¢. Again let U = f/f3,
V=(1-U)/(1+U), ¢V =—V and V defines n,;. Define X by (X) = B’ —
[(V)y+ F]. Then ¢p*X =2X, and A=1 or —1. If A=1, then X is invariant
under ¢ and BY = (V),+F. If Z=—1, then VX is invariant under ¢ and
BY = (V),+F. Thus F consists of part of BY,

We wish to show that Deg F = n/2.

Assume A=1. (The case A= —1 is handled in an analogous way.)
(U),=(V), and so BY =(U),+F. Define B! :=y(B%). Then B! =
W(U)) +(F) and (U), = y((U),). Consequently (U), +F = (U), +y(F).

Thus we have two functions, 6, 6, with divisors:

(01) = (U); = (U),, (02) =F —y(F)
and BY = (U), +F the ramification divisor of ¢. Apply CS to the two

covers 0, : W, — P! and Tlag : Wa — W,. Since 0; cannot be in M(W,) we
have a < (deg 6, — 1) +29. But a =29 —1+n/2. Consequently deg 6, > n/2.
Similarly deg ¢» > n/2. Since deg 6, +deg @, =n we conclude that deg F =
deg A; = deg A, =n/2.

Now BY is part of (V),+ (V), since V defines m,. But degF =
deg U =deg V =n/2; therefore B = (V),+ V), = (U), +(U)_, = (U?,,
and Y U? = 0?U?>.

Thus U? satisfies the properties of U (when deg U = n), and we may proceed
with the rest of the proof as before to obtain our desired y. Similarly for the
case B = (V), +F. This completes the proof of the theorem. O

Note that in the first part of the theorem where we proceeded from y to the
full covering n,., we can achieve an irreducible two dimensional representation in
L by defining f; and f, as follows:

(i) = (p —2)Dus + Dyp + 7, (Go) —
(f2) = (p = 2)Eus + Egp + 7, (Go) —
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Thus we see that for a given full covering n,, there are at most (dim L)/2
possible »’s which give rise to it according to the procedure at the beginning of
this section. This allows us to compute, naively, the dimension, o, in moduli
space of such W’s.
By the Riemann Hurwitz formula for y: W. — P! we have
2z2-2=-"2n+n/2+(p-3)s+(p—1t+ua

Since n=(p —2)s+ pt we have o =2z -2+ (n/2) + (n+ 2s)/p.

4. Weierstrass points (p = 3)

We draw attention to the fact that for full three-sheeted dihedral coverings
(with ¢ sufficiently large) ordinary ramification points are Weierstrass points.

THEOREM 3. If W, — W. is a full three-sheeted covering and g > 4 + 6z, then
each ordinary ramification point of the covering is a Weierstrass point.

Proof. Suppose g(ng_z) ;3 on W. lifts to be canonical on W,. If P is
an ordinary ramification point then x(2P) will be special if 2x >g. Now
x> ((2g —2)/3) — z, so a sufficient condition that P be a Weierstrass point is
2(((29 =2)/3) = 2) =z ¢. O

5. Half-canonical linear series on dihedral coverings

Assuming a full ramified p-sheeted dihedral covering 7., there is a linear
series g3~ on W. which lifts to be canonical on W, and so 2g — 2 = 2rp. Since

2 —2=p(2z—2) + ((p— 1)/2)(2s +n)
and 2p divides 25+ n, we see that
2r=(2z-2)+(p—-1) =2z

since p>3. Thus g3~ is not special and is complete. Consequently g3/~ =

2g!~* for 2% linear series g/~ (which need not be complete), and so W, admits
2% half-canonical linear series of dimension at least that of g~

THEOREM 5.1.  Of those 2% half-canonical linear series u, (=2771(27 —1))
have dimension greater than that of the corresponding g/ =~.

Proof. Continue the notation of the previous sections.

4.1 K, = Bgn + n’l(Kg) = Bgn + ntjzl(g%r“z)

ag
(4.2) Ky =, (g5") = n,} (K2) + Byu + (p — 1) Dy,

Z

where Dy, is the set of s total ramification points of =z, and B, is the set of
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n(p — 1)/2 ordinary ramification points which lie in n stacks of (p — 1)/2 points
over the n points of B., on W.. Map the elements represented by (4.2) back
onto W. by m..

(43) Pg%:ﬁ =pK:+((p—1)/2)Bn + (p — 1) Dz,

Now two-sheeted coverings are always full (Theorem 6.1), so there is a linear
series, f, of degree 2z —2+n/2 on W. so that

Ky =m; (K:) + Biw = 1. (f)
Mapping onto W, by m,, gives
(4.4) 2f =2K. + B,
Rewriting (4.3):
pgy " =K+ ((p = 1)/2)(2K: + Buy + 2D-y),
and so
pgy = K-+ ((p = 1)/2)(2f +2Dx)

There are, generically, u. half-canonical g° ;’s on W, so that for any such ¢° |
the last equivalence can be written

pg3yF =2[g2 + ((p = 1)/2)(f + D))
By Lemma 2.5 there is a g/~* so that

45)  grT=20" and ¢, +((p—1)/2)(f +Ds) = gl
Considering 7, we see that
(4.6) K, = n;hl (Kp) + (p—1)(Dys + Ey5) oOr

Ko =, (f)+ (P = 1)(Das + Eus)
Combining this with (4.1) we have
(4.7) T2 (f) + (p = 1)(Das + Eas) = m,. (29]77) + By,
Multiply (4.7) by (p —1)/2, and substitute (4.5) eliminating 7 !'(((p —1)/2)f)
7, (pg) " = (P = 1)/2)Dz = %) + (P = 1)%/2)(Das + Eus)
=,. (p—1)g; )+ ((p — 1)/2) By,
or
(48) 7 (9;7) = ((p = 1)/2)By, + ((p = 1)/2)(Das + Eas) + 7, (92_)

since 7,1 (D.) = p(Das + Eus)-
Thus there is a divisor equivalent to 7,'(g/~%) not invariant under ().
By Corollary 2.3, the dimension of |7z;z1 (977)] must be greater than that of

lg~]. O]
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6. Full ramified cyclic coverings

Let W. be a Riemann surface, and let D, (= x; + x, + - -+ + x;) be a divisor
on W. of s distinct points (s >2). A cyclic covering of prime degree p, W,
ramified over D. is defined by y!/?) where yeM(W.) and

(») = a1x1 4+ arxs + -+ + axs + pC-

where 0<a;<p, i=12,...,5s and > a;+ p(degC.)=0. We say that
{ay,as,...a;} are the rotation numbers for the covering. Since y*/?) k #0
(mod p) also defines W, the rotation numbers are only defined up to an integral
multiple mod p. The rotation numbers are also defined topologically by a
homomorphism from the fundamental group =;(W.— D.,-) onto Z, whose
kernel corresponds to the covering. The rotation numbers are the values of the
homomorphism on the paths that “circle” the a;’s.

THEOREM 6.1. A ramified cyclic covering of prime degree p (=2) is full if
and only if the rotation numbers are all equal to one another.

Proof. Set s=1p. Deg((p—1)D.+ pK.)=p((p— 1)t+ (22 —2)) = p(2z)
where (p — 1)t +2z—2 > z. Consequently, on W, there are p>* linear series |G|
where

(6.1) pG = (p—1)D: + pK:

If feM(W.) has the right and left hand sides of (6.1) as zeros and poles then
fU/P) defines a covering n : W, — W. where (h=fU/? n(D,) = D,)

(6.2) (h) = (p—1)Dy + ﬂ_](KZ) - ”_1(G)

Since K, = (p — 1)D, + n~(K.) the covering is full with equal rotation numbers.
But there are p” cyclic coverings with equal rotation numbers, so they all arise in
this manner. Thus equal rotation numbers imply fullness.

For the converse reverse the argument starting with (6.2) multiplied by p and
deduce (6.1), that is, that A? ¢ M(W.) and (h*) = (p —1)D, + pK. — pG. O

Now we consider half-canonical linear series on W, arising from an
equivalence 2H = G for a solution G on W, of (6.1). (Now p > 3) We have 2%
possible H’s with |H| = 91y, Where r> (g—1)/p—-=z.

Let g2, be one of the u. half-canonical linear series on W. by (6.1) the

equivalence
((p—1)/2)D- + pg? | = pH

has p** solutions |H|, one for each full cyclic covering W, — W. ramified over D.
On such a W, we have

(6.3) ((p=1)/2)Dg + 7 (g2_y) = n" ' (H)

2z
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|#~1(H)| has dimension greater than that of |H| since the divisor on the left hand
side of (6.3) is not lifted from W..

We see that the vanishing of the theta function at half periods (corre-
sponding to the existence of half-canonical linear series) for a ramified full p-
sheeted cyclic covering (p > 3) mimics those of full p-sheeted dihedral coverings.

Now we wish to show that in moduli space for genus g the full p-sheeted
cyclic coverings of a W, are in the closure of the space of full p-sheeted dihedral
coverings of a W., assuming that

29-2=pR2z-2)+s(p—1), pls, s>0.

On a Riemann surface of genus z, pick a divisor C of s distinct points.
We want a divisor D of degree 2s/p so that 2C = pD. That such a D exists
follows if 2s/p > z. To insure that C and D are disjoint it is useful to have D
move in a pencil, so we will assume 2s/p > z. Thus we are assuming 4g — 4 >
p’z+3pz—4p. (If p=3and z =1 then 2g > 5). Assuming that C and D are
disjoint, let FeM(W.) have divisor: (F)= pD—2C. Now let y=1-JF,
where the function y depends on the complex parameter 4 (#0.) Then

Note that 4/(1 — y) =4/(AF).

For all but a finite number of A’s (#£0) B, will consist of 2s distinct points
so we shall always make this assumption as 4 — 0. For a fixed 4 # 0 we follow
the procedure of section 3 to obtain a full p-sheeted dihedral covering, W, of W,
with (p — 1)/2 ordinary ramification points lying over each of the 2s points of B;.

Again let Y=/, Z=(1-Y)/(1+7Y), and U=Z/». Now let T =
U + U™!, a function on W, since T is invariant under ¢. T satisfies an equation
of the type

TP+ Q(T)=Z+ 27!

where Q is a polynomial of degree less than p. For example

p=3 T’+Q(T)=T>-3T

p=5 T°4+Q(T)=T°-5T*+5T
But Z+Z'=-2+4/(1-y). Thus

TP+ QO(T)+2=4/(/F)
where F is independent of A. Substituting A~"/”)T for T we have
TP + 20~ VPT) 427 = 4/F.
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Letting A — 0 this becomes 7?7 = 4/F, the equation of a full p-sheeted covering
of W. with total ramification points over the s distinct points of C. (We omit
the details of passing to the limit.)

A slightly more complicated argument would deal with the case where C and
D are not disjoint.

7. Full elliptic-trigonal Riemann surfaces

THEOREM 7.1. Let W, — Wi be a full three-sheeted covering of Riemann
surfaces of genus g and one. (g =3r+1,r>3). Then W, admits four complete
half-canonical linear series g3, ', hi ', ki1, Ii whose sum is bicanonical (a quartet.)
The first three are composite being the lifts of linear series on Wy, and the fourth is
fixed point free and simple being the completion of a lift of a linear series on Wj.
I3, is the unique linear series of degree 3r and dimension r or greater.

Proof. Theorem 5.1 and the discussion in Section 6 insures the existence of
the four linear series. 1/}, being the lift of a /"1, is fixed point free, and having
more divisors than //~!, it is simple. If another linear series Gj, exists then
5, 4+ G}, has dimension at least 3r (Lemma 2.18) and so is canonical. Since /5, is
half-canonical, 7}, = G},. The same result for a G} (¢ > 0) now follows.

On Wy let g'=', h'=', kI=', I'"! be the linear series that lift to the four on

r

W,. On W; we have

gt =k !
so on W, we have

gy hy =k

Since each linear series is half-canonical, their sum is bi-canonical. OJ

THEOREM 7.2. Let W, be a compact Riemann surface (g =3r+1, r>3)
admitting a quartet g5, Wyt kil 15 where [% is the only half-canonical linear
series on W, of degree 3r and dimension r. Then W, is a full elliptic-trigonal
Riemann surface.

Proof.  We first show that /} is simple and without fixed points. Suppose
[3, is composite. By Lemma 2.15 W, is not trigonal. Therefore, W, admits a
72(¢q) where W, admits a complete /3, , (where /5 has f fixed points), and
I6,_p))2 1s not special (Cliff.) Then ¢ =(r— f)/2 (RR) by Lemma 2.12 ¥,
admits many half-canonical Gj,’s. This contradiction insures that [, is simple.
That Z, is without fixed points follows from the fact that 2(/5,_,) = g2' 3%, ¢ > 0
(Lemma 2.16) and that W, is not hyperelliptic (Cliff.)

By Lemma 2.7 there exists an unramified 4-sheeted Galois covering
Wi,—3 — W, and Wy,_3 admits a simple gf5 (12r >36.) By a theorem of
Eisenbud-Harris [6, p 102] Wa, 3 is trigonal, elliptic-trigonal, or admits a g/
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imposing two conditions on g{5. By Lemma 2.17 n=4. It follows that W,
admits one of the three mutually exclusive alternatives.

Assuming that W is elliptic-trigonal, it follows by Lemma 2.8 (applied
twice) that Wi, is also. Fullness will follow from the following lemma.

Lemma 7.3. Let Wiy (r=3) admit a simple half-canonical 1}, and an
elliptic-trigonal covering nw: Wi.41 — Wi.  If a divisor D of [}, contains two points
of a fiber of m, then D is the lift of a divisor of degree r on Wy. Thus x is a full
covering.

Proof of Lemma 7.3. Let E be a divisor in y;(1), two points of which are
in D. Let F be another divisor in y;(1) which has a point in D. Then |E + F|
is a g/ on W, (being the lift of a gi) and so imposes three conditions on /],
(Lemma 2.9.) Thus (E+F,D)=E+F. Now |D|=10, D—(E+F)=173,
and so |D— E|=1;"%. Consequently, /7% — F=1[;3. Thus F imposes one
condition on /5%, 1572 is the lift of a ¢/} on Wj, and the result follows. (]

Since W, is not trigonal, to complete the proof we must show that W
does not admit a g}. Suppose that W, does admit a gi. We will arrive at a
contradiction.

We first show that if r > 5 then /§, — g; (= 15%) is simple and without fixed
points. Remember that g} imposes at most two conditions on /4, and therefore,
at most two conditions on any subseries of dimension at least 2. If /52 is
composite and compounded of g; then /52 = (r —2)g; + Dy, and so 3r—4 >
4r — 8, a contradiction. If /% is compounded of a 7,(¢) then ¢ divides 4, and
so t=2. As earlier in this proof, W, admits a non-special g(’;,zf%f) ’ and

q¢=(r—f)/2. Again this leads to too many half-canonical G;’s. If /5% has a
fixed point then so does /5, (=12 +g}), a contradiction.

We now proceed for all » > 3. For r =4 we assume that [}, — g} (=12) is
simple. (Note that the preceding argument shows that if /3 is composite then the
only possibility is |2g}| = /2.) If r =3 we assume that [ — g} (= /1) is without
fixed points. (The only other possibility is that /! = g} + x, where x is a fixed
point.)

By Lemma 2.10 /52, imposes at most r — 1 conditions on the other linear
series in the quartet, and if r >4 they are all simple as a consequence. (The
author is indebted to L. Donohoe [5] for the basic idea in the following discussion
as well as many of the details.)

Suppose that g5 ! = I;7% + S, where S, a divisor of degree 4, is not in g;.
By doubling this last equivalence, it follows that |2S| = 2gj, and Lemma 2.14
shows that S = P+ Q where |2P| = [2Q| =g}, and (P,Q) =0. Then

(7.1) g —P=L2+0=04-0

O imposes one or two conditions on /j, since /5, is without fixed points.
If Q imposes one condition on /5, then P is a fixed divisor for g !.



VANISHING THETANULLS FOR SOME DIHEDRAL AND CYCLIC COVERINGS 89

Suppose Q imposes two conditions on /5. Then [}, — Q =102, By BN
I} + Q has dimension r. Since g5 ! = 1,2 +P+ O, and g5 '+ P =15 + 0O, we
see that g4-! has Q as a fixed divisor and gl —0=1 34 + P

In all cases g5 ! has a divisor of fixed points of degree two, P,, and there is
another divisor Q, (2P, = 2Qg =g}) so that

95" =Py =570+ 0y (=95

By the same argument there exist P, Q; (resp Pk, Qk), divisors of degree two, so
that P, (resp Py) is a divisor of fixed points for 45! (resp k5-!) and

h;r : - Py = Z%r 4+ On (:= h;;JZ)

K — Pr= Z3r O (=k5 )
We claim that g5 !, = hg, , = ki, . For if the first two are not equal then
gL+ h, =g i Wthh is spe01al (Lemma 2.18, RR)) By Cliff and BN we
see that 8 =0, and g +hi T + gl =K, By replacing g4 by 2P, and noting

that g5~ 2 + P, is half canonical we see that g5, = A}, after all. Call this
linear series m4 ;. Then we have:

my = g5 =P =67+ 0,
=hy, =Py =157+ O,
=Ky = Pe=120+ Ok

Consequently Q, = 0y = Qx (:= Q) and /5, =m} !, + Q. Thus 2P, =2P,
2P, =20 and P;+ P, =P+ Q. By Lemma 2.7 it follows that there is a
smooth Galois covering Wy,_3 — W, and W, 3 admits a g3 which is necessarily
composite. Thus Wi, 3 is elliptic-hyperelliptic and W, is g-hyperelliptic (¢ =0
or 1.) We have reached the desired contradiction.

Now we must consider the exceptional cases.

For r =4 assume /}, = 3¢g). First we show that g;, is simple. If not then
W3 admits a y,(q) where ¢ divides 4; thus 1 =2. W, admits a g6 - (f fixed
points for gfz) and W, is hyperelliptic. Since It is 51mp1e Lemma 2. 11 implies
that ¢ >4. But then f =0, and g} =3g), and this gives g;, =3¢}, a con-
tradiction. Thus g;, is simple.

If g3, has one fixed point, g3, = g3, + x, then by Lemma 2.10 I}, — g3, =y
and 2x =2y, a contradiction. If g{, has two fixed points then g}, = g3, + P,
It — g3, = 0, 2P =20 =g}, and so

(7.2) gh—P=105-0

If g}, has 3 fixed points then W;; admits a simple g3. Since this implies that
g< 12 we have a contradiction. If g3, has no fixed points then g3, — g} = g{.
1;‘2 =1 (Lemma 2.9), and 2I) =2g}. Thus [ =P+ Q, 2P =20 =gl,
g12298+2P 112—g8+P+Q or
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(7.3) gh—P=15H—-0Q.

Exactly the same argument can be applied to h132 and kfz and we get equivalences
analogous to (7.2) and (7.3). Then we can apply the argument following (7.1)
and reach the conclusion that W;; does not admit a gi.

The case r=3 starts with I =2g; +x =g, + /3 where I =g, +x. We
first show that g3 is simple. If g2 is composite and W, admits a g; (which
is unique) then W), admits a y,(q) where W, admits a g; and is hyperelliptic
and by Lemma 2.11 ¢ > 3. Thus g7 =2¢gi, g3 =2g) + y, and 2x =2y. This
contradiction shows that g2 is simple.

If g3 is simple it cannot admit only one fixed point (93 = g3 + x, I§ = g3 + ,
2x = 2y, contradiction, as before.) It cannot admit three fixed points (I§ — g =
g}, Lemma 2.10.) If g2 admits a fixed divisor P of degree 2, then g3 = g% + P,
I§ = g2+ Q, 2P =20, and we have

(7.4) I5~Q=g3—P

If g3 is without fixed points then g3 =g} +g¢%. 2¢9? =21l =29} +2x =15 + x.
29} (=9¢2) = Kyo — 211, By Cliff 21! (=2¢? = [)) has dimension 3 and so has x
for a fixed point. Consequently, xeg?, g2 = g + x, 2g% + 2x = 21! =29} + 2x,
or 291 =2¢%. ¢l=P+Q, 2P =20, (P,Q0) =0, and we have

(7.3) I~ Q=g5—P

For each of the linear series g3, /43, k3 we have formulas like (7.4) and (7.5), and
we conclude the proof for the case g = 10 as in the proof following formula
(7.1). For r >3 the proof that W3, does not admit a g} is complete.  []

The case g =7 was considered in [4].

By CS it follows that only for g <10 can a W, admit several elliptic-
trigonal coverings. If W)y covers a torus in three sheets then by Lemma 2.4
there can be only one quartet lifted from this torus to Wjy. Thus there is a one-
to-one correspondence between full three-sheeted coverings Wiy — W; and
quartets on Wjy.
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