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ON A CERTAIN HOLOMORPHIC CURVE EXTREMAL FOR
THE DEFECT RELATION

NOBUSHIGE Toba

1. Introduction

Let f'=[fi,..., fur1] be a holomorphic curve from C into the n-dimensional
complex projective space P"(C) with a reduced representation

(Aiseeos frg1) : € — C"™ — {0},

where n is a positive integer.
We use the following notations:

1@l = (AP + + 1)
and for a vector a = (ay,...,a,:) € C" — {0}

lal) = (|la1)* + - + |anet )2,
(@, f)=arfi + -+ a1 for1s

(a,/(2)) = afi(2) + - + dp1 fura (2).

The characteristic function of f is defined as follows (see [11]):

2n
T, ) =55 | gl r (e a0~ togl (O]

Due to Cartan ([1]), we have the following relation:

i 1 2n )
(1) (. f) :_J log max |f(re)| do+ O(1).
2n ) l<j<ntl ™
We suppose throughout the paper that f is transcendental; that is to say,
T

fim L0 _

r—oo  logr
and that f is linearly non-degenerate over C; namely, fi,...,f,+1 are linearly

independent over C.
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It is well-known that f is linearly non-degenerate over C if and only if the
Wronskian W = W(fi,..., fur1) of fi,..., far1 is not identically equal to zero.

For meromorphic functions in the complex plane we use the standard nota-
tions of Nevanlinna theory of meromorphic functions ([4], [5]).

For ae C""' — {0}, we write

] L/ (e
108 [0, e

Vo) =N (r )

We then have the first fundamental theorem:

(2) T(r,f)=m(r,a,f)+ N(r,a, )+ O(1)
([11], p. 76). We call the quantity

mir,a, f) = j

oa ) = 1 = imsup 78St 250 J)

the deficiency (or defect) of @ with respect to f. We have
0<d(a,f)=<1

by (2) since N(r,a,f) >0 for r > 1 and m(r,a, f) =0 for r > 0.

Let X be a subset of C""' — {0} in N-subgeneral position; that is to say,
#X > N +1 and any N + 1 elements of X generate C"*!, where N is an integer
satisfying N > n.

Cartan ([1], N =n) and Nochka ([6], N > n) gave the following

THEOREM A (Defect relation). For any q elements a; (j=1,...,q9) of X,

q
Z&(aj,f) <2N —n+1,

J=1

where 2N —n+1 < g < oo (see also [2] or [3]).

We are interested in the holomorphic curve f for which the defect relation is
extremal:

(3) i&(a_,,f) — 2N —n+1.

=1
In [9] we proved the following theorem.
THEOREM B. Suppose that there are vectors a; (j=1,...,q) in X which

satisfy (3), where 2N —n+1<g<oo. If (n+1,2N —n+ 1) =1, then there are
at least
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{ZN —n+ 1}
— | +1
n+1
vectors ac{a; (j=1,...,q)} satisfying 6(a, f) = 1.

Further, we improved this theorem in [10]. Namely, we weakened the
condition “(n+1,2N —n+1)=1" in Theorem B to “N >n=2m (meN)”
and obtained the same conclusion as in Theorem B.

In this paper we consider the holomorphic curve f satisfying (3) from a
different point of view.

Let

X(0)={a=(ar,...,an1) €eX|ar =0} (I1<k<n+1).
Then, it is easy to see that
0 <#X,(0) <N

since X is in N-subgeneral position.
Further we put (see Definition 1 in [7])

u(z) = max _ |fi(z)],

l<j<ntl,j#k

1 (> .
te(r, f) = 2nJ {log uk(re ) —log uk(e’a)} do,
and

Q) = lim sup TE?;;

ProposITION A (see [7]).

(@) t(r, f) is independent of the choice of reduced representation of f.
(b) u(r,f) < T(r, f) + O(1).

(©) N(m1/5) < tlrf)+0(1) (G=1,...on+1,) #K).

(d o< <1.

Our main purpose of this paper is to prove the following theorem:

THEOREM. Suppose that

(i) N>n=>2
(ii) there are wvectors ay,...,a;e X (2N —n+1<q< o) satisfying
oaj, /)>0 (j=1,...,q9) and
q
Zéa,, f)=2N-n—+1.
j=1

If Q. <1 for some k (1 <k<n+1), then
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(a) #X((0) = N;
(b) there is a subset P < {1,2,...,q} satisfying
#P=N—-n+1, dP)=1, d(a;,f)=1 (jeP)
and
Xe(0)N{a;[je P} = ¢,

where d(P) is the dimension of the vector space spanned by {a;|j € P}.
(c) Any n elements of X — {a;|j e P} are linearly independent.

As an application of this theorem, we can prove the following result:

“Let f be any exponential curve. If N >n> 2, then

Zé VY<2N—n+1."

aceX

This result means that any exponential curve is not extremal for the defect
relation when N >n > 2.

2. Preliminaries and lemma

We shall give some lemmas for later use. Let f={[f},..., fis1], X and
Xk (0) etc. be as in Section 1, ¢ any integer satisfying 2N —n+ 1 < g < o0 and we

put 0={1,2,...,q4}.
Let {a;|j e Q} be a family of vectors in X. For a non-empty subset P of
0O, we denote
V(P) = the vector space spanned by {a;|je P} and d(P)=dim V(P)
and we put
O={PcQ|0<#P <N +1}.

Lemma 1 ((2.4.3) in [3], p. 68). For Pe O, #P —d(P) < N —n.

For {a;|je 0}, let
w:Q—(0,1]

be the Nochka weight function given in [3, p. 72] and 6 the reciprocal number
of the Nochka constant given in [3, p. 72]. Then they have the following
properties:

LemmA 2 (see [3], Theorem 2.11.4).
(@) 0 <w(j)0 <1 for all je Q;

() g2V 0= [ = 0]y o)~ 1)
(© (N+1)/(n+1) <0< N —n+1)/(n+1);
(d) If Pe 0, then 3, p(j) < d(P).
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2N —n+1
n+1
Proof. When 0 = (2N —n+1)/(n+ 1), there is nothing to prove as N/n <

2N —n+1)/(n+1).
When 0 < (2N —n—+1)/(n+ 1), there is an element P € ¢ satisfying

N
Note 1. (c) of Lemma 2 can be refined as follows: m <0<

2N —n+1—#P
= uxi—ap =dB)=n)

by the definition of §. By Lemma 1 we have

ON—n+1—#P _N+1-d(P) _ N
= = = —
n+1—d(P) n+1—d(P) n

since d(P) > 1. O

Put
P(0)={jeQlaje X (0)} and di= > w()).
JjePr(0)
Then, we have the inequality
(4) di. <n
since d < d(Px(0)) by Lemma 2(d) and d(P;(0)) < n by the definition of X;(0).

Lemma 3 (Defect relation) (see Theorem 3 in [8]). For any ai,...,a,€ X,
we have the following inequalities:
(1) 2L ()o@, f) < di + 1+ (n — die)Qy;

(I1) 7L, 0(a;, f) <2N —n+1 —%(n —di)(1— ).

By applying Lemma 2 and Note 1 to (I) we obtain (II) as usual. (II) is an
amelioration of Theorem 3 (II) in [8].

Remark 1. This is an amelioration of Theorem A. Since Q; <1 and
dr < n we have the inequalities:

de +14+(n—dp)Q <n+1 and
2N—n+1—-Nn—d)(1 = Qx)/n<2N —n+ 1.

LEMMA 4. For any ae Xi(0), d(a, f) =1 — Q.

Proof. For ae X;(0) we have the inequality
|(a, f(2))] < Ku(2)
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for a positive constant K by the definitions of X;(0) and ui(z). From this
inequality we have the inequality

1 2n ) 1 2n )
N(r,a, f) = —J log|(a, f(re™))| do < —J log uy(re?) dO + log K
2n 0 2n 0
= u(r,f)+0(1) (r>0),
from which we obtain the inequality d(a, f) > 1 — Q. O

LemMA 5 ([9], Lemma 3). Suppose that N > n. For ay,...,a,€ X the max-
imal deficiency sum

q
Zéa], f)=2N—-n+1
j=1

.

holds if and only if the following two relations hold.
D) (I =0o())(1 =d(a;,f)) =0 (j=1,...,9);
2) YL w()oa, ) =n+1.

CoroLLARY 1 ([9], Corollary 1(I)). Suppose that N >n and that for
ai,...,a; € X, the equality

q
25 a,f)=2N—-n+1
Jj=1

holds. If Ow(j) <1 for some j, then é(a;, ) = 1.

DerINITION 1 ([9], Definition 1). We put

d(P)
A= min

Then, 4 has the following property.
LemMa 6 ([9], Proposition 2). 1/(N—n+1)<i<m+1)/(N+1).

Remark 2. (a) If A< (n+1)/2N—n+1), then A =min;<;<, o(j) and
o(j) =4, Ow(j) <1 (je Py) for an element Py e @ satlsfymg L =d(Py)/#Py.
) If A=(n+1)/2N—-n+1), then w(j)=1/0=n+1)/2N —n+1)
(J=1....4

In fact, the first assertion of (a) is given in the proof of Proposition 2.4.4 ([3],
p. 68) with the definition of w(j) ([3], p. 72). For the second assertion of (a),
as w(j) =1 (je Py) by the definition of w and (n+1)/2N —n+1) < 1/0, we
have the conclusion.

(b) See the definitions of w(j) and 6 ([3], p. 72).
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Lemma 7 ([9], Corollary 2). For ai,...,a; € X, we have the inequality
! . 1
oa;, f) < m1n<2N—n+ 1,”:).
=1

J

3. Proof of Theorem when g < oo

Let f, X, Xx(0) and w etc. be as in the previous sections and ¢ an integer
satisfying
2N —n+1<g< .

Throughout this section we suppose that
(i) N>n=>2
(ii) there are vectors ay,...,a, € X satisfying d(a;, f) >0 (j=1,...,q) and

Zq:é(aj,f) =2N—n+1;

1

j:
(iii) Qr <1 for some k (1 <k<n+1).
ProposITION 1. X (0) < {ai,...,a,4}.

Proof. If there exists a vector a € X;(0) satisfying a ¢ {a,...,a,}, then
o(a, ) > 0 by Lemma 4 and (iii), and so by Theorem A we have the inequality

oaj, f) <2N —n+1-0d(a, f) <2N —n+1,
=

which is a contradiction to our assumption (ii). O
ProrosITION 2. d; =n.

Proof. From Lemma 3(II) and the assumption (ii) we have the inequality
(1 —Q)(n—dy) <0.
Then, by the assumption (iii) and (4), we obtain the equality dj = n. O

ProposITION 3. (a) 8 = N/n, (b) #P;(0) = N and (c) Bw(j) =1 (j € Px(0)).

Proof. As X is in N-subgeneral position, we have #X;(0) < N. From
Proposition 2 and Lemma 2(a)

(A) On= > Oo(j)< Y 1=#P0)=#X,(0) <N,
JjePi(0) JjePi(0)

so that we have # < N/n. By Note 1 we obtain 0 = N/n.
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Combining this result with the inequality (A), we have
#P(0) =N and Ow(j)=1 (je Pr(0)). O

COROLLARY 2. A< (n+1)/(2N —n+1).

Proof. By Lemma 7 and the assumption (ii), we have

n+1
A 77—
2N —n+1
If 2=(n+1)/(2N —n+1), then by Remark 2(b) and Proposition 3(a)
2N-n+l N
- on4+1 n’
which is a contradiction, since N/n< (2N —n+1)/(n+1) when N >n > 2.
This implies that our corollary holds. O
Put
Py ={jlbw(j) <1,1<j<gq}.
Then,
(3) PN P(0) = ¢

by Proposition 3(c). We have the following
ProrosITION 4. N —n+1 <#Py <2N —n+1.

Proof. (a) From Lemma 2(b), we have

—(2N—n+1):9<i () —n—) > 00(j)+ > bw(j) — n—0

J=1 JEP Jjep
Here, as Ow(j) =1 for j¢ P, we have that
Y Oo(j) =g —#P
J¢P
and by Proposition 3(a) we have
. N ;
Zﬁw(]) —On—0= —N—i—; (Zw(]) — 1).
JeP JjeP
Combining these three equalities we obtain

(B1) q—(2N—n+1):q—#P1—N—i—%(Zw(j)—l).

JeP
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Here, as 1/(N—n+1) <A< w(j) (je P;) due to Lemma 6, Corollary 2 and
Remark 2(a) we obtain the inequality

N N #P,
B —#P — N +— )—1]|=>q—#P - N+—(————-1.
(B) g #P, +n</;1wm >_q N (1)
From (B;) and (B;) we have the inequality
N #P,
— (2N — 1) >q—#P — — (-1
4= (2N -n+1)=4q 1 N+n(N_n+1 )
which reduces to the inequality
(N-n+1—-N/n)(#P,—N+n—-1)>0.
As
N,n+1,ﬂ:w>o
n n
by the assumption (i), we have
#PlzN—n—i—l.

(b) As d(a;, f) =1 (jeP1) by Corollary 1, from Propositions 1, 3(b) and
the assumption (ii) we have

#P) <2N —n+1
as PN Pr(0) =¢ by (5). O

Let Py be an element of (0 satisfying

d(Po) _

#P ’
where 1 = minpeo d(P)/#P. Then, w(j) =4 (j€ Py) and
(6) ¢ # Py < Py

since Y4 < 1 by Corollary 2 and Remark 2(a).

ProposITION 5. (a) #Ppy =N —n+1, (b) d(Py) =1 and
©) w(j)=i=1/(N=n+1) (jePy).

Proof. By Proposition 3(a), 0 is equal to N/n, which is smaller than
(2N —n+1)/(n+1). By the definition of 0, there exists a set P € (¢ satisfying
PycP, 1<dP)<n

and
0Z2N—n+1—#P:E
n+1-d(P) n’
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By Proposition 3(a) and Lemma 1 we have the inequality
0707572N—n+1—#P_ﬁi(N—n)(n— 1) + Nd(P) — n#P

B n  n+1-d(P) no n(n+1—d(P))

vV =mP)=1)

n(n+1—d(P))

which implies that

d(P)=1 and #P=N-n+1.

By Lemma 2(d), Remark 2(a) with Corollary 2 and Lemma 6 we obtain the
inequality

1=d(P)=> o(j)=(N-—n+1)i>1

jePrP
and we have
1 . .
—m—w(ﬂ (jeP).
By the choice of Py, 1 < d(Py) <d(P)=1 and so we have
d(Py)=1 and #Py=N-n+1. O

ProrosITION 6. Py = P.

Proof. By Lemma 2(b) we have the equality

q
q—(2N—n+1):9<Zw(j)—n—l>

J=1

=0 > o()+ w(j)—n—1].
J#Pr(0)UPy jePL(0)UPy

Here, as Pr(0)N Py =¢ by (5) and (6), > ;cp, o) @(j) = d = n (Proposition 2)
and >, p @(j) =1 (Proposition 5(a), (c)), we have

()= > o()+ Y o()=n+l,
J€PL(0)UPy J€Pi(0) j€Po
so that we have the equality
(Ci) ¢g—2N—-n+1)=90 o(j).
J¢ Pe(0)UP,

As Py = Py, Ow(j) =1 for j¢ Py and Ow(j) < 1 for j e Py by the definition
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of Py, #P;(0) = N (Proposition 3(b)), #Py =N —n+ 1 (Proposition 5(a)) and
Pr(0)N Py =¢ by (5), we have

(C) 0 Y w()=¢-CN-n+1)=#P1=P)+0 > o))
JEPr(0)UPy JjeP1—Py

—g-QN-n+1)— Y (1-00())),

JEPI—Py
From (C;) and (C,) we have the equality
S (1— b)) =o.
JjEPI—Py

If Py < Py, we have a contradiction since 1 — 6w(j) > 0 for j e P;. This means
that P; = Py must hold. OJ

PROPOSITION 7. Any n elements of X — {a;|j € Py} are linearly independent.
In particular, any n elements of X;(0) are linearly independent.

Proof. Let by,...,b, be any n elements of X — {a;|je Py}. Then, the set
{bl,...,bn}U{aj|jeP0}

contains n + 1 linearly independent elements since X is in N-subgeneral posi-
tion. As d(Py) =1, by,...,b, must be linearly independent. As X;(0) = X —
{a;| je Py}, we have the last assertion. O

Summarizing Propositions from 1 through 7, we obtain the following

THEOREM 1. Suppose that
(i) N>n>=2
(ii) there are vectors ai,...,a,€ X (2N —n+1 < g < o) satisfying

Zqzé(aj,f) =2N—n+1.

=1

J
If Q<1 for some k (1 <k <n+1), then
(@) Xx(0) c{ai,...,a;} and #X;(0) = N;
(b) there is a subset P <= Q satisfying

#P=N-n+1, dP)=1, d(a;,f)=1 (jeP)
and
Xe(0)N{a;|j e P} = ¢;

(c) any n elements of X — {a;|je P} are linearly independent.
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4. Proof of Theorem when g = o

Let [f1,..., fur1], X, Xi(0), 0 and w etc. be as in Section 1, 2 or 3. From
Theorem A, it is easy to see that the set

{ae X |d(a, f) >0}
is at most countable and
Zﬁ(u,f) <2N —-n+1.
acX

In this section we consider a holomorphic curve f with an infinite number of
vectors @; € X such that

oa;, /) >0 (j=1,2,3,...).
We put
N =1{1,2,3,...} (the set of positive integers);
Y ={a;|jeN};
Op={PcN|0O<#P <N +1}
and for any non-empty, finite subset P of N, we use
V(P) and d(P)

as in Section 2.

DEFINITION 2 (see [9], p. 144). We put

Note that the set {d(P)/#P|P € O} is a finite set. We have the followings
(9], p. 144):

(ap) 1/(N=n+1)<lo <(n+1)/(N+1);

(bs) (the inequality (12) in [9])

> @y, f) < (n+1)/des.
j=1

From now on throughout this section we suppose that
(i) N>n>2
(ii) there exists a subset ¥ = {a;|je N} of X satisfying d(a;, f) > 0 and

(7) i&(aj,f) —ON—n+1;
=1

(iif) Q <1 for some k (1 <k <n+1).
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Note that we obtain the inequality
(8) Jo < (n+1)/2N —n+1)
from (7) and (by). Let Py be an element of (), satisfying

61’(1[’0)_/1
#pP, 7

and let ¢ be any positive number satisfying
9) 0<e<(N—-n)(1-Q)/(N—-n+1)(n+1).

We restrict the number ¢ as in (9) for the forthcoming Propositions from 8
through 13 to hold.

Now, for the number ¢ in (9), there exists p € N satisfying {1,2,..., p} > Py,
p>2N—n—+1 and

(10) 2N—n+1—s<i5(aj,f)
=1

For an integer ¢ not less than p, we put
0={1,2,....q}

Note that 2N —n+1 < g < 0. For this O, we use 0;, o, and /, instead of 0,
o and A in Section 2 respectively. Note that

(11) Dy = s

since Q o Py. Further we obtain the following inequalities from the equality (2)
in [9]:

(12) n+1——<qu (aj, f
q
(13) Z 0,04(j))(1 =6(a;, 1)) < e.
j=1
From now on we put & =¢/(1 — Q) for simplicity. Then,
(14) O<e <(N—-—n)/(N—n+1)n+1).
ProposiTiON 8. X (0) = {ay,...,a,}.

Proof. If there exists a vector a € X;(0) satisfying a ¢ {ai,...,a,}, then by
Lemma 4, Theorem A and (10) we have the inequality
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q
N —n+1-e< 6a;f) <2N—n+1-06(a,f) <2N —n+1—(1-Q)
j=1

<2N-—-n+1-¢
as p<gqand ¢ <1 —Cy from (9). This is a contradiction. O

We put

Py(0) ={jeQlaje Xi(0)} and di(g) = > wy())-
Jj€Pi(0)
Note that
(15) #P,(0) <N and di(q) <d(Pr(0)) <n.

In fact, we have #P;(0) = #X;(0) <N as X is in N-subgeneral position.
We have di(q) < d(Pr(0)) by Lemma 2(d) and d(Px(0)) < n by the definition of
X, (0).

PROPOSITION 9. 1 —¢1/0, < di(q).

Proof. From (12) and Lemma 3(I) we have the inequality

N1 o0y <> g0 ) < dilg) 1+ (n— dela)
=

from which we obtain
(n = di(q))(1 = ) < /0,
and so n—e¢1/0, < di(q) as Q<1 and & =¢/(1 — Q). O

ProposiTION 10. (a) 0, < (N +¢1)/n and (b) #Pr(0) = N.

Proof.  From Proposition 9, Lemma 2(a) and (15), we have the inequality

(D) O4(n—e1/0,) < Oydic(q) =0y > @,(j) < #Pi(0) < N,
JEePr(0)

from which we obtain 0, < (N +¢&)/n easily. Next, from (D) and Note I,
we obtain that N — ¢ < #P(0) < N, so that #P;(0) = N as ¢ < 1 from (14).
O

CorOLLARY 3. (a) 0,4, <1 and (b) iy < (n+1)/2N —n+1).

Proof. (a) From (8), (11) and Proposition 10(a), we have



ON A CERTAIN HOLOMORPHIC CURVE EXTREMAL FOR THE DEFECT RELATION 61

N +¢ n-+1

0
a%q < IN—n+1

and by (14) and the assumption (i) it is easy to see that

N +¢ n+1 <1
n 2N -—-n+1 '

We have (a) of this corollary.

(b) By (8) and (11), we have A, < (n+1)/2N —n+1). If 4, is equal to
(n+1)/(2N —n+1), then by Remark 2(b) we have 0,4, = 1, which contradicts
(a) of this corollary. We have (b) of this corollary. O

Put
Pl = {]E Q|6qwq(j) < 1aj¢Pk(0)}-
Note that
(16) PN PL(0) = ¢.

ProrosiTioN 11. N —n+1 < #P.
Proof. From Lemma 2(b) and (16) we have the equality

(E}) g—(2N—-n+1)= Bq{qu(j) —n— 1}

J=1

and by Proposition 9

>()q{zwq(j)+ wq(j)_(1+3l/0q)}-
Jjeb, J$Pe(0)UP,

Here, by (as), (11) and Remark 2(a) with Corollary 3(b) we have

#P,

wy(J) =
1;;1 N-n+1

and as 0,0,(j) =1 for j ¢ P, (0) U P; by Lemma 2(a) and the definition of Py, we
have

0, Y o)) =q—#Pc(0) —#Py,
JEPL(0)UP,
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so that we have the inequality

0,#P

(Ey) the last term of (E;) > (N—ntl)

+Q*#Pk(0)7#P1 7051781.

From (E;) and (E;) we obtain the following inequality by Proposition 10(b)

0
#p (1-—"% 10—
‘( N—n+1>>N ntl=0,—a,

which reduces to the inequality
#P\(N—n+1—-0,)>(N—-n+1)(N—n+1-0,—¢).

Here, by Proposition 10(a) and by the fact that 0 < ¢ < 1 from (14) we have
the inequality

N+ea (N-nn-1)—¢

N-n+1-0,>N—-n+1- >0

as N >n > 2 (the assumption (ii)), so that we have

€l
#P N — nil1——
1> nt )< N—n—l—l—Hq)

&l
>(N—n+1)(1_(Nn+l(2Nn+1)/(”+1)))

- (1)

>N-—n
by Lemma 2(c) and (14). This means that #Py > N —n+ 1. O
ProposITION 12. (a) #Pg=N —n—+1, (b) d(Py) =1 and (c) 0, = N/n.

Proof. By the definition of 6, and the choice of Py, there exists a set P
satisfying

PycP, 1<dP)<n

2N —n+1—#P
17 0 =
(17) 1 n+1—d(P)

By Proposition 10(a), (17) and Lemma 1 we have the inequality
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(F) 0>0,—(N+e)/n=0,—N/n—e/n
_ (N=n)(n—1)+ Nd(P) —n#P &
N n(n+1—d(P)) n
(N-—mdP)=1) a
nn+1—-d(P)) n

First we prove that d(P) = 1. Suppose that d(P) > 2. Then, from (F) we
have the inequality

£1> N —n
n" nn-1)’

which reduces to the inequality
e > (N—-n)/(n—1),

which contradicts (14). This means that d(P) must be equal to 1.
As d(P) =1, we have from (17) and Note 1 that

2N —n+1-—-#P N
> —

0, =

b

n n
from which we have that #P < N —n+ 1. On the other hand, as

_N-nt1-#P _N+ta
B n n

04

by Proposition 10(a), we have the following inequality by (14)

N —n
#P > N — 1 - N — 1-— N —n.
> n+ & > n—+ (N—n+1)(n+1)> n

We have that #P = N —n+ 1. Substituting #P =N —n+1 and d(P)=1 in
(17) we obtain that 0, = N/n.

Next, by Lemma 2(d), (a.), (11) and Remark 2(a) with Corollary 3(b) we
have the inequality

1=d(P)= > o) = (N—n+1)i, =1

since d(P) =1 as is proved above, so that we have
ot
N—-n+1

As 1 <d(Py) <d(P) =1, we have d(Py) = 1. By the choice of Py, we have the
equality

Ag = =ay(j) (jeP).
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o de) 1
#pPy #Py, 1 N-—-n+1’
from which we have that #Py =N —n+ 1. O

COROLLARY 4. 1, =1, =1/(N—n+1) =w,(j) (je Po).
ProposiTION 13. (a) Py = Py and (b) di(q) = n.

Proof. First we note that

N
18 0 )=————=<1 (jeP
( ) qwq(]) n(N—n—|—l)< (]E 0)
as 0, = N /n (Proposition 12(c)) and w,(j) =1/(N —n+ 1) for je Py (Corollary
4). Next, we prove that PyN Pr(0) =¢. Suppose to the contrary that PyN
Pi(0) #¢. As d(Py) =1, we have Py = P¢(0). Then, by Propositions 9, 12(a),
Corollary 4 and Lemma 2(a) we have

n—e /0y <di(q) = Z wq(j):qu(j)—i— Z @y(J)

jePr(0) JE€Py JEP(0)—Py
#(P, — P
<1+ (P(0) = Po)
04
By Propositions 10(b), 12(a) and 12(c) the last term of this inequality is equal to
(n—1n
4"
+ N
so that we have the inequality
—1}(N —
N,

This contradicts (14). This implies that
(19) Py Pr(0) = 4.
(18) and (19) mean that Py = P;. By Lemma 2(b) we have the equality

q—(2N—n+1)=0q<zq:a)q(j)—n—1>

=0, > o)+ wy(j) —n—1].
JePr(0)UPg

J¢Pr(0)UPy

Here, as Pr(0)NPo=¢, > icp o) @q(j) =di(q) (the definition of di(¢g)) and
> jep, @(j) =1 (Proposition 12(a), Corollary 4), we have
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Yo o)=Y o)+ ) =dilg) + 1,

jePL(0)UPy JjePr(0) Jj€Py

so that we have the equality

(G1) ¢=0CN-n+1)=0, @q(J) = O4(n — di(q))-
J#PO)UP,

As Py c Py, O,04(j) =1 for j¢ Pr(0)UP; and 0,0,(j) <1 for je P by
Lemma 2(a) and the definition of P;, #P;(0) = N (Proposition 10(b)), #Py =
N —n+1 (Proposition 12(a)) and Px(0)NP; = ¢ by the definition of P, we
have

(Ga) 0, > o)=q—QN—n+1)=#P1—P)+0, Y o,

JEPL(0)UPy JjeP1—Py

=q—(2N-n+1) - Z (1 = O4004(7))-

JjeP1—Pg
From (G;) and (G;) we have the equality
¢—@2N—n+1)=q— 2N —n+1)= > (1=0,0,())) = 04(n - di(q)),
JjeP1—Py
so that we have the equality
Z (1- quq(j)) + 0y(n — d(q)) = 0.
JjeP1—Pg

If either Py & P or di(q) < n holds, we have a contradiction since 0,0,(j) < 1
for je Py and di(q) <n by (15). This means that it must hold both P; = P
and di(q) = n. U

PrOPOSITION 14.  For any je Py, d(a;, f) = 1.

Proof. Suppose to the contrary that
(20) min d(a;, f) =0 < 1.

JjePo

Now, for any positive number ¢, satisfying

. N (N=n)(1 -
(21) 0<62<mm{(l_n(N—n+1)>(1_5)’(N—n+1)(n+kl)}’

we choose se N satisfying S={1,...,s} o Py, s> p and

(22) 2N—n+1—£2<ZS:5(a/,f).
=1

j=
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Note that 2N —n+1 < s < oo. For this S we use 6;, w, and A, instead of
0, w and A in Section 2 respectively. Then, by the choice of s the following
relations hold from the results obtained in this section:

(@) Ay=4e =1/(N=n+1)=wj) for je Py (Corollary 4);

(b) 6, = N/n (Proposition 12(c)).

By the equality (2) in the proof of Lemma 3 in [9], Lemma 3, Remark 1 and
(22) we obtain

S

> (1= b)) (1 = d(a;, /) < &2

=
so that for any je S

(1 = Os05(7))(1 = O(ay, f)) < éa.
By the definition of J, (a) and (b) given above we have the inquality

(=)0 -9 <=

which is a contradiction to (21). This means that 6 =1 and we completes the
proof of this proposition. ]

As in Proposition 7, we have the following
PROPOSITION 15. Any n elements of X — {a;| j € Py} are linearly independent.

Summarizing Propositions from 8 through 15 given above we obtain the
following

THEOREM 2. Suppose that

i) N>n=2
(ii) there are an infinite number of vectors ay,a, ... € X satisfying o(a;, ) >
0 (jeN) and
o
> d(aj, f) =2N—n+1.
=1

If Qp <1 for some k (1 <k<n-+1), then
(@) Xx(0) = {ai,az,...} and #X,(0) = N;
(b) there is a subset P of N satisfying

#P=N-n+1, dP)=1, o(a;,f)=1 (jeP)
and
Xi(0)N{a; | j € P} = ¢;
(c) any n elements of X —{a;|je P} are linearly independent.
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5. Application

In this section we shall apply the result obtained in Section 3 to exponential
curves. For any n+ 1 distinct complex numbers ug,p,...,41,. we define a
holomorphic curve f, by

ﬁ — [eﬂlZ’ elu227 . ’eﬂll+lz].

We call it an exponential curve ([11], p. 94). It is easy to see that f, is
transcendental and non-degenerate. We use the notations Xj(0), Qy etc. given
in S?ction 1 in this section. We denote by ej,es,...,e,.1 the standard basis of
crl

Let D be the convex polygon spanned around the n+ 1 points uy,us,...,
Hyi1 and 7 the length of the polygon, where / = 2|u; — | if the polygon reduces
to a segment with the endpoints x; and g.

Lemma 8 ([11], pp. 95-98). T(r, f.) = (¢/27)r + O(1).
Lemma 9. #{k|Qr < ;1 <k <n+1}>2.

Proof. (a) The case when D is an n+ 1-gon.

In this case, the points uy,u,,...,u,,; are the vertices of D. We number
without loss of generality the vertices y; (j=1,...,n+ 1) in asending sequence
as one goes arround D in the positive direction. For any k (1 <k <n-+1), the
n-gon Dy with the vertices fy,..., y_1, Mi1s-- -+ Mayy 18 convex. Let 4 be the
length of the circumference of D;. By the representation (1) of T'(r, f) due to
Cartan given in Introduction, by the definition of #/(r, f) and by Lemma 8 we
have

) /)
Zk(r7f@) :ﬁr+0(1>7
and so we have
u(r, f)

Q. llﬁgp T f) 7 <1

since £ < / as is easily seen.

(b) The case when D is an m+ l-gon 2 <m <n—1).

We may suppose without loss of generality that the vertices of D are
U1, M2,y M- The other points u,,,5,...,u1,,; are on the circumference of D
or inside D.

For any k (1 <k <m+1), let Dy be the convex polygon surrounding the
points £y, ..., M1, Mks1s - - - > Mnyq and let 7 be the length of the circumference of
Dy. Then as in (a), we have

i3

lk(r7fé) = 27_[

r+ 0(1),
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and so we have

u(r f) _ %

Q=1 =—x<1
SRR YO
since /; < ¢ as is easily seen by an application of the triangle inequality.
(c) The case when D reduces to a segment L.
We may suppose without loss of generality that
(i) u, and u,,, are the endpoints of L;

(ii) The points py, iy, .., 4, are in ascending sequence as one goes from y;
to u,., on L.

Then, as in (a) we have

1 1
n(r, fo) = ;|ﬂz = Uit +0(1),  tyia (1, fe) =;|ﬂ1 — W,|r+0(1)
and

1
T(rvj;’) :;Lul _:un+l|r+ 0(1)7

from which we obtain

0 o =W tl g, = Tl
g =ty lty =t

Lemma 10. 1) #{ae X |d(a, f;) >0} < N(n+1).

2) 8(a, f.) =1 if and only if a = ae; (a #0) for some k (1 <k <n+1) and
for some nonzero constant a.

Proof. 1) Let a= (aj,ay,...,a,+1) be an element of X satisfying d(a, f.) >

0. Then, at least one of ay,a,...,a,11 1s equal to zero.

In fact, suppose to the contrary that a; #0 (j=1,...,n+1). Then
el,er,...,e,.1 and a are in general position and by Theorem A for N = n, we
have

n+1

Z(S(ejaf;’) +5(a7fe) <n+ 17
=1
from which we have d(a, f,) =0 since d(ej, fo) =1 (j=1,...,n+1).
This means that
n+1
{ae X [d(a, f.) > 0} = | Xi(0)
k=1
and as X is in N-subgeneral position, #X;(0) <N (k=1,...,n+1). Due to
these facts we reach to the fact that

#lae X |6(a, f.) >0} < N(n+1).
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2) If a=ae, (a #0), then it is trivial that d(a, f,) =1
Conversely, suppose that

a=ae, + ---+ae, (a,#0,...,a;, #0;2<m<n).
Let
ge =" ....e™] (o =p; (p=1,...,m)).
Then, g, is a transcendental and non-degenerate exponential curve and by

Lemma 8
i
2n

T(r,g.) ==—r+ O(1),

where (0 <)/'(<¢) is the length of the convex polygon spanned around the points
ALy ooy Om.

As N(r,a,f.) = N(r,a,g.) and

: N(r7a7g(.’)
ola,g.) =1 —limsup ———"-=0
(a,g.) mSUp
by 1) of this lemma, we have
N(r.a, fe)
) =1—limsu
o(a, fo) = mSup

N(r,a,g.) T(r,g.)
s = ) T o)

/

l
/< Ul

Using these lemmas we obtain the following

THEOREM 3. When N > n =2, for any exponential curve f,

> d(a fo) <2N —n+1.

acX

Proof. Suppose to the contrary that there exists an exponential curve f,
satisfying

> d(a, fo) =2N —n+1.
aeX

Then, as the number of a € X satisfying d(a, f.) > 0 is finite by Lemma 10-1), let
ai,...,a, be the elements of X satisfying

oa, fo) >0 (j=1,...,9)
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and

(23) ijé(aﬁfe) —2N—n+1,

J=1

where 2N —n+1 < g < .
(I) The case when ¢ =2N —n+ 1.
In this case, as ¢ =2N —n+1 and J(a;, f.) <1 we obtain from (23) that

oaj, fo)=1 (j=1,....2N—n+1).
By Lemma 10-2), for each j=1,...,2N —n+1 there exists some k (1 <k <
n+ 1) satisfying a; = ajey.
Put for each k=1,...,n+1
xe=#{a;|aj = oye;0 #0,1 < j<2N —n+1}.
Then, by (23) and ¢ =2N —n+ 1 we have
n+1

(24) S xe=2N-n+1
k=1

As aj,ay,...,a)y 41 are in N-subgeneral position and 2N —n+1> N +1, it
must hold that 1 < x; for each k& and

n+1

(25) N xk—x <N, (p=12,...,n+1).
k=1

Summing up n+ 1 inequalities of (25), we obtain

n+1
(26) nYy xx<Nn+1).
k=1

From (24) and (26) we obtain the inequality
n2N —n+1)<N(n+1),
from which we have the inequality
(N—-n)(n—1) <0,

which is impossible since N >n > 2.
(II) The case when 2N —n+1 < g < o0.
By Lemma 9 we may suppose that

Q,<1 and Q, <1 (I<u#v<n+l).
By Theorem 1 for k=pu

(a) Xu(0) c{ay,...,a,} and #X,(0) = N;
2.

(b) There exists a subset P of Q={1,2,...,¢q} satisfying
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#P=N-n+1, d(P)=1, o, f.)=1 (jeP)
and
X,(0)N{a | j e P} = 4.

Note that #P = N —n+ 1 > 2. By Lemma 10-2) and (b) given above we obtain
that

aj=fie, (jeP).

This means that a; € X,(0) (je P), and so if we choose n vectors containing at
least two vectors of {a;|je P} from X,(0), they are linearly dependent. On the
other hand, by Theorem 1(c) for k = v, any n elements of X,(0) must be linearly
independent. This is a contradiction.

From (I) and (II) we have that there is no exponential curve f, satisfying

> d(a, fo) =2N —n+1.

acX

We complete the proof of this theorem. O

Remark 3. When n =1, there is an example of exponential curve f, which
satisfies (23) for any N >2. Put f, = [e”,¢*] and

X={aj=jer (j=1,2,...,N),q=je; (j=N+1,N+2,...,2N)}.
Then, X is in N-subgeneral position and

2N

> o(aj, fo) =2N.

J=1
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