ON A CERTAIN HOLOMORPHIC CURVE EXTREMAL FOR THE DEFECT RELATION

Nobushige Toda

1. Introduction

Let $f = [f_1, ..., f_{n+1}]$ be a holomorphic curve from C into the n-dimensional complex projective space $P^n(C)$ with a reduced representation

$$(f_1,\ldots,f_{n+1}): \mathbf{C} \to \mathbf{C}^{n+1} - \{\mathbf{0}\},\$$

where n is a positive integer.

We use the following notations:

$$||f(z)|| = (|f_1(z)|^2 + \cdots + |f_{n+1}(z)|^2)^{1/2}$$

and for a vector $\mathbf{a} = (a_1, \dots, a_{n+1}) \in \mathbf{C}^{n+1} - \{\mathbf{0}\}\$

$$\|\mathbf{a}\| = (|a_1|^2 + \dots + |a_{n+1}|^2)^{1/2},$$

 $(\mathbf{a}, f) = a_1 f_1 + \dots + a_{n+1} f_{n+1}.$

$$(a, f(z)) = a_1 f_1(z) + \cdots + a_{n+1} f_{n+1}(z).$$

The characteristic function of f is defined as follows (see [11]):

$$T(r, f) = \frac{1}{2\pi} \int_{0}^{2\pi} \log ||f(re^{i\theta})|| \ d\theta - \log ||f(0)||.$$

Due to Cartan ([1]), we have the following relation:

(1)
$$T(r,f) = \frac{1}{2\pi} \int_{0}^{2\pi} \log \max_{1 \le i \le n+1} |f_j(re^{i\theta})| \ d\theta + O(1).$$

We suppose throughout the paper that f is transcendental; that is to say,

$$\lim_{r \to \infty} \frac{T(r, f)}{\log r} = \infty$$

and that f is linearly non-degenerate over C; namely, f_1, \ldots, f_{n+1} are linearly independent over C.

Received February 5, 2004; revised October 14, 2004.

It is well-known that f is linearly non-degenerate over C if and only if the Wronskian $W = W(f_1, ..., f_{n+1})$ of $f_1, ..., f_{n+1}$ is not identically equal to zero.

For meromorphic functions in the complex plane we use the standard notations of Nevanlinna theory of meromorphic functions ([4], [5]).

For $\mathbf{a} \in \mathbf{C}^{n+1} - \{\mathbf{0}\}$, we write

$$\begin{split} m(r, \boldsymbol{a}, f) &= \frac{1}{2\pi} \int_0^{2\pi} \log \frac{\|\boldsymbol{a}\| \|f(re^{i\theta})\|}{|(\boldsymbol{a}, f(re^{i\theta}))|} \ d\theta, \\ N(r, \boldsymbol{a}, f) &= N\left(r, \frac{1}{(\boldsymbol{a}, f)}\right). \end{split}$$

We then have the first fundamental theorem:

(2)
$$T(r,f) = m(r,a,f) + N(r,a,f) + O(1)$$

([11], p. 76). We call the quantity

$$\delta(\mathbf{a}, f) = 1 - \limsup_{r \to \infty} \frac{N(r, \mathbf{a}, f)}{T(r, f)} = \liminf_{r \to \infty} \frac{m(r, \mathbf{a}, f)}{T(r, f)}$$

the deficiency (or defect) of a with respect to f. We have

$$0 \le \delta(\boldsymbol{a}, f) \le 1$$

by (2) since $N(r, \boldsymbol{a}, f) \ge 0$ for $r \ge 1$ and $m(r, \boldsymbol{a}, f) \ge 0$ for r > 0. Let X be a subset of $\boldsymbol{C}^{n+1} - \{\boldsymbol{0}\}$ in N-subgeneral position; that is to say, $\#X \ge N+1$ and any N+1 elements of X generate \mathbb{C}^{n+1} , where N is an integer satisfying $N \geq n$.

Cartan ([1], N = n) and Nochka ([6], N > n) gave the following

THEOREM A (Defect relation). For any q elements \mathbf{a}_i (j = 1, ..., q) of X,

$$\sum_{i=1}^{q} \delta(\mathbf{a}_j, f) \le 2N - n + 1,$$

where $2N - n + 1 \le q \le \infty$ (see also [2] or [3]).

We are interested in the holomorphic curve f for which the defect relation is extremal:

(3)
$$\sum_{j=1}^{q} \delta(\mathbf{a}_j, f) = 2N - n + 1.$$

In [9] we proved the following theorem.

THEOREM B. Suppose that there are vectors \mathbf{a}_i (j = 1, ..., q) in X which satisfy (3), where $2N - n + 1 \le q \le \infty$. If (n + 1, 2N - n + 1) = 1, then there are at least

$$\left[\frac{2N-n+1}{n+1}\right]+1$$

vectors $\mathbf{a} \in {\mathbf{a}_j \ (j = 1, ..., q)}$ satisfying $\delta(\mathbf{a}, f) = 1$.

Further, we improved this theorem in [10]. Namely, we weakened the condition "(n+1, 2N-n+1)=1" in Theorem B to "N>n=2m $(m \in N)$ " and obtained the same conclusion as in Theorem B.

In this paper we consider the holomorphic curve f satisfying (3) from a different point of view.

Let

$$X_k(0) = \{ \boldsymbol{a} = (a_1, \dots, a_{n+1}) \in X \mid a_k = 0 \} \quad (1 \le k \le n+1).$$

Then, it is easy to see that

$$0 \le \#X_k(0) \le N$$

since X is in N-subgeneral position.

Further we put (see Definition 1 in [7])

$$u_k(z) = \max_{1 \le j \le n+1, j \ne k} |f_j(z)|,$$

$$t_k(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \{ \log u_k(re^{i\theta}) - \log u_k(e^{i\theta}) \} d\theta,$$

and

$$\Omega_k = \limsup_{r \to \infty} \frac{t_k(r, f)}{T(r, f)}.$$

Proposition A (see [7]).

- (a) $t_k(r, f)$ is independent of the choice of reduced representation of f.
- (b) $t_k(r, f) \leq T(r, f) + O(1)$.
- (c) $N(r, 1/f_j) \le t_k(r, f) + O(1)$ $(j = 1, ..., n + 1, j \ne k)$.
- (d) $0 \le \Omega_k \le 1$.

Our main purpose of this paper is to prove the following theorem:

THEOREM. Suppose that

- (i) $N > n \ge 2$;
- (ii) there are vectors $\mathbf{a}_1, \dots, \mathbf{a}_q \in X$ $(2N n + 1 < q \le \infty)$ satisfying $\delta(\mathbf{a}_j, f) > 0$ $(j = 1, \dots, q)$ and

$$\sum_{i=1}^{q} \delta(\mathbf{a}_{i}, f) = 2N - n + 1.$$

If $\Omega_k < 1$ for some k $(1 \le k \le n+1)$, then

- (a) $\#X_k(0) = N$;
- (b) there is a subset $P \subset \{1, 2, ..., q\}$ satisfying

$$\#P = N - n + 1$$
, $d(P) = 1$, $\delta(a_i, f) = 1$ $(j \in P)$

and

$$X_k(0) \cap \{\boldsymbol{a}_i \mid j \in P\} = \phi,$$

where d(P) is the dimension of the vector space spanned by $\{a_i | j \in P\}$.

(c) Any n elements of $X - \{a_i \mid j \in P\}$ are linearly independent.

As an application of this theorem, we can prove the following result:

"Let f be any exponential curve. If $N > n \ge 2$, then

$$\sum_{\boldsymbol{a} \in X} \delta(\boldsymbol{a}, f) < 2N - n + 1.$$

This result means that any exponential curve is not extremal for the defect relation when $N > n \ge 2$.

Preliminaries and lemma

We shall give some lemmas for later use. Let $f = [f_1, \dots, f_{n+1}], X$ and $X_k(0)$ etc. be as in Section 1, q any integer satisfying $2N-n+1 < q < \infty$ and we put $Q = \{1, 2, \dots, q\}.$

Let $\{a_i | i \in Q\}$ be a family of vectors in X. For a non-empty subset P of Q, we denote

V(P) = the vector space spanned by $\{a_i | j \in P\}$ and $d(P) = \dim V(P)$ and we put

$$\mathcal{O} = \{ P \subset Q \mid 0 < \#P \le N+1 \}.$$

LEMMA 1 ((2.4.3) in [3], p. 68). For $P \in \mathcal{O}$, $\#P - d(P) \leq N - n$.

For $\{a_i | j \in Q\}$, let

$$\omega: Q \to (0,1]$$

be the Nochka weight function given in [3, p. 72] and θ the reciprocal number of the Nochka constant given in [3, p. 72]. Then they have the following properties:

LEMMA 2 (see [3], Theorem 2.11.4).

- (a) $0 < \omega(j)\theta \le 1$ for all $j \in Q$; (b) $q 2N + n 1 = \theta(\sum_{j=1}^{q} \omega(j) n 1)$; (c) $(N+1)/(n+1) \le \theta \le (2N n + 1)/(n+1)$; (d) If $P \in \mathcal{O}$, then $\sum_{j \in P} \omega(j) \le d(P)$.

Note 1. (c) of Lemma 2 can be refined as follows: $\frac{N}{n} \le \theta \le \frac{2N-n+1}{n+1}$.

Proof. When $\theta = (2N - n + 1)/(n + 1)$, there is nothing to prove as $N/n \le (2N - n + 1)/(n + 1)$.

When $\theta < (2N - n + 1)/(n + 1)$, there is an element $P \in \mathcal{O}$ satisfying

$$\theta = \frac{2N - n + 1 - \#P}{n + 1 - d(P)} \quad (1 \le d(P) \le n)$$

by the definition of θ . By Lemma 1 we have

$$\theta = \frac{2N - n + 1 - \#P}{n + 1 - d(P)} \ge \frac{N + 1 - d(P)}{n + 1 - d(P)} \ge \frac{N}{n}$$

since $d(P) \ge 1$.

Put

$$P_k(0) = \{ j \in Q \mid \mathbf{a}_j \in X_k(0) \}$$
 and $d_k = \sum_{j \in P_k(0)} \omega(j)$.

Then, we have the inequality

$$(4) d_k \le n$$

since $d_k \le d(P_k(0))$ by Lemma 2(d) and $d(P_k(0)) \le n$ by the definition of $X_k(0)$.

LEMMA 3 (Defect relation) (see Theorem 3 in [8]). For any $\mathbf{a}_1, \dots, \mathbf{a}_q \in X$, we have the following inequalities:

(I)
$$\sum_{j=1}^{q} \omega(j) \delta(\mathbf{a}_j, f) \leq d_k + 1 + (n - d_k) \Omega_k;$$

(II)
$$\sum_{j=1}^{q} \delta(\mathbf{a}_j, f) \leq 2N - n + 1 - \frac{N}{n} (n - d_k) (1 - \Omega_k).$$

By applying Lemma 2 and Note 1 to (I) we obtain (II) as usual. (II) is an amelioration of Theorem 3 (II) in [8].

Remark 1. This is an amelioration of Theorem A. Since $\Omega_k \le 1$ and $d_k \le n$ we have the inequalities:

$$d_k + 1 + (n - d_k)\Omega_k \le n + 1$$
 and $2N - n + 1 - N(n - d_k)(1 - \Omega_k)/n \le 2N - n + 1$.

Lemma 4. For any $\mathbf{a} \in X_k(0)$, $\delta(\mathbf{a}, f) \ge 1 - \Omega_k$.

Proof. For $a \in X_k(0)$ we have the inequality

$$|(\boldsymbol{a},f(z))| \leq Ku_k(z)$$

for a positive constant K by the definitions of $X_k(0)$ and $u_k(z)$. From this inequality we have the inequality

$$N(r, \mathbf{a}, f) = \frac{1}{2\pi} \int_0^{2\pi} \log|(\mathbf{a}, f(re^{i\theta}))| \ d\theta \le \frac{1}{2\pi} \int_0^{2\pi} \log u_k(re^{i\theta}) \ d\theta + \log K$$
$$= t_k(r, f) + O(1) \quad (r > 0),$$

from which we obtain the inequality $\delta(a, f) \geq 1 - \Omega_k$.

LEMMA 5 ([9], Lemma 3). Suppose that N > n. For $\mathbf{a}_1, \dots, \mathbf{a}_q \in X$ the maximal deficiency sum

$$\sum_{j=1}^{q} \delta(\mathbf{a}_j, f) = 2N - n + 1$$

holds if and only if the following two relations hold:

- 1) $(1 \theta\omega(j))(1 \delta(\mathbf{a}_j, f)) = 0$ (j = 1, ..., q);2) $\sum_{j=1}^{q} \omega(j)\delta(\mathbf{a}_j, f) = n + 1.$

Corollary 1 ([9], Corollary 1(I)). Suppose that N > n and that for $\mathbf{a}_1, \dots, \mathbf{a}_q \in X$, the equality

$$\sum_{j=1}^{q} \delta(\mathbf{a}_j, f) = 2N - n + 1$$

holds. If $\theta\omega(j) < 1$ for some j, then $\delta(\mathbf{a}_i, f) = 1$.

DEFINITION 1 ([9], Definition 1). We put

$$\lambda = \min_{P \in \mathcal{O}} \frac{d(P)}{\#P}.$$

Then, λ has the following property.

Lemma 6 ([9], Proposition 2). $1/(N-n+1) \le \lambda \le (n+1)/(N+1)$.

Remark 2. (a) If $\lambda < (n+1)/(2N-n+1)$, then $\lambda = \min_{1 \le j \le q} \omega(j)$ and $\omega(j)=\lambda, \ \theta\omega(j)<1 \ (j\in P_0) \ \text{for an element} \ P_0\in \mathscr{O} \ \text{satisfying} \ \lambda=d(P_0)/\#P_0.$ (b) If $\lambda \ge (n+1)/(2N-n+1)$, then $\omega(j) = 1/\theta = (n+1)/(2N-n+1)$ $(j = 1, \ldots, q).$

In fact, the first assertion of (a) is given in the proof of Proposition 2.4.4 ([3], p. 68) with the definition of $\omega(j)$ ([3], p. 72). For the second assertion of (a), as $\omega(j) = \lambda$ $(j \in P_0)$ by the definition of ω and $(n+1)/(2N-n+1) \le 1/\theta$, we have the conclusion.

(b) See the definitions of $\omega(j)$ and θ ([3], p. 72).

Lemma 7 ([9], Corollary 2). For $a_1, \ldots, a_q \in X$, we have the inequality

$$\sum_{j=1}^{q} \delta(\mathbf{a}_j, f) \le \min\left(2N - n + 1, \frac{n+1}{\lambda}\right).$$

3. Proof of Theorem when $q < \infty$

Let f, X, $X_k(0)$ and ω etc. be as in the previous sections and q an integer satisfying

$$2N - n + 1 < q < \infty$$
.

Throughout this section we suppose that

- (i) $N > n \ge 2$;
- (ii) there are vectors $\mathbf{a}_1, \dots, \mathbf{a}_q \in X$ satisfying $\delta(\mathbf{a}_j, f) > 0$ $(j = 1, \dots, q)$ and

$$\sum_{j=1}^{q} \delta(\mathbf{a}_j, f) = 2N - n + 1;$$

(iii) $\Omega_k < 1$ for some k $(1 \le k \le n+1)$.

Proposition 1. $X_k(0) \subset \{a_1, \dots, a_q\}$.

Proof. If there exists a vector $\mathbf{a} \in X_k(0)$ satisfying $\mathbf{a} \notin \{\mathbf{a}_1, \dots, \mathbf{a}_q\}$, then $\delta(\mathbf{a}, f) > 0$ by Lemma 4 and (iii), and so by Theorem A we have the inequality

$$\sum_{j=1}^{q} \delta(\mathbf{a}_{j}, f) \le 2N - n + 1 - \delta(\mathbf{a}, f) < 2N - n + 1,$$

which is a contradiction to our assumption (ii).

Proposition 2. $d_k = n$.

Proof. From Lemma 3(II) and the assumption (ii) we have the inequality $(1 - \Omega_k)(n - d_k) \le 0$.

Then, by the assumption (iii) and (4), we obtain the equality $d_k = n$.

Proposition 3. (a) $\theta = N/n$, (b) $\#P_k(0) = N$ and (c) $\theta\omega(j) = 1$ $(j \in P_k(0))$.

Proof. As X is in N-subgeneral position, we have $\#X_k(0) \le N$. From Proposition 2 and Lemma 2(a)

(A)
$$\theta n = \sum_{j \in P_k(0)} \theta \omega(j) \le \sum_{j \in P_k(0)} 1 = \#P_k(0) = \#X_k(0) \le N,$$

so that we have $\theta \le N/n$. By Note 1 we obtain $\theta = N/n$.

Combining this result with the inequality (A), we have

$$\#P_k(0) = N$$
 and $\theta\omega(j) = 1$ $(j \in P_k(0)).$

COROLLARY 2. $\lambda < (n+1)/(2N-n+1)$.

Proof. By Lemma 7 and the assumption (ii), we have

$$\lambda \le \frac{n+1}{2N-n+1}.$$

If $\lambda = (n+1)/(2N-n+1)$, then by Remark 2(b) and Proposition 3(a)

$$\theta = \frac{2N - n + 1}{n + 1} = \frac{N}{n},$$

which is a contradiction, since N/n < (2N - n + 1)/(n + 1) when $N > n \ge 2$. This implies that our corollary holds.

Put

$$P_1 = \{ j \mid \theta \omega(j) < 1, 1 \le j \le q \}.$$

Then,

$$(5) P_1 \cap P_k(0) = \phi$$

by Proposition 3(c). We have the following

Proposition 4. $N - n + 1 \le \#P_1 < 2N - n + 1$.

Proof. (a) From Lemma 2(b), we have

$$q - (2N - n + 1) = \theta \left(\sum_{j=1}^{q} \omega(j) - n - 1 \right) = \sum_{j \notin P_1} \theta \omega(j) + \sum_{j \in P_1} \theta \omega(j) - \theta n - \theta.$$

Here, as $\theta\omega(j) = 1$ for $j \notin P_1$ we have that

$$\sum_{j \notin P_1} \theta \omega(j) = q - \# P_1$$

and by Proposition 3(a) we have

$$\sum_{j \in P_1} \theta \omega(j) - \theta n - \theta = -N + \frac{N}{n} \left(\sum_{j \in P_1} \omega(j) - 1 \right).$$

Combining these three equalities we obtain

(B₁)
$$q - (2N - n + 1) = q - \#P_1 - N + \frac{N}{n} \left(\sum_{j \in P_1} \omega(j) - 1 \right).$$

Here, as $1/(N-n+1) \le \lambda \le \omega(j)$ $(j \in P_1)$ due to Lemma 6, Corollary 2 and Remark 2(a) we obtain the inequality

(B₂)
$$q - \#P_1 - N + \frac{N}{n} \left(\sum_{j \in P_1} \omega(j) - 1 \right) \ge q - \#P_1 - N + \frac{N}{n} \left(\frac{\#P_1}{N - n + 1} - 1 \right).$$

From (B_1) and (B_2) we have the inequality

$$q - (2N - n + 1) \ge q - \#P_1 - N + \frac{N}{n} \left(\frac{\#P_1}{N - n + 1} - 1 \right),$$

which reduces to the inequality

$$(N-n+1-N/n)(\#P_1-N+n-1) \ge 0.$$

As

$$N-n+1-\frac{N}{n}=\frac{(N-n)(n-1)}{n}>0$$

by the assumption (i), we have

$$\#P_1 > N - n + 1.$$

(b) As $\delta(a_j, f) = 1$ $(j \in P_1)$ by Corollary 1, from Propositions 1, 3(b) and the assumption (ii) we have

$$\#P_1 < 2N - n + 1$$

as
$$P_1 \cap P_k(0) = \phi$$
 by (5).

Let P_0 be an element of \mathcal{O} satisfying

$$\frac{d(P_0)}{\#P_0} = \lambda,$$

where $\lambda = \min_{P \in \mathcal{O}} d(P) / \# P$. Then, $\omega(j) = \lambda \ (j \in P_0)$ and

$$\phi \neq P_0 \subset P_1$$

since $\theta \lambda < 1$ by Corollary 2 and Remark 2(a).

PROPOSITION 5. (a)
$$\#P_0 = N - n + 1$$
, (b) $d(P_0) = 1$ and (c) $\omega(j) = \lambda = 1/(N - n + 1)$ $(j \in P_0)$.

Proof. By Proposition 3(a), θ is equal to N/n, which is smaller than (2N - n + 1)/(n + 1). By the definition of θ , there exists a set $P \in \mathcal{O}$ satisfying

$$P_0 \subset P$$
, $1 \le d(P) \le n$

and

$$\theta = \frac{2N - n + 1 - \#P}{n + 1 - d(P)} = \frac{N}{n}.$$

By Proposition 3(a) and Lemma 1 we have the inequality

$$\begin{split} 0 &= \theta - \frac{N}{n} = \frac{2N - n + 1 - \#P}{n + 1 - d(P)} - \frac{N}{n} = \frac{(N - n)(n - 1) + Nd(P) - n\#P}{n(n + 1 - d(P))} \\ &\geq \frac{(N - n)(d(P) - 1)}{n(n + 1 - d(P))} \geq 0, \end{split}$$

which implies that

$$d(P) = 1$$
 and $\#P = N - n + 1$.

By Lemma 2(d), Remark 2(a) with Corollary 2 and Lemma 6 we obtain the inequality

$$1 = d(P) \ge \sum_{j \in P} \omega(j) \ge (N - n + 1)\lambda \ge 1$$

and we have

$$\lambda = \frac{1}{N - n + 1} = \omega(j) \quad (j \in P).$$

By the choice of P_0 , $1 \le d(P_0) \le d(P) = 1$ and so we have

$$d(P_0) = 1$$
 and $\#P_0 = N - n + 1$.

Proposition 6. $P_1 = P_0$.

Proof. By Lemma 2(b) we have the equality

$$q - (2N - n + 1) = \theta \left(\sum_{j=1}^{q} \omega(j) - n - 1 \right)$$
$$= \theta \left(\sum_{j \notin P_k(0) \cup P_0} \omega(j) + \sum_{j \in P_k(0) \cup P_0} \omega(j) - n - 1 \right).$$

Here, as $P_k(0) \cap P_0 = \phi$ by (5) and (6), $\sum_{j \in P_k(0)} \omega(j) = d_k = n$ (Proposition 2) and $\sum_{j \in P_0} \omega(j) = 1$ (Proposition 5(a), (c)), we have

$$\sum_{j \in P_k(0) \cup P_0} \omega(j) = \sum_{j \in P_k(0)} \omega(j) + \sum_{j \in P_0} \omega(j) = n + 1,$$

so that we have the equality

$$(C_1) \quad q - (2N - n + 1) = \theta \sum_{j \notin P_k(0) \cup P_0} \omega(j).$$

As $P_0 \subset P_1$, $\theta\omega(j) = 1$ for $j \notin P_1$ and $\theta\omega(j) < 1$ for $j \in P_1$ by the definition

of P_1 , $\#P_k(0) = N$ (Proposition 3(b)), $\#P_0 = N - n + 1$ (Proposition 5(a)) and $P_k(0) \cap P_1 = \phi$ by (5), we have

$$\begin{aligned} (\mathbf{C}_2) \quad \theta \sum_{j \notin P_k(0) \cup P_0} \omega(j) &= q - (2N - n + 1) - \#(P_1 - P_0) + \theta \sum_{j \in P_1 - P_0} \omega(j) \\ &= q - (2N - n + 1) - \sum_{j \in P_1 - P_0} (1 - \theta \omega(j)), \end{aligned}$$

From (C_1) and (C_2) we have the equality

$$\sum_{j \in P_1 - P_0} (1 - \theta \omega(j)) = 0.$$

If $P_0 \subsetneq P_1$, we have a contradiction since $1 - \theta \omega(j) > 0$ for $j \in P_1$. This means that $P_1 = P_0$ must hold.

PROPOSITION 7. Any n elements of $X - \{a_j | j \in P_0\}$ are linearly independent. In particular, any n elements of $X_k(0)$ are linearly independent.

Proof. Let b_1, \ldots, b_n be any n elements of $X - \{a_j \mid j \in P_0\}$. Then, the set

$$\{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}\cup\{\boldsymbol{a}_j\mid j\in P_0\}$$

contains n+1 linearly independent elements since X is in N-subgeneral position. As $d(P_0)=1, \ \boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ must be linearly independent. As $X_k(0)\subset X-\{\boldsymbol{a}_j\mid j\in P_0\}$, we have the last assertion.

Summarizing Propositions from 1 through 7, we obtain the following

THEOREM 1. Suppose that

- (i) $N > n \ge 2$;
- (ii) there are vectors $\mathbf{a}_1, \dots, \mathbf{a}_q \in X$ $(2N n + 1 < q < \infty)$ satisfying

$$\sum_{i=1}^{q} \delta(\mathbf{a}_{j}, f) = 2N - n + 1.$$

If $\Omega_k < 1$ for some k $(1 \le k \le n+1)$, then

- (a) $X_k(0) \subset \{a_1, \dots, a_q\}$ and $\#X_k(0) = N$;
- (b) there is a subset $P \subset Q$ satisfying

$$\#P = N - n + 1, \quad d(P) = 1, \quad \delta(a_i, f) = 1 \quad (j \in P)$$

and

$$X_k(0) \cap \{\boldsymbol{a}_j \mid j \in P\} = \phi;$$

(c) any n elements of $X - \{a_i | j \in P\}$ are linearly independent.

4. Proof of Theorem when $q = \infty$

Let $[f_1, \ldots, f_{n+1}]$, X, $X_k(0)$, θ and ω etc. be as in Section 1, 2 or 3. From Theorem A, it is easy to see that the set

$$\{a \in X \mid \delta(a, f) > 0\}$$

is at most countable and

$$\sum_{\boldsymbol{a} \in X} \delta(\boldsymbol{a}, f) \le 2N - n + 1.$$

In this section we consider a holomorphic curve f with an infinite number of vectors $a_i \in X$ such that

$$\delta(a_i, f) > 0 \quad (j = 1, 2, 3, \ldots).$$

We put

$$N = \{1, 2, 3, ...\}$$
 (the set of positive integers);
 $Y = \{a_j \mid j \in N\};$

$$\mathcal{O}_{\infty} = \{ P \subset N \mid 0 < \#P \le N+1 \}$$

and for any non-empty, finite subset P of N, we use

$$V(P)$$
 and $d(P)$

as in Section 2.

DEFINITION 2 (see [9], p. 144). We put

$$\lambda_{\infty} = \min_{P \in \mathcal{O}_{\infty}} \frac{d(P)}{\#P}.$$

Note that the set $\{d(P)/\#P \mid P \in \mathcal{O}_{\infty}\}$ is a finite set. We have the followings ([9], p. 144):

$$(a_{\infty})$$
 $1/(N-n+1) \le \lambda_{\infty} \le (n+1)/(N+1);$
 (b_{∞}) (the inequality (12) in [9])

$$\sum_{i=1}^{\infty} \delta(\mathbf{a}_j, f) \le (n+1)/\lambda_{\infty}.$$

From now on throughout this section we suppose that

- (i) $N > n \ge 2$;
- (ii) there exists a subset $Y = \{a_j \mid j \in N\}$ of X satisfying $\delta(a_j, f) > 0$ and

(7)
$$\sum_{j=1}^{\infty} \delta(\mathbf{a}_j, f) = 2N - n + 1;$$

(iii) $\Omega_k < 1$ for some $k \ (1 \le k \le n+1)$.

Note that we obtain the inequality

$$\lambda_{\infty} \le (n+1)/(2N-n+1)$$

from (7) and (b_{∞}) . Let P_0 be an element of \mathcal{O}_{∞} satisfying

$$\frac{d(P_0)}{\#P_0} = \lambda_{\infty}$$

and let ε be any positive number satisfying

(9)
$$0 < \varepsilon < (N-n)(1-\Omega_k)/(N-n+1)(n+1).$$

We restrict the number ε as in (9) for the forthcoming Propositions from 8 through 13 to hold.

Now, for the number ε in (9), there exists $p \in N$ satisfying $\{1, 2, ..., p\} \supset P_0$, p > 2N - n + 1 and

(10)
$$2N - n + 1 - \varepsilon < \sum_{j=1}^{p} \delta(\mathbf{a}_{j}, f).$$

For an integer q not less than p, we put

$$Q = \{1, 2, \dots, q\}.$$

Note that $2N - n + 1 < q < \infty$. For this Q, we use θ_q , ω_q and λ_q instead of θ , ω and λ in Section 2 respectively. Note that

$$\lambda_q = \lambda_{\infty}$$

since $Q \supset P_0$. Further we obtain the following inequalities from the equality (2) in [9]:

(12)
$$n+1-\frac{\varepsilon}{\theta_q} < \sum_{i=1}^q \omega_q(j)\delta(\mathbf{a}_j, f)$$

(13)
$$\sum_{j=1}^{q} (1 - \theta_q \omega_q(j))(1 - \delta(\mathbf{a}_j, f)) < \varepsilon.$$

From now on we put $\varepsilon_1 = \varepsilon/(1 - \Omega_k)$ for simplicity. Then,

(14)
$$0 < \varepsilon_1 < (N-n)/(N-n+1)(n+1).$$

Proposition 8. $X_k(0) \subset \{a_1, \dots, a_q\}$.

Proof. If there exists a vector $\mathbf{a} \in X_k(0)$ satisfying $\mathbf{a} \notin \{\mathbf{a}_1, \dots, \mathbf{a}_q\}$, then by Lemma 4, Theorem A and (10) we have the inequality

$$2N - n + 1 - \varepsilon < \sum_{j=1}^{q} \delta(\mathbf{a}_j, f) \le 2N - n + 1 - \delta(\mathbf{a}, f) \le 2N - n + 1 - (1 - \Omega_k)$$
$$< 2N - n + 1 - \varepsilon$$

as $p \le q$ and $\varepsilon < 1 - \Omega_k$ from (9). This is a contradiction.

We put

$$P_k(0) = \{ j \in Q \mid \mathbf{a}_j \in X_k(0) \}$$
 and $d_k(q) = \sum_{j \in P_k(0)} \omega_q(j)$.

Note that

(15)
$$\#P_k(0) \le N \text{ and } d_k(q) \le d(P_k(0)) \le n.$$

In fact, we have $\#P_k(0) = \#X_k(0) \le N$ as X is in N-subgeneral position. We have $d_k(q) \le d(P_k(0))$ by Lemma 2(d) and $d(P_k(0)) \le n$ by the definition of $X_k(0)$.

Proposition 9. $n - \varepsilon_1/\theta_q < d_k(q)$.

Proof. From (12) and Lemma 3(I) we have the inequality

$$n+1-\varepsilon/\theta_q<\sum_{j=1}^q\omega_q(j)\delta(\mathbf{a}_j,f)\leq d_k(q)+1+(n-d_k(q))\Omega_k$$

from which we obtain

$$(n-d_k(q))(1-\Omega_k)<\varepsilon/ heta_q$$

and so $n - \varepsilon_1/\theta_q < d_k(q)$ as $\Omega_k < 1$ and $\varepsilon_1 = \varepsilon/(1 - \Omega_k)$.

Proposition 10. (a) $\theta_q < (N + \varepsilon_1)/n$ and (b) $\#P_k(0) = N$.

Proof. From Proposition 9, Lemma 2(a) and (15), we have the inequality

$$(\mathbf{D}) \quad \theta_q(n-\varepsilon_1/\theta_q) < \theta_q d_k(q) = \theta_q \sum_{j \in P_k(0)} \omega_q(j) \le \#P_k(0) \le N,$$

from which we obtain $\theta_q < (N + \varepsilon_1)/n$ easily. Next, from (D) and Note 1, we obtain that $N - \varepsilon_1 < \#P_k(0) \le N$, so that $\#P_k(0) = N$ as $\varepsilon_1 < 1$ from (14).

Corollary 3. (a) $\theta_q \lambda_q < 1$ and (b) $\lambda_q < (n+1)/(2N-n+1)$.

Proof. (a) From (8), (11) and Proposition 10(a), we have

$$\theta_q \lambda_q < \frac{N + \varepsilon_1}{n} \frac{n+1}{2N - n + 1}$$

and by (14) and the assumption (i) it is easy to see that

$$\frac{N+\varepsilon_1}{n}\frac{n+1}{2N-n+1}<1.$$

We have (a) of this corollary.

(b) By (8) and (11), we have $\lambda_q \leq (n+1)/(2N-n+1)$. If λ_q is equal to (n+1)/(2N-n+1), then by Remark 2(b) we have $\theta_q \lambda_q = 1$, which contradicts (a) of this corollary. We have (b) of this corollary.

Put

$$P_1 = \{ j \in Q \mid \theta_q \omega_q(j) < 1, j \notin P_k(0) \}.$$

Note that

$$(16) P_1 \cap P_k(0) = \phi.$$

Proposition 11. $N-n+1 \le \#P_1$.

Proof. From Lemma 2(b) and (16) we have the equality

$$\begin{aligned} (\mathbf{E}_1) \quad q - (2N - n + 1) &= \theta_q \left\{ \sum_{j=1}^q \omega_q(j) - n - 1 \right\} \\ &= \theta_q \left\{ \sum_{j \in P_k(0)} \omega_q(j) + \sum_{j \in P_1} \omega_q(j) + \sum_{j \notin P_k(0) \cup P_1} \omega_q(j) - n - 1 \right\} \end{aligned}$$

and by Proposition 9

$$> \theta_q \Biggl\{ \sum_{j \in P_1} \omega_q(j) + \sum_{j \notin P_k(0) \cup P_1} \omega_q(j) - (1 + \varepsilon_1/\theta_q) \Biggr\}.$$

Here, by (a_{∞}) , (11) and Remark 2(a) with Corollary 3(b) we have

$$\sum_{j \in P_1} \omega_q(j) \ge \frac{\#P_1}{N - n + 1}$$

and as $\theta_q \omega_q(j) = 1$ for $j \notin P_k(0) \cup P_1$ by Lemma 2(a) and the definition of P_1 , we have

$$\theta_q \sum_{\substack{j \notin P_k(0) \cup P_1 \\ j \notin P_k(0)}} \omega_q(j) = q - \#P_k(0) - \#P_1,$$

so that we have the inequality

(E₂) the last term of (E₁)
$$\geq \frac{\theta_q \# P_1}{(N-n+1)} + q - \# P_k(0) - \# P_1 - \theta_q - \varepsilon_1$$
.

From (E_1) and (E_2) we obtain the following inequality by Proposition 10(b)

$$\#P_1\bigg(1-\frac{\theta_q}{N-n+1}\bigg)>N-n+1-\theta_q-\varepsilon_1,$$

which reduces to the inequality

$$#P_1(N-n+1-\theta_q) > (N-n+1)(N-n+1-\theta_q-\varepsilon_1).$$

Here, by Proposition 10(a) and by the fact that $0 < \varepsilon_1 < 1$ from (14) we have the inequality

$$N - n + 1 - \theta_q > N - n + 1 - \frac{N + \varepsilon_1}{n} = \frac{(N - n)(n - 1) - \varepsilon_1}{n} > 0$$

as $N > n \ge 2$ (the assumption (ii)), so that we have

$$\begin{split} \#P_1 &> (N-n+1) \bigg(1 - \frac{\varepsilon_1}{N-n+1-\theta_q} \bigg) \\ &> (N-n+1) \bigg(1 - \frac{\varepsilon_1}{(N-n+1-(2N-n+1)/(n+1))} \bigg) \\ &= (N-n+1) \bigg(1 - \frac{(n+1)\varepsilon_1}{(N-n)(n-1)} \bigg) \\ &> N-n \end{split}$$

by Lemma 2(c) and (14). This means that $\#P_1 \ge N - n + 1$.

Proposition 12. (a) $\#P_0=N-n+1$, (b) $d(P_0)=1$ and (c) $\theta_q=N/n$.

Proof. By the definition of θ_q and the choice of P_0 , there exists a set P satisfying

$$P_0 \subset P$$
, $1 \le d(P) \le n$

and

(17)
$$\theta_q = \frac{2N - n + 1 - \#P}{n + 1 - d(P)}.$$

By Proposition 10(a), (17) and Lemma 1 we have the inequality

$$\begin{split} (\mathbf{F}) \quad 0 > \theta_q - (N + \varepsilon_1)/n &= \theta_q - N/n - \varepsilon_1/n \\ &= \frac{(N-n)(n-1) + Nd(P) - n\#P}{n(n+1-d(P))} - \frac{\varepsilon_1}{n} \\ &\geq \frac{(N-n)(d(P)-1)}{n(n+1-d(P))} - \frac{\varepsilon_1}{n}. \end{split}$$

First we prove that d(P) = 1. Suppose that $d(P) \ge 2$. Then, from (F) we have the inequality

$$\frac{\varepsilon_1}{n} > \frac{N-n}{n(n-1)}$$

which reduces to the inequality

$$\varepsilon_1 > (N-n)/(n-1),$$

which contradicts (14). This means that d(P) must be equal to 1.

As d(P) = 1, we have from (17) and Note 1 that

$$\theta_q = \frac{2N - n + 1 - \#P}{n} \ge \frac{N}{n},$$

from which we have that $\#P \le N - n + 1$. On the other hand, as

$$\theta_q = \frac{2N - n + 1 - \#P}{n} < \frac{N + \varepsilon_1}{n}$$

by Proposition 10(a), we have the following inequality by (14)

$$\#P > N - n + 1 - \varepsilon_1 > N - n + 1 - \frac{N - n}{(N - n + 1)(n + 1)} > N - n.$$

We have that #P = N - n + 1. Substituting #P = N - n + 1 and d(P) = 1 in (17) we obtain that $\theta_q = N/n$.

Next, by Lemma 3 2(d), (a_{∞}) , (11) and Remark 2(a) with Corollary 3(b) we have the inequality

$$1 = d(P) \ge \sum_{j \in P} \omega_q(j) \ge (N - n + 1)\lambda_q \ge 1$$

since d(P) = 1 as is proved above, so that we have

$$\lambda_q = \frac{1}{N-n+1} = \omega_q(j) \quad (j \in P).$$

As $1 \le d(P_0) \le d(P) = 1$, we have $d(P_0) = 1$. By the choice of P_0 , we have the equality

$$\frac{1}{\#P_0} = \frac{d(P_0)}{\#P_0} = \lambda_q = \frac{1}{N - n + 1},$$

from which we have that $\#P_0 = N - n + 1$.

Corollary 4. $\lambda_q = \lambda_\infty = 1/(N-n+1) = \omega_q(j) \ (j \in P_0).$

Proposition 13. (a) $P_1 = P_0$ and (b) $d_k(q) = n$.

Proof. First we note that

(18)
$$\theta_q \omega_q(j) = \frac{N}{n(N-n+1)} < 1 \quad (j \in P_0)$$

as $\theta_q = N/n$ (Proposition 12(c)) and $\omega_q(j) = 1/(N-n+1)$ for $j \in P_0$ (Corollary 4). Next, we prove that $P_0 \cap P_k(0) = \phi$. Suppose to the contrary that $P_0 \cap P_k(0) \neq \phi$. As $d(P_0) = 1$, we have $P_0 \subset P_k(0)$. Then, by Propositions 9, 12(a), Corollary 4 and Lemma 2(a) we have

$$\begin{split} n - \varepsilon_1/\theta_q < d_k(q) &= \sum_{j \in P_k(0)} \omega_q(j) = \sum_{j \in P_0} \omega_q(j) + \sum_{j \in P_k(0) - P_0} \omega_q(j) \\ &\leq 1 + \frac{\#(P_k(0) - P_0)}{\theta_q} \,. \end{split}$$

By Propositions 10(b), 12(a) and 12(c) the last term of this inequality is equal to

$$1 + \frac{(n-1)n}{N},$$

so that we have the inequality

$$\frac{(n-1)(N-n)}{n} < \varepsilon_1.$$

This contradicts (14). This implies that

$$(19) P_0 \cap P_k(0) = \phi.$$

(18) and (19) mean that $P_0 \subset P_1$. By Lemma 2(b) we have the equality

$$\begin{aligned} q - (2N - n + 1) &= \theta_q \left(\sum_{j=1}^q \omega_q(j) - n - 1 \right) \\ &= \theta_q \left(\sum_{j \notin P_k(0) \cup P_0} \omega_q(j) + \sum_{j \in P_k(0) \cup P_0} \omega_q(j) - n - 1 \right). \end{aligned}$$

Here, as $P_k(0) \cap P_0 = \phi$, $\sum_{j \in P_k(0)} \omega_q(j) = d_k(q)$ (the definition of $d_k(q)$) and $\sum_{j \in P_0} \omega(j) = 1$ (Proposition 12(a), Corollary 4), we have

$$\sum_{j \in P_k(0) \cup P_0} \omega_q(j) = \sum_{j \in P_k(0)} \omega_q(j) + \sum_{j \in P_0} \omega_q(j) = d_k(q) + 1,$$

so that we have the equality

$$(G_1) \quad q - (2N - n + 1) = \theta_q \sum_{j \notin P_k(0) \cup P_0} \omega_q(j) - \theta_q(n - d_k(q)).$$

As $P_0 \subset P_1$, $\theta_q \omega_q(j) = 1$ for $j \notin P_k(0) \cup P_1$ and $\theta_q \omega_q(j) < 1$ for $j \in P_1$ by Lemma 2(a) and the definition of P_1 , $\#P_k(0) = N$ (Proposition 10(b)), $\#P_0 = N - n + 1$ (Proposition 12(a)) and $P_k(0) \cap P_1 = \phi$ by the definition of P_1 , we have

$$\begin{aligned} (\mathbf{G}_2) \quad \theta_q \sum_{j \notin P_k(0) \cup P_0} \omega_q(j) &= q - (2N - n + 1) - \#(P_1 - P_0) + \theta_q \sum_{j \in P_1 - P_0} \omega_q(j) \\ &= q - (2N - n + 1) - \sum_{j \in P_1 - P_0} (1 - \theta_q \omega_q(j)). \end{aligned}$$

From (G_1) and (G_2) we have the equality

$$q - (2N - n + 1) = q - (2N - n + 1) - \sum_{j \in P_1 - P_0} (1 - \theta_q \omega_q(j)) - \theta_q(n - d_k(q)),$$

so that we have the equality

$$\sum_{j \in P_1 - P_0} (1 - \theta_q \omega_q(j)) + \theta_q(n - d_k(q)) = 0.$$

If either $P_0 \subsetneq P_1$ or $d_k(q) < n$ holds, we have a contradiction since $\theta_q \omega_q(j) < 1$ for $j \in P_1$ and $d_k(q) \le n$ by (15). This means that it must hold both $P_1 = P_0$ and $d_k(q) = n$.

PROPOSITION 14. For any $j \in P_0$, $\delta(\mathbf{a}_i, f) = 1$.

Proof. Suppose to the contrary that

(20)
$$\min_{i \in P_0} \delta(\mathbf{a}_i, f) = \delta < 1.$$

Now, for any positive number ε_2 satisfying

(21)
$$0 < \varepsilon_2 < \min \left\{ \left(1 - \frac{N}{n(N-n+1)} \right) (1-\delta), \frac{(N-n)(1-\Omega_k)}{(N-n+1)(n+1)} \right\},$$

we choose $s \in \mathbb{N}$ satisfying $S = \{1, ..., s\} \supset P_0, s \geq p$ and

(22)
$$2N - n + 1 - \varepsilon_2 < \sum_{j=1}^{s} \delta(\mathbf{a}_j, f).$$

Note that $2N - n + 1 < s < \infty$. For this S we use θ_s , ω_s and λ_s instead of θ , ω and λ in Section 2 respectively. Then, by the choice of s the following relations hold from the results obtained in this section:

- (a) $\lambda_s = \lambda_\infty = 1/(N-n+1) = \omega_s(j)$ for $j \in P_0$ (Corollary 4);
- (b) $\theta_s = N/n$ (Proposition 12(c)).

By the equality (2) in the proof of Lemma 3 in [9], Lemma 3, Remark 1 and (22) we obtain

$$\sum_{j=1}^{s} (1 - \theta_s \omega_s(j))(1 - \delta(\mathbf{a}_j, f)) < \varepsilon_2$$

so that for any $j \in S$

$$(1 - \theta_s \omega_s(j))(1 - \delta(\mathbf{a}_i, f)) < \varepsilon_2.$$

By the definition of δ , (a) and (b) given above we have the inequality

$$\left(1-\frac{N}{n(N-n+1)}\right)(1-\delta)<\varepsilon_2,$$

which is a contradiction to (21). This means that $\delta = 1$ and we completes the proof of this proposition.

As in Proposition 7, we have the following

PROPOSITION 15. Any *n* elements of $X - \{a_i | j \in P_0\}$ are linearly independent.

Summarizing Propositions from 8 through 15 given above we obtain the following

THEOREM 2. Suppose that

- (i) $N > n \ge 2$;
- (ii) there are an infinite number of vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots \in X$ satisfying $\delta(\mathbf{a}_j, f) > 0$ $(j \in \mathbb{N})$ and

$$\sum_{j=1}^{\infty} \delta(\mathbf{a}_j, f) = 2N - n + 1.$$

If $\Omega_k < 1$ for some k $(1 \le k \le n+1)$, then

- (a) $X_k(0) \subset \{a_1, a_2, \ldots\}$ and $\#X_k(0) = N$;
- (b) there is a subset P of N satisfying

$$\#P = N - n + 1, \quad d(P) = 1, \quad \delta(\mathbf{a}_j, f) = 1 \quad (j \in P)$$

and

$$X_k(0) \cap \{a_j \mid j \in P\} = \phi;$$

(c) any n elements of $X - \{a_j \mid j \in P\}$ are linearly independent.

5. Application

In this section we shall apply the result obtained in Section 3 to exponential curves. For any n+1 distinct complex numbers $\mu_1, \mu_2, \dots, \mu_{n+1}$ we define a holomorphic curve f_e by

$$f_e = [e^{\mu_1 z}, e^{\mu_2 z}, \dots, e^{\mu_{n+1} z}].$$

We call it an exponential curve ([11], p. 94). It is easy to see that f_e is transcendental and non-degenerate. We use the notations $X_k(0)$, Ω_k etc. given in Section 1 in this section. We denote by $e_1, e_2, \ldots, e_{n+1}$ the standard basis of C^{n+1} .

Let D be the convex polygon spanned around the n+1 points $\mu_1, \mu_2, \ldots, \mu_{n+1}$ and ℓ the length of the polygon, where $\ell = 2|\mu_j - \mu_k|$ if the polygon reduces to a segment with the endpoints μ_i and μ_k .

Lemma 8 ([11], pp. 95–98).
$$T(r, f_e) = (\ell/2\pi)r + O(1)$$
.

Lemma 9.
$$\#\{k \mid \Omega_k < 1; 1 \le k \le n+1\} \ge 2$$
.

Proof. (a) The case when D is an n + 1-gon.

In this case, the points $\mu_1, \mu_2, \ldots, \mu_{n+1}$ are the vertices of D. We number without loss of generality the vertices μ_j $(j=1,\ldots,n+1)$ in asending sequence as one goes arround D in the positive direction. For any k $(1 \le k \le n+1)$, the n-gon D_k with the vertices $\mu_1, \ldots, \mu_{k-1}, \mu_{k+1}, \ldots, \mu_{n+1}$ is convex. Let ℓ_k be the length of the circumference of D_k . By the representation (1) of T(r,f) due to Cartan given in Introduction, by the definition of $t_k(r,f)$ and by Lemma 8 we have

$$t_k(r, f_e) = \frac{\ell_k}{2\pi} r + O(1),$$

and so we have

$$\Omega_k = \limsup_{r \to \infty} \frac{t_k(r, f)}{T(r, f)} = \frac{\ell_k}{\ell} < 1$$

since $\ell_k < \ell$ as is easily seen.

(b) The case when D is an m+1-gon $(2 \le m \le n-1)$.

We may suppose without loss of generality that the vertices of D are $\mu_1, \mu_2, \dots, \mu_{m+1}$. The other points $\mu_{m+2}, \dots, \mu_{n+1}$ are on the circumference of D or inside D.

For any k $(1 \le k \le m+1)$, let D_k be the convex polygon surrounding the points $\mu_1, \ldots, \mu_{k-1}, \mu_{k+1}, \ldots, \mu_{n+1}$ and let ℓ_k be the length of the circumference of D_k . Then as in (a), we have

$$t_k(r, f_e) = \frac{\ell_k}{2\pi}r + O(1),$$

and so we have

$$\Omega_k = \limsup_{r \to \infty} \frac{t_k(r, f)}{T(r, f)} = \frac{\ell_k}{\ell} < 1$$

since $\ell_k < \ell$ as is easily seen by an application of the triangle inequality.

(c) The case when D reduces to a segment L.

We may suppose without loss of generality that

- (i) μ_1 and μ_{n+1} are the endpoints of L;
- (ii) The points $\mu_1, \mu_2, \dots, \mu_{n+1}$ are in ascending sequence as one goes from μ_1 to μ_{n+1} on L.

Then, as in (a) we have

$$t_1(r, f_e) = \frac{1}{\pi} |\mu_2 - \mu_{n+1}| r + O(1), \quad t_{n+1}(r, f_e) = \frac{1}{\pi} |\mu_1 - \mu_n| r + O(1)$$

and

$$T(r, f_e) = \frac{1}{\pi} |\mu_1 - \mu_{n+1}| r + O(1),$$

from which we obtain

$$\square \qquad \qquad \Omega_1 = \frac{|\mu_2 - \mu_{n+1}|}{|\mu_1 - \mu_{n+1}|} < 1 \quad \text{and} \quad \Omega_{n+1} = \frac{|\mu_1 - \mu_n|}{|\mu_1 - \mu_{n+1}|} < 1.$$

Lemma 10. 1) $\#\{a \in X \mid \delta(a, f_e) > 0\} \le N(n+1)$.

2) $\delta(\mathbf{a}, f_e) = 1$ if and only if $\mathbf{a} = a\mathbf{e}_k$ $(a \neq 0)$ for some k $(1 \leq k \leq n+1)$ and for some nonzero constant a.

Proof. 1) Let $\mathbf{a} = (a_1, a_2, \dots, a_{n+1})$ be an element of X satisfying $\delta(\mathbf{a}, f_e) > 0$. Then, at least one of a_1, a_2, \dots, a_{n+1} is equal to zero.

In fact, suppose to the contrary that $a_j \neq 0$ (j = 1, ..., n + 1). Then $e_1, e_2, ..., e_{n+1}$ and \boldsymbol{a} are in general position and by Theorem A for N = n, we have

$$\sum_{j=1}^{n+1} \delta(\boldsymbol{e}_j, f_e) + \delta(\boldsymbol{a}, f_e) \le n+1,$$

from which we have $\delta(\mathbf{a}, f_e) = 0$ since $\delta(\mathbf{e}_j, f_e) = 1$ (j = 1, ..., n + 1).

This means that

$$\{\boldsymbol{a} \in X \mid \delta(\boldsymbol{a}, f_e) > 0\} \subset \bigcup_{k=1}^{n+1} X_k(0)$$

and as X is in N-subgeneral position, $\#X_k(0) \le N$ (k = 1, ..., n + 1). Due to these facts we reach to the fact that

$$\#\{a \in X \mid \delta(a, f_e) > 0\} \le N(n+1).$$

2) If $\mathbf{a} = a\mathbf{e}_k$ $(a \neq 0)$, then it is trivial that $\delta(\mathbf{a}, f_e) = 1$. Conversely, suppose that

$$\mathbf{a} = a_{j_1} \mathbf{e}_{j_1} + \cdots + a_{j_m} \mathbf{e}_{j_m} \quad (a_{j_1} \neq 0, \dots, a_{j_m} \neq 0; 2 \leq m \leq n).$$

Let

$$g_e = [e^{\alpha_1 z}, \dots, e^{\alpha_m z}] \quad (\alpha_p = \mu_{j_p} \ (p = 1, \dots, m)).$$

Then, g_e is a transcendental and non-degenerate exponential curve and by Lemma 8

$$T(r, g_e) = \frac{\ell'}{2\pi}r + O(1),$$

where $(0 <) \ell'(\leq \ell)$ is the length of the convex polygon spanned around the points $\alpha_1, \ldots, \alpha_m$.

As $N(r, \boldsymbol{a}, f_e) = N(r, \boldsymbol{a}, g_e)$ and

$$\delta(\mathbf{a}, g_e) = 1 - \limsup_{r \to \infty} \frac{N(r, \mathbf{a}, g_e)}{T(r, g_e)} = 0$$

by 1) of this lemma, we have

$$\delta(\boldsymbol{a}, f_e) = 1 - \limsup_{r \to \infty} \frac{N(r, \boldsymbol{a}, f_e)}{T(r, f_e)}$$

$$= 1 - \limsup_{r \to \infty} \frac{N(r, \boldsymbol{a}, g_e)}{T(r, g_e)} \cdot \frac{T(r, g_e)}{T(r, f_e)}$$

$$= 1 - \frac{\ell'}{\ell} < 1.$$

Using these lemmas we obtain the following

Theorem 3. When $N > n \ge 2$, for any exponential curve f_e

$$\sum_{\boldsymbol{a}\in X}\delta(\boldsymbol{a},f_e)<2N-n+1.$$

Proof. Suppose to the contrary that there exists an exponential curve f_e satisfying

$$\sum_{\boldsymbol{a}\in X}\delta(\boldsymbol{a},f_e)=2N-n+1.$$

Then, as the number of $\mathbf{a} \in X$ satisfying $\delta(\mathbf{a}, f_e) > 0$ is finite by Lemma 10-1), let $\mathbf{a}_1, \dots, \mathbf{a}_q$ be the elements of X satisfying

$$\delta(\mathbf{a}_i, f_e) > 0 \quad (j = 1, \dots, q)$$

and

(23)
$$\sum_{i=1}^{q} \delta(\mathbf{a}_{i}, f_{e}) = 2N - n + 1,$$

where $2N - n + 1 \le q < \infty$.

(I) The case when q = 2N - n + 1.

In this case, as q = 2N - n + 1 and $\delta(\mathbf{a}_i, f_e) \le 1$ we obtain from (23) that

$$\delta(\mathbf{a}_i, f_e) = 1 \quad (j = 1, \dots, 2N - n + 1).$$

By Lemma 10-2), for each $j=1,\ldots,2N-n+1$ there exists some k $(1 \le k \le n+1)$ satisfying $a_j=\alpha_j e_k$.

Put for each k = 1, ..., n + 1

$$x_k = \#\{a_i \mid a_i = \alpha_i e_k; \alpha_i \neq 0, 1 \leq j \leq 2N - n + 1\}.$$

Then, by (23) and q = 2N - n + 1 we have

(24)
$$\sum_{k=1}^{n+1} x_k = 2N - n + 1.$$

As $a_1, a_2, \dots, a_{2N-n+1}$ are in N-subgeneral position and 2N - n + 1 > N + 1, it must hold that $1 \le x_k$ for each k and

(25)
$$\sum_{k=1}^{n+1} x_k - x_p \le N, \quad (p = 1, 2, \dots, n+1).$$

Summing up n+1 inequalities of (25), we obtain

(26)
$$n\sum_{k=1}^{n+1} x_k \le N(n+1).$$

From (24) and (26) we obtain the inequality

$$n(2N - n + 1) \le N(n + 1),$$

from which we have the inequality

$$(N-n)(n-1) \le 0,$$

which is impossible since $N > n \ge 2$.

(II) The case when $2N - n + 1 < q < \infty$.

By Lemma 9 we may suppose that

$$\Omega_{\mu} < 1$$
 and $\Omega_{\nu} < 1$ $(1 \le \mu \ne \nu \le n+1)$.

By Theorem 1 for $k = \mu$

- (a) $X_{\mu}(0) \subset \{a_1, \dots, a_q\}$ and $\#X_{\mu}(0) = N$;
- (b) There exists a subset P of $Q = \{1, 2, \dots, q\}$ satisfying

$$\#P = N - n + 1$$
, $d(P) = 1$, $\delta(a_i, f_e) = 1$ $(j \in P)$

and

$$X_{\mu}(0) \cap \{a_i \mid j \in P\} = \phi.$$

Note that $\#P = N - n + 1 \ge 2$. By Lemma 10-2) and (b) given above we obtain that

$$a_i = \beta_i e_\mu \quad (j \in P).$$

This means that $a_j \in X_{\nu}(0)$ $(j \in P)$, and so if we choose n vectors containing at least two vectors of $\{a_j \mid j \in P\}$ from $X_{\nu}(0)$, they are linearly dependent. On the other hand, by Theorem 1(c) for $k = \nu$, any n elements of $X_{\nu}(0)$ must be linearly independent. This is a contradiction.

From (I) and (II) we have that there is no exponential curve f_e satisfying

$$\sum_{\boldsymbol{a} \in X} \delta(\boldsymbol{a}, f_e) = 2N - n + 1.$$

We complete the proof of this theorem.

Remark 3. When n = 1, there is an example of exponential curve f_e which satisfies (23) for any $N \ge 2$. Put $f_e = [e^z, e^{2z}]$ and

$$X = \{a_j = je_1 \ (j = 1, 2, \dots, N), a_j = je_2 \ (j = N + 1, N + 2, \dots, 2N)\}.$$

Then, X is in N-subgeneral position and

$$\sum_{j=1}^{2N} \delta(\mathbf{a}_j, f_e) = 2N.$$

Acknowledgments. The author thanks the referee for his/her valuable comments to improve the paper.

REFERENCES

- [1] H. CARTAN, Sur les combinaisons linéaires de *p* fonctions holomorphes données. Mathematica 7 (1933), 5–31.
- [2] W. CHEN, Defect relations for degenerate meromorphic maps. Trans. Amer. Math. Soc., 319-2 (1990), 499-515.
- [3] Н. FUJIMOTO, Value distribution theory of the Gauss map of minimal surfaces in \mathbb{R}^m . Aspects of Math. E21, Vieweg 1993.
- [4] W. K. HAYMAN, Meromorphic functions. Oxford at the Clarendon Press, 1964.
- [5] R. NEVANLINNA, Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Gauthier-Villars, Paris 1929.
- [6] E. I. NOCHKA, On the theory of meromorphic functions. Soviet Math. Dokl., 27-2 (1983), 377-381.

- [7] N. Toda, On the fundamental inequality for non-degenerate holomorphic curves. Kodai Math. J., 20-3 (1997), 189–207.
- [8] N. Toda, An improvement of the second fundamental theorem for holomorphic curves. Proceedings of the Second ISAAC Congress, edited by H. G. W. Begehr et al., Vol. 1 (2000), 501–510 (Kluwer Academic Publishers).
- [9] N. Toda, On the deficiency of holomorphic curves with maximal deficiency sum. Kodai Math. J., 24-1 (2001), 134-146.
- [10] N. Toda, On the deficiency of holomorphic curves with maximal deficiency sum, II. Progress in Analysis (Proceedings of the 3rd International ISAAC Congress, edited by H. G. W. Begehr et al.), Vol. 1 (2003), 287–300 (World Scientific).
- [11] H. WEYL AND F. J. WEYL, Meromorphic functions and analytic curves. Ann. Math. Studies 12, Princeton 1943.

CENTER FOR GENERAL EDUCATION AICHI INSTITUTE OF TECHNOLOGY e-mail: toda3-302@coral.ocn.ne.jp