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INTEGRAL AND BP COHOMOLOGIES OF EXTRASPECIAL
p-GROUPS FOR ODD PRIMES

NOBUAKI YAGITA

Abstract

For each odd prime p, we see BP°¥(Bpl**) =0 where pl** is the extraspecial p-
group of order p> and of exponent p.

1. Introduction

Let G be a compact group and BG its classifying space. All known
examples of BP*(BG) are generated by even dimensional elements. Hence it
is conjectured that BP°¥(BG)=0. In this paper we give new examples of
BP*¥(BG) = 0.

Throughout this paper, let p be an odd prime number. Let pljz” be the
extraspecial p-group of order p'*?" and exponent p. (For p =2, the group
21721 is the n-th central product of the dihedral group Dg of order 8.) It is
known that the Morava K-theory K(k)*“(BG) =0 for G = p'*2, Dy in [T-Y2)]
and for G =21 in [S-Y]. By a theorem in [R-W-Y], we know BP**(BG) =0
for these cases.

For m>1 or m = o0, let us write the central product by

Gl =Z/p" gy P Gl = S" xzy pIY

so that G = plt2

THEOREM 1.1.  The homology H*(BGZ>;Z) has no higher p-torsion, i.e., all
elements are just p-torsion or torsion free.

THEOREM 1.2. For m > 2 or m = oo, K(k)Odd(BG,i) =0 for all k, and hence
BP°¥“(BG%) =0. For m=1, we have BP°*“(BG?) = 0.

In §2, we recall the Hochschild-Serre spectral sequence converging to
H*(BGL;Z/p), which was studied in [T-Y3]. In §3, we study the similar
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type spectral sequence but converging the integral cohomology H*(BGL).
D. Green also studied this spectral sequence [G]. Transferred elements are
studied in §4. The exponent of H*(BG}) is also studied in this section. For
m=>2 K(k)“BG2) =0 and BP*™(BG2)=0 are proved in §5 and §6 re-
spectively. Here we show K(k)*(BG2) ~ K(k)" ® H(H*(BG2;Z/p); Ox). The
fact BP*¥(BG?) = 0 is showed in §7. Here we use facts that K(1)*“(BG?) = 0
and that the Euler number of K(1)*(BG?}) is known, e.g., by Brunetti [B1]. In
the last section, we study the relation BP*(BG?) and the Chow ring CH*(BG?>).

Discussions with David Green, Bjorn Schuster, Maurizio Brunetti and Ergiin
Yalcin have been very helpfull. The author thanks them very much.

2. The central product of p'*" and S!

Hereafter we assume that p is an odd prime. The extraspecial p-group
G= p}r”” is the group such that its exponent is p, its center is C = Z/p and
there is the extension

(2.1) 0-CLG6EV =0

with V = @2" Z/p. Throughout this section, we assume G = plt2.
We can take generators ay, ..., ds,, ¢ € G such that n(ay),...,n(ay,) (resp. c)
make a base of V' (resp. C) such that

(2.2) [@2i—1,a] =c¢ and  [ayi_y,a5] =1 if j#2i.
Take the cohomologies
H*(BC;Z/p) = Z/plu] @ A(z), Pz=u,
H*(BV:Z/p) = Z/p[y1;-. .yl @ A(x1,...,x0) = S0 @ Ao Bxi = i,

identifying the dual of a; (resp. ¢) with x; (resp. z). Then from (2.2) the central
extension (2.1) is expressed by

n
/= szz;lxzi e H*(BV;Z/p).
—1

=
Hence n*f =0 in H?(BG;Z/p). Consider the spectral sequence
E;’* = H*(BV;H*(BC;Z/p)) = H*(G;Z/p).

Then the first nonzero differential is ¢h(z) = f since n*(f) =0. The next dif-
ferential is

ds(u) = ff = z(1) with z(1) = > yoi 1300 = yaxai1.

However this spectral sequence is quite difficult to compute and we consider more
easy case.



COHOMOLOGY OF EXTRASPECIAL p-GROUPS FOR ODD PRIMES 3

Let C,=2Z/p" and C, =S!. Let us define the central product G, =
G x¢ G, so that its center is isomorphic to C.

Hereafter we always assume p > n and let G = G7..

We consider the spectral sequence

Ey" = H'(BV; H*(BS';Z/p)) = Su ® A2 ® Z/plu] = H*(BG;Z/p).

Here H*(BS') =~ Z[u]. This spectral sequence E** is computed in [T-Y3] when
r < 2p(p—1) for general n and all r for n =2. We recall some necessary facts
and explain briefly how to compute this spectral sequence.

Given a graded Z/p-algebra 4 and z€ A°¥ we define the homology H (A, z)
with the differential d(a) = za since z> = 0. The first nonzero differential in E*
is d3(u) = ff = z(1) from the naturality for G = G. Hence we want to compute
H(S>, ® Aoy, z(1)). For this, we use the following lemma taken from [T-Y3].

LemMa 2.1. Let y,z€ A, and |z| = odd, |y| = even. Let us consider the
Z/p-algebra A ® A(x) for |x| =|z| — |y|. Then we have an additive isomorphism

H(A® A(x), yx +2) = (H(4,2)/y){x} ® Ker(y[| H(4,2))

where Ker(y| H(A,z)) is the Z/p-submodule of H(A,z) generated by the elements
annihilated by the y-multiplication.

From this lemma, we have H(Sy, ® Ay, yax1) = So./(32){x1}. By induc-
tion we get

Ey? = H(S2% ® Ay 2(1)) = Z/p{x1 - x2} = Z/p{/"} since n < p.
Since Ker(z) =~ Im(z) ® H(4,z) for ze€ 4°% it is immediate that

LEMMA 2.2.  There is an isomorphism (A/z)/H(A,z) =1Im(z) € A. In par-
ticular, if A is w-torsion free for we A", then so is (A/z)/H(A4,z).

Apply this lemma with 4 = S5, ® Ay, z=12z(1), w= y;. Since y; is injec-
tive on A4, so is on A/(z+ H(A,z)). Since f” is y;-torsion, there is no nonzero
differential d, : Z/p{f"u’} — A/z for r <2p — 1.

Next nonzero differential is the Kudo’s transgression

drp 1(z(1) @ uP™) = BP'Af = w(1) with w( Zyzl Vi — Yhiici

By the above lemma with w=w(l), we know Ker(dy,_i|Im(z(1)))=0.
Moreover we need

= pLEMMA ) 23, doyp  (f"@urY) = nz(2) [ where 2(2) = P'z(1) =
YVoi_1%X2i — Vi X2i-1-

Proof. Since E*°¥ =0, the Bockstein operatlon maps from E*¢¢" to
Ertheven  The element ﬁ(f”u” Y=np(f)f"'ur=' goes to nw(l )fnl by
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dyy-1. Since B(z(2)) = w(l), we know that ds, i (f"ul~") = nz(2) " ! + a with
aeKer(f). Since x;f" =0 and x;z(2)f" ' =0 in S5, ® Az,/(z(1)), we know
also x;a =0 and hence f(x;a) = y,a=0 but Ker(y;) =Z/p{f"}. This means
a=0. O

Therefore we have the theorem

THEOREM 2.4 ((3.7) in [T-Y3]). There is an isomorphism u? : E;p* — E';;Hp
and
s S ® AZn/(Z(l)aW(1>72(2)fn_l) lf ] =0 mOd(p)
By =qZ/p{f"@w} 1<j<p-1
0 j=p-—1.
By the transgression theorem, the next differential is dh,y1(u”) = z(2). Let
E = S5, ® As,/(z(1),w(1)). We want to know H(E/(z(2)f""),z(2)). First we
note the additive isomorphism
H(E/(z(2)f"),2(2)) = H(E,2(2)) @ Z/p{ /" '}.
By the similar but after some computations, we get
Tueorem 2.5 (Corollary 5.19 in [T-Y3]).  The term Eyy = H(E/(z(2) /"),
2(2)) is generated by f"'®uP as an S, ® Ay,-module and
B:H(E,=(2))" = H(E,=(2))"" /(Z/p{/"})
H(E/(2(2) "), 2(2)"" = Saa/ (5] = ylvili # Y @ Z/p{S").
Let w(2) = PPw(l) = Eygiilyzi - yg,«,lygiz. It is known that (w(1),w(2)) is
a regular sequence in Sy, [T-Y1]. By using this fact and Lemma 2.2, we see
THEOREM 2.6. (1) The multiplying by w(2) is injective on

E/(z(2) + Z/p{f" "V + H(E,z(2)) = E/(2(2) 4+ S2, ® Ap, {f"'})
(2) The multiplying by w(2) is zero on H(E/z(2)f"!,z(2)).

By using the facts that S»,/(w(1)) is w(2)-free but H(E/(z(2)f"1),z(2)) is
not w(2)-free, we can prove (Section 6 in [T-Y3])

Lemma 2.7. E}' . ~

Lk, %
2p+2 2p(p—1)+1°

By the Kudo’s transgression, day(,—1)41(z(2)u??~V) =w(2). However for
general n, it is unknown yet dy,(,_1)11(f" 'uPP=).
Let us use the notation such that

a=b means a=7b for 0 #1eZ/p.



COHOMOLOGY OF EXTRASPECIAL p-GROUPS FOR ODD PRIMES 5

For n =2, we know
dop(p—1)+1 (fut P7I) = wia(2)' B(x1x2) + waa(2)' B(x3xa)
where w;(2) = (yfzyj—yf’zyi)/(yf’yj—yfy,-). Hereafter let us write by w(2)’
the element w»(2)" — w34(2)’. When n =2, there is the another differential
dops (f2uP"2) = 2(3) = PPz(2).

Thus we can compute E** for n=2.

THEOREM 2.8 ([T-Y3]). For the spectral sequence converging to H*(G>;Z/p),
we have the isomorphisms

o Sy ® Ag/(z(1),2(2),2(3), w(1), w(2), w(2)' B(x1x2)), j=0 mod(p)
EZW = H(E/(2(2)f),2(2) 0<j<p—1 mod(p)
Z/p{f*t j=p—1 mod(p),
Y {Z/p{fz} 0<j<p-—1mod(p) and j+# p/ -2
* 710 j=p—1 mod(p) or j=p>-2.

Given H*(BG;Z/p) (or H(BG)), to compute H*(BG";Z/p) (or H*(BG"))
we use the following fibration induced from (2.1)

Ss'=G/G" — BG" — BG.

m m

The induced spectral sequence is

Ey* = H*(BG;H*(S';Z/p)) = H*(BG;Z/p) ® A(z) = H*(BG"; Z/p).

m?

Let us write dhz = f’/. When m=1 this f' = f but when n>1, /=0 (see
Proposition 3.17 in [Y2]).

LemmA 2.9.  As Sy,-modules, H*(BG":Z/p) is isomorphic to

m’

{(Ker(f)H*(BG;Z/P){Z}®H*(BG;Z/P)/(f) if m=1
H*(BG;Z/p) ® A(z) if m=2.

3. Integral cohomology
We consider the integral coefficient spectral sequence
IEy" = H*(BV; H*(BS')) = H*(BG).

This spectral sequence is also studied in [G] by Green. First we note that
H*(BV) ~Im(f) =« H*(BV;Z/p) since the cohomology H(H*(BV;Z/p),p) =
Z/p{1}. The cohomology H(H*(BV);z(1)) is given by D. Green.

Lemma 3.1 (G]). H(H*(BV),z(1)) = Z{p} ® Z/p{z(1)f,...,z(1)f"'}.
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Proof. Let V'@ (Z/p)* ~ V. By induction we assume that
HY(H*(BV'),2(1)) = Z/p{=(1),2(1) f,...,z(1) /" }.
Considering the spectral sequence
Ey* = H(H"(B(Z/p)*); H(BV')) = H"(BV)
we can write gr H*(BV) 2 A®B®Z{l} where A=E;" ~H*(BV')" ®
Z/ply1, 2] @ A(x1,%:) and B=ES" = (Z/p[y1, 2] @ A(B)" with = f(x1x2).
From Lemma 2.1, we have
H(A,z(1)) = HH*(BV')",z(1)){x1x2}
and H(B,z(1)) @ Z/p{p} since 1¢ B and z(1)|B=p. Thus we get
H(gr H*(BV)",z(1)) = Z/p{B,z(1)x1x2,...,2(1) f"*x1x2}.
Since z(1) /7 is really cycle for the differential z(1), and we have the lemma from

H(H*(BV)",z(1)) = H(H"(BV),z(1)) ® Z/p{z(1)}. O

COROLLARY 3.2. The term IEZ’Zi is isomorphic to
Z{1} @ pH*(BV;Z/p)/(z(\)BH*(BV:Z/p)) 2i=0
Z{py ® Z/p{z(1)f,....z() "'} 0<2i<2(p-1)
Z{p} ® z()BH*(BV;Z/p) ® Z/p{z(1)[,...,2() /" "} 2i=2p-2.

We use the following notations. For an element a e E}* converging to
H*(X) (or H*(X;Z/p)), let us write by {a} one of the correspondences elements
in H*(X) (or H*(X;Z/p)). For an element x € H*(X), let [x] € EL* be the
corresponding nonzero element in the spectral sequence. Therefore [{a}] =« for
a# 0 but x = {[x]} modulo {E**:*}.

Let r: H*(X) — H*(X;Z/p) be the reduction map.

LemMmA 3.3. Let 1 <s<n. Then dy (p™~'w®) = z(1)f= 1w~ for all i <s,
and p*u® generates IE%&‘; ~ JE%. Moreover r({p*u‘}) = f°.

Proof. By the naturality for the reduction map r, d3(u) = z(1) also in IE; .

Hence pue Ef’z generates E%2 and r({pu}) #0. But it is easily seen that
Ker(f)/Im(B)NE%® ~ Z/p{f}. Thus we can take r({pu}) = f. For s <n, we
have

r({p’u'}) =r({pu})” = {f} = 1~
This means p*u® generates E%%, and by dimensional reason, we have

dyi1(p ) = z(1) f 1w for all i <s. O

Similarly, we have
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LemmMa 3.4, Let 1<i<n and n<s<p-—1. Then dy.(p~'u*) =

Z(l)fiflusfi.
For the proof of this lemma, we prepare the following lemma.

LEMMA 3.5. Let A be a graded algebra acting the Bockstein [ with
H(A,B) =0. Let ze A°% with fz =0 and write H(A,z) = H and H(BA,z) =
IH. Then

H(A/(z+ H),B) cz 'IH, TIm(B)(A/(z+ H)) = BA/(zBA + IH)
identifying z 'IH as the submodule of A/(z+ H) = A/Ker(z).

Proof. We note that

Ker(p)|(4/(z+ H)) =~ Ker(f) | (4/Ker(z)) ~ Im(z) NKer(p) = A.
On the other hand,

Im(B)(4/(z + H)) = Im(f)(Im(z)) = Im(z)(Im(f)) = Im(z)(Ker(f))
since f(za) = zf(a) and H(A,f) =0. Thus we get

H(A/(z+ H),p) = (Im =N Ker(f))/Im(z)(Ker(f))
< (Ker(z) NKer(f))/Im(z)(Ker(f)) = H(Ker(p), z).

Moreover we have

pA/(zpA + IH) = fA/ker(z) = Im(z)(Im f). O

Let us write 4 =E;" =~ S5, ® Ay, B=E;" = 4/z(1), and 14 = IE;"° =~ j4,
IB=1IE;"° = I4/(z(1)I4). From the above lemma. We have

CoRrOLLARY 3.6. H(BY,f)=Z/p{f,...,f"} and IB/IH = B where IH =
Z/p{z()f,...,z() "1

Proof. Here H(A",) = H=0 and hence
H(B,f) = H(A"/=(1),p) = H(A"/(z(1) + H). ) = =(1)"IH,

where TH =~ Z/p{z(1)f,...,z(1)f" '} is still given in Lemma 3.1. Since ff =
z(1)=0 in B, f' are in Ker(p). O

Let us write A= H(B*,f) = Z/p{f,...,f"}.

Proof of Lemma 3.4. From Theorem 2.4, we know for x <2(p — 1),
Ker fS(H*(BG;Z/p)") = BBOA® Z/p{f"u,..., f"uP~2}.

This module is also isomorphic to H*(BG)/p. For each i < p—1, p*u’ are in



8 NOBUAKI YAGITA

E* for sufficient large 5. Hence there is 5" such that r{p*u’} = {/™u'~"}, when
n<i<p-1. Moreover each element of form z(1)f*u’ must be killed in the
spectral sequence /E%*. By dimensional reason, we have the lemma. g.e.d.

Next consider differentials for elements in IE) 277U The fact that
IE; 2r=l) ~ =~ Ker(z(1))NIA is y;-torsion free implies that there does not exist
dlfferentlal such that d,(x) # 0 e E*7" for 4 <r < 2p — 1 since z(1)f/u® is y-
torsion. Similarly since 4/(z+ H) =~ B/H is yj;-torsion free, and so is /B/IH =
BB/H. Hence each element z(1)f'u® does not go by differential into a nonzero
element in /B/IH.

For the element w(l) e IE%", since r(w(1)) =0¢e E%?, we have w(l)=

o0

p{p* u”“} in H*( BG) where note |z(1)f'u’| = odd. But w(1) is p-torsion also
in H*(BG) and {p*u’*'} is torsion free and A=0. Therefore there is an
element z with d,(z) = w(1) in JE»*. By dimensional reason or by naturality, we
have

dop 1 (z(D)u™ 1) = w(1).
Similarly we get
dp1 (z(D)f ) = p2(2) ) = w(l) ST = (i = Dz(2)z(1) f 2

Recall that E =S5, @ As/(z(1),w(1)). Let us write IE = IE2+p+01—
IB/(w(1)IB,T") where

T = Z/p{BEQ2))), ... B2/}

Lewva 3.7. IEy [ ~IE < E/(z(2)f" ") = Ey’ ).

Proof. Let xeIB and x=0€ E. Then x=pf(x") =w(l)a in B. Hence
w(l)fa=0. Here Ker(w(l)) xImz(1)®Z/p{f"}. So Pa=Aif" but it does
not hold 2#0 in B, indeed, /" ¢ fB. Thus fa=0. This means a = fa’ +
ST Aift. Therefore

w(la =w()Bd’ + Y w(l)Aif'
=w()pa’+ > L(w()f' = iz2)z(1)f") in B
since z(1) =0€e B. Thus we see that xe (w(1)IB,I') and x =0 in IE. O
Lemma 3.8. H(ET/z(2),p) = A.

Proof. Let xeKer(f|E/z(2)). Since E/(z(2))=B/(w(1),z(2)), this
means

px=z(>2)a+w(l)b in B.

Take more f, and we get
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0 = p*x = w(l)a — z(2)fa + w(1)b.

Multiply by z(2), we have z(2)w(1)(a + b) =0. Here we note that Ker(w(1))
in B is isomorphic to Ker(z(1)) = Im z(1) + Z/p{f"} in A. This fact is shown
from that the Kudo’s transgression ds,—i : Im z(1) — B via. z(1) — w(l) is in-
jective. Hence w(l)x =0 in B means that z(l)x =0 in 4. By dimensional
reason |z(2)| > | /"], we have z(2)(a+ pb) =0. Thus

px = z(2)(=pb) + w(1)b = B(2(2)b).
Hence f(x —z(2)b) =0 in B. Since H(B,f) = A, we have
—z(2beImpf+A in B.
Thus xeIm f+ A in E/z(2). O

From Theorem 2.5, Lemma 2.7 and the above lemma, we see;

COROLLARY 3.9. When x < 2p* — 2p, each element of H*(BG) is torsion free
or just p-torsion.

From the above corollary, the map r:IE™ — E’”O is injective for 0 <
m < 2p* —2p. In particular elements B(z(2)x ) eE 5 *x<2(p+n)<dp-1
must be target d,(z) for some z € E* * by arguments before Lemma 3.7. By the
naturality, we see

dop1 (B(x)u”) = B(xz(2)) in IEy}
from the fact dzpﬂ(xu”) = xz(2) in E*. For the cases |f(x)| = 4p — 1, we can

write x = > x'f(x”) with |x’| < 2p and we also have dy,.1(u”f(x)) = z(2)p(x).

Let F=Ey), ~E/(z(2)) and IF = IE/(B(z(2)E)).

Lemma 3.10. IF < F and fH(E,z(2)) =~ IH(IE,z(2)) where IH(IE,z(2)) =
{B(x) € IE| p(2(2)x) = O}/ (B(2(2)E)).

Proof. Let f(x) € IE and f(x) =0€ F. From the proof of Lemma 3.7, we
can see that f(x) =z(2)pb —w(1)b = p(z(2)b)e E. So x=0¢€IF. O

From the above corollary and lemma, we show that all nonzero elements in /E™"
* # 0 mod(p) must be killed.

LemMA 3.11. When s < n, we get
di1 (p™ ') = 2(1) f T if s >
dysr1 (p'u?) = 0
doi3(pT ) = 2 () flurPT T p>i> s+ 1L
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COROLLARY 3.12.
} IF = Z{1} ® BE/(B(z(2)E)) j=0
IEZ:(]II—I)H = Z{p/w'} 0<2j<2n
Z{p"w'} 2n<2j<2p-2
PH(E,z(2)) @ Z{p" 'u"} j=0
Iy = Z{pmurt} 0 < 2j < 2n
Z{p"ult} 2n<2j <2p—2.

Now we consider the case n=2. Recall w(2 )/(y1 y2—nyy) =wn(2) -
wi4(2) and write it by w(2)" so that dy,, 1) (fu??V) = w(2) /)’(xlxz) eE".
Hence w(2)'B(x1x2) = pa in H*(G;Z). But nonzero clements in /E; ( 1)1 for
0 < s <2p? are even dimensional from Cor. 3.12 and Theorem 2.5. Hence
w(2)'B(x1x2) = 0 also in H*(G;Z). By dimensional reason we have

dop1yp3(pu”? M) = w(2)'B(x1x,) in TE}C.

Define

G = B3 = F/(w(2),w(2) Blx1x2),2(3))
and IG = IF/(w(2){1,IF}, w(2)'B(x1x2)IF).

LEMMA 3.13. When n=2, IG = G and 1G = IE°. Moreover H(G,p) =
A® Z/p{w(2) x1x2}.

Proof. Let x=0€G and x=pfx"e€ F. Then in F,
B(x") = w()a+ w(2)'p(x1x2)c +z(3)d for ce H(E;Z(2)), d e Z/p.

By dimensional reason, we see d =0. First consider the case |x| = even.
Applying S, we see

w(2)fa+w(2)' f(x1x2)B(c) =

Here |c|=o0dd and c¢=0 otherwise w(2) (x1x2) ( ) # 0 mod(w(2)) from
Theorem 2.5 and Theorem 2.6 (2). Thus w(2)f(a) =0. Hence for this case, we
can prove the lemma by the arguments similar to those of the proof of Lemma
3.9.

Let |x| =odd. Then |c| =even and also from Theorem 2.5, fc =0 and
p(x1x2)c = f(x1x3¢). Therefore we can prove the lemma similarly to the case
|x| = even. O

Remark. The fact H(G,f) =~ A@® Z/p{w(2)'x1x,} is also proved in Section
4 below.
Thus we get the results for the case n = 2.

THEOREM 3.14. When n=2
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Z{1} ®IG if j=0 mod(p)
IEZ" ~{ Z{py @ IH(E,z(2)) 0< j< p—1 mod(p)
Z{p} j=p—1 mod(p),
For j# 0 mod(p),

1Y :{Z{p} j=1mod(p), j # p(p—1)+1 mod(p?)
* T \Z{p?} 2<j<p—1mod(p) or j=p(p—1)+1 mod(p?).

COROLLARY 3.15.  All elements in H*(BG?) are just p-torsion or torsion fiee.

COROLLARY 3.16.  The reduced map r: H*(BG%) — H*(BG%;Z/p) is given
by
r{pu”} ={f*u?} 1<s<p-1
r{pu?t} = {fu?}y 0<s<p-2
PP = (w(2) x132)
r{pPu?V} = {fu? 2} 2<j<p-1.

Now we study the integral cohomology of the finite groups G!. The in-
tegral version of the spectral sequence is

(3.2) IEy* = H*(BG) ® A(z) = H*(BG").

Here the differential is d>(z) = f' = {p”u} € H*(BG). This fact is proved by the
naturality to the restriction maps

Ss! — BZ/p™ — BS!

and by the isomorphism H*(BZ/p™) =~ Z[u]/(p™u). Similarly to the mod p
case, we have the isomorphism

H'(BG,,) = (Ker f'| H*(BG)) ® H"(BG)/(f").
For the integral case, d»(z) # 0 even if m > 2. Let p”u’ generate IE%*.  Since
dy {p"Dyi=15) = {pm=Dyi= 1y £ pmy) — g pmli=Dtmy iy,
we have
P exp(H (BGY)

where exp(H*(BG})) is the exponent of H*(BG}).

Since each element of H*(BG2) is just p-torsion or torsion free, and
m(p?) =0 and m(p? — 1) =2, we easily see that

COROLLARY 3.17. exp(H*(BG?)) = p™+2.

This fact is extended for all n < p in Corollary 4.7 bellow.
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4. Transfers

In this section, we study about generators p"(u’e IE%%. We can take
{p*u’} as a Chern class ¢,(¢) where £ is a one dimensional representation with
E(x) = ™ for xe R/Z =~ S and &(a;) = 1. Moreover {p"u”} is represented by
transfer. ~

Let A°% be the maximal abelian subgroup of G generated by

dd I
A" = <ay,a,...,a03 1) X S

so that
H*(BA““Z/p) = Z/p[y1, y3,- .., yon-1] @ A(x1,X3,. .., x20-1) @ Z/p[u].
Consider the transfer
tr(i) = Corf,,[,{,(u") e H*(BG) = H*(BG").
Since [G; 4°%] = p", we have tr(i)| S' = p"u’. Moreover r(tr(i)) is Xeyen-torsion
and Y., -torsion because by the Frobenius formula
Yeven 11(1) = Yeven Cor(u') = Cor(iggy(Yeven)ut') = 0

where o4 : A°™ — G is the inclusion and i’ (Vewen) = 0.
Lemma 4.1. If i <n(p—1), then r(tr(i)) = {f"u""} or 0.

Proof. The transfer r(te(i)) 1S Yepen-torsion, and  X,,-torsion in
H*(BG;Z/p), and also in EZ;H for i<2p? Hence r(tr(i)) is w(2) =
> yé’H Yai = yé’i yzl-,l-tgrsion n E;p; - From Theorem 2.6, there is no nonzero
such torsion element in

E;;;’Zil (H(E,z(2)) + Z/p{f"™'}) for +' <2p(p—1)+1.

Also from Theorem 2.5 and Lemma 4.3 (2) below, the nonzero yeu,-torsion
elements of degree less than 2n(p—1)+1 is only the f" in H(E,z(2))+

Z/p{f" 0
From Corollary 3.12, we have (see also Lemma 4.6 bellow)
COROLLARY 4.2. If n<i<(p—1) mod(p), then r(tr(i)) ={/"u'"}.

Proof. Recall tr(i)|S' = p™u’. From Corollary 3.12, we know tr(i) # 0
mod(p) in H*(BG). Hence r(tr(i)) # 0. Thus we have the corollary from the
above lemma. O

LemMA 4.3, Given k>1, let aeS= S;/(y{’kyj - yiy}’k [1<i<j<lI).
Then we have
(1) if yia=0 for all i, then a=0.
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(2) if aeldeal(y;---ys) and yia=0 for all 1<i<s, then |a|>
s(pF—1) + 1.

Proof. Replacing y;y; p by »/ ‘ y; for i < j, we can uniquely write an ele-
ment a € S as

(a) a= ZMJ/I = Z/lyf‘

where I = (ij,...,i)=(0,...,0, In(1)s bm(D) 15 + - 5 i;) with Im(1) # 0 and 0 <i; <
pF—1forall m(I)+1<s<|l.

For the proof of (1), let I be the smallest / for 1; # 0 by the lexicographic
order (i.e., I/ > J if there is s such that i = j; for all kK <s and i; > j;). Then
Ymiyd # 0 because y,,jyyr >,y for I > 1. This shows (1.

Suppose that yia = 0 for l— s<i<l. Then i > p*—1, otherwise y/yI
becomes the smallest in y;y;, and hence y;a # 0. Since a € Ideal( Vieg- yl)
know i = p¥ —1 if s> 1. Next applying Vi-1 on a implies ij_; = p*¥ — 1 1f
s>2. Continue this arguments, we know i, = p¥ —1 for / —s <t </ This
shows (2). O

For a finite group G, an element x € H*(BG;Z/p) is said to be essential if
it restricts trivially to all proper subgroups of G. We consider essential elements
for G=G!'=p!™". Similar arguments are also done by Minh ([Mi]).

ProOPOSITION 4.4. If n<i< (p—1), then tr(i) e H*(BG{;Z/p) is essential.

Proof. Any maximal subgroup M of G} is isomorphic to GJ'~! x Z/p. Let
(M,gy = GJ. Suppose that 4°“ = 4 = M. Then by the double coset formula,

p—1
tr(i) | M =" Corpl iy (9" u’) = Cor}f <Z 9" u ’) :
=0

Let H*(M;Z/p) ~ H*(BG!"';,Z/p) ® Z/p[y] ® A(x) so that g¢*(u) =u-+y.
Then

i

ng*u’ = Z (y+ky) = Z(;) (Zk’)uiyi’/ =0 mod(p)

Jj=0

since Y20")k/ =0 mod(p) for j < p—1.
Next suppose that (4, M>=G. Let A=ANM. Then A=~ (Z/p)® for
s <n. Since all maximal elementary abelian p-subgroup of G} have the rank =

n+ 1, there is a subgroup AN M < B< M with B (Z/p)"“. By the double
coset formula, we also have

tr(i) | M = Cor (u') = Cory’ Cor(u").
Since B~ A x (Z/p)""™™, we see Cor(-) =o0. O
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Let A’ = (A,Gll> < Gf'. Then from Corollary 3.12 and Theorem 2.4, we
see
{f"ur™"} = Cor! (u,) where u, = {u’} e H*(BG;Z/p) = H*(BA'; Z/p).

ProOPOSITION 4.5. For n > 2, the element Corj,‘n(up) € H*(BG{;Z/p) is es-
sential.

Proof. Suppose that A’ = M. Then by the double coset formula

p—1
G" X ”
Cor ) (up) | M = E Cor;fA,g,kQM(gk u,) = Corlyl <E g* up>.

k=0 k

It is known that wu,|<{ai,c) =u? — yf_lu [L]. Hence
* -1 —1 —1
gup|A=(u+y)’ =y (u+y) =@+ u)+ "=y p).
From this equation we can prove (for details, see [L])
* G| — —1
gty =ty + y" — yy where y = Corg (') + y5 .

] ' . n—
Here we idelntify Corg}l)o(—) = Cord'(=) since {ar,c) x (Z/p)" ' = 4 and
G} x (Z/p)" =~ A'. Thus we get >, g**u, =0 since gy =y.
Next suppose that <A’ M>=G. Let us writt A=A'NM. If

rank,(4) < n, then we can take B as the proof of Proposition 4.4. Similarly we

get Cor?(—) =0 for the above case. Hence let 4 =~ (Z/p)""" and this implies
A =A. Also by the double coset formula

Cor ¥ (uy) | M = Cor (u? — y~'u) = Cor (u?) — y7~" Cor™ (u).

But the above formula is zero by the following reason. We take A=A c
B < M such that B= G| x (Z/p)"'. Here let us reorder i of @; so that B =
G| ={c,a3,as). The restrictions

1 bl u}'a ,C
Corg! (") | {afas, ¢y = Cores™ (') =0 for 0<i<p—1,

1 p—1
Corgh (a1 a5, = 3 0 () = T (ko =0

1

implies Corgj3 o) =0 (in fact, there is no essential element of degree 2p in
’ 1

H*(BG|;Z/p)). Moreover Cor2}37(,>(u) = f=0. Hence we know

Corf(u”) =0 and Corf(u) =0. O

Remark 4.1. For the group G?, we note that
{w(2) xixa} = {pur " VM pu}) = r({pu?@= ) f = {27V 1

There contains errors in Theorem 8.18 in [T-Y3]. The elements z,(,_;)—;z and
{w(2)'x1x1} in H*(BGy;Z/p) should be deleted. Ignoring the assumption |b| #
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2p(p —1)+2 in Lemma 8.18 occurred the errors. Hence # =0 in Prop. 6 in
[Mi], while the main theorem in [Mi] is of course correct.

Remark 4.2.  Considering the restriction to G! and using the arguments in
Lemma 7.3 below, we can prove

{'} (G} x Z/p) = u(2)y} ™.
Now we study m(i) for n <i < p—1 mod(p).

Lemma 4.6. Let n<i<p—1 mod(p). Then for the group GL, the
number m(i) = n, that is, p"u’ generates IE%*.

Proof. By induction, we assume the above fact for n. Consider the map of
extensions

] — G’ — GQC’H —— Z/p®Z/p —— 0

T

0 — S'®(Z/p)" — G.®(Z/p)" — Z/p®L/p — 0
and the induced spectral sequences

E(n+1)y" = H"(B(Z/p ® Z/p); H*(BG,)) = H"(BG}")
E(1)y" =H (Z/p®Z/p;H*(B(S' @ (Z/p)")) = H"(B(G,, ® (Z/p)")).

The differential of the transferred element is

dy(tr(i)) = do(ju(u')) = juds(u')

= (™ @ z12(1)) = ijn (™) @ z12(1) = i tr(i = 1) ® z12(1)

where ji is the transfer map induced from an injection j.

We assume that n+1 <i < p—1 mod(p), and so n <i—1 mod(p). This
means that tr(i — 1) generates 1ES?Y and tr(i — 1) # 0 by inductive assump-
tion. Thus tr(i) is not a permanent cycle in E(n+ 1)". Hence p"*!u’ generates
IE%2 for H*(BG™). O

CorOLLARY 4.7 ([T-Y2] Theorem 5.2). p™*"|exp(H*(BG")).

m

Proof. Note that [E%* is generated by p"u?"~! (resp. u”") when x =
2(p" —1) (resp. * =2p"). Therefore the differential in (3.2) is

dz((pn”pnil) ®z)= P"upnflpmu = phﬁnul’n, O

5. Morava K-theory

In this section, we compute the Morava K-theory of the group G. Let us
write the infinitive term E%° by 4, ie.,
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A =Sy ® As/(w(1),w(2),2(1),2(2),2(3), w(2) B(x1x2)).

Write by A;, 0 <i <4, the S4-submodule of 4 generated by i-th product x;, - - - x;,
of odd degree generators. In particular, 49 = Ss/(w(1), w(2)).
We consider the additive decomposition

Ao = B() (—B C() with BQ = Ao/(le(l)), C() = A0<W12(1)>

where A¢{w) means the Ay-submodule of A generated by w (while 4o{w} means
the free Ap-module). Here we have

By = S12/(wi2(1)) ® S34/(w34(1)),  Co = Sa/(w(1),w(2)"){wi2(1)}

where S; = Z/p[yi, yil, wi(1) = y/y; — yiy], so that w(1) = wia(1) +w34(1) and
w(2) = w(2)'wpa(1).
We also consider the decomposition of A, such that

Ay =B, ®Cy with By = A1 /(z12(1),212(2), X132, X3X4),
Cy = A<Lz12(1),212(2), X1 X2, X3X4 )
Let B=By® B, and C=Cy@® C, so that A =B C. Let us write
Bj = Bjjo @ B;, . where Bj=S;/(w;(1)),
Bjj 1 = Sip{xi, x;}/(2i(1), 25(2), xix;)
= Siloxi, X} (vix; — yixe, yExg — wyxd xixg) = Sy / (vi){xit @ Z/plyi [}
so that B~ By, ® B3s. Here
vir = wi(1)/yi = y0 = ¥y,

The Qy-action is given by Qx; = yf’k. Hence Oy : Bjj + — Bjj0 = S;/(w;(1)) is
injective since w;(1) = y;y;. Then we can easily compute the O, homology

k k
H(By, Qi) = Sy/ (v, ¥ wy(1).

By Kunneth formula, we have;

Lemma 5.1.
k k
H(B; Q) = Sa/(y] .., i swia(1), w(1)).

Next we will study H(C; Q). Recall
Co = Sa/(w(1),w(2)"{wi (1)} Cy = (Sa ® Ag)<z12(1), 212(2), X1 X2, X324

For ease of notation, let us write D = S;/(w(1),w(2)"). We already know z5(1)
generates the D-module in C, since f(x;xz) = z1a2(1).

LeMMA 5.2, w(2)'z;5(2) = 0.

Proof. In Sj5, we have Plwi(1) =0 and
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2 2 2 2
Plwin(2) = P (30 2 — a8 ) = w7y = ya8 = wia(1)”.
Since wi2(2) = wi2(2) ' wiz(1), we get Plwia(2) = wi2(1)”'. Hence in C, we get
0=P' (w2)z12(1)) = (wia(1)" ™" = w34 (1)" " Hz12(1) + w(2) P z12(1)

The first term of the righthand side of the above equation is zero since wis(1) =
—wi4(1) in 4. The fact P'z15(1) = z15(2) implies the result w(2)'z12(2) = 0.
U

Thus we get the map Q1 :D<212(1)>—>D{W12(1)}. Here Ql(le(l)) :le(l)
and its image is a D-free module. Therefore this map is an isomorphism, i.e.,
z12(1) generates a free D-module. Since Qy(z12(2)) = wia(1), z12(2) also gen-
erates a free D-module. Moreover Qu(z2(1)) =0 and Q;(z2(2)) =0. This
means that D{z»(1)) and D{z;2(2)> have no intersection except for zero. Thus
we have

LemMA 5.3. C) D{le(l)} @D{Z]z(Z)}.

Next consider the module C,, Note that x;z13(1) = —yax1x2 and x3z2(1) =
—x3234(1) = yaxsxy. Similar fact holds for zj3(2). Thus we get

Co = S4dx1x2, X3X4 ) = Sadx1X2, f).

We have the map Qp: D{xix;) — D{le(l)} with Qo(xle) = 212(1). While
W(Z)/X])CQ # 0, but the fact YViX1xy = X]Z]z(l) (y3X1X2 = —)3X3X4 = —X3Z34(1))
implies that S; (x;x;) is a D-module. Hence we have the isomorphism

LEMMA 5.4. There is an additive isomorphism

Cy = D{x1x2} ® Z/p{w(2) x1x2} @ Sa/(wyy(1) | i < )){f}.

Proof. We already know the module S;{f) from Theorem 2.5. The
kernel of the map Qp : C; — D{z12(1)} is direct sum of Z/p{w(2)'x;x,} and the
S4-module generated by f. O

The generators x;, x;,x;, € C3 are represented as x;f, e.g., x;x2x3 = fx3. The
Ss-submodule generated by x;f, 1 <i <4 is still given in Theorem 2.5
Cy = H(E, z(2))" =~ Sy{xif |1 <i <4}/ (yuxif |i # J).
We also note that Oy : C3 — S; /(w;(1) i < j){f} is an isomorphism. The fact
Cy = Z/p{x1x2x3x4 = fz}

is also given in Theorem 2.5.
First note that Qy(f?) = 0, since this element is represented as the transfer.

LemMMA 5.5. H(Sa/(wy(1)){f} ® C3; Ok) = Sa/(wy(1), )’f)k){f}-
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Proof. Exchanging y;y/ by y/y; if i> j, each element a e Sy/(w;(1)=
yiy; — yiyj) is uniquely represented as

a:Zalyl with a; e Z/p, yr=yin -yl m<..- <4

such that i, #0 and 0 <i; < p for all m < j.
Similarly using the relation 0 = y;x; = (¥ — )7 = ¥;)Xi, each element b € C3
is uniquely written as

b= Zb,zlf with b; € Z/p, z; :xn1yf:l7~~~y£4, m<---<4
such that 0 <i; < p for all m < j. The O action is given by
kij im+ ]
Q(b) = byyh Ty ey f

Hence if b # 0 in Cj;, then Qi (b) # 0 also in Ss/(w;(1)){f}. This proves the
lemma. O

LeEmMMA 5.6.  Let k be an algebraic closed field of ch(k) = p. For each 1 €k,
the sequence (w(1),w(2)', y3 — Ays, y4) is regular in Sy ® k.

Proof. The sequence is regular if and only if the dimension of the variety
dimy Var(w(1),w(2)’, y3 — Ays, y4) =4 —4 = 0.
Letting y3 = y4 = 0, we only need to show dim; Var(wy(1),w;2(2)") = 0 where

)2 2 . .
wia(2) = (W ya— 395 )/ (W ya — »p%). The regularity of (wia(1),w12(2)") in
S» 1s well known, in fact, these elements are Dickson invariants

Z/ply, w20 = Zfplwia(1),w12(2)] O
Let us write le(k) = (yfkyz — ylygk) = kalz(l) = Qon(xle).

LemMA 5.7. Suppose that awia(k) + bwia(k —1)7 =0 in Ss/(w(1),w(2)).
Then

a= (wplk—1"/win(1)e, b= (wink)/wia(1))e for ceSiy/(w(l),w(2)").

Proof. When k <2, the theorem is almost immediate. We assume
k >3. Suppose that awp(k)/wia(l)+bwia(k—1)"/(wa(1))=0 in D=
Sy/(w(1),w(2)"). We have the decomposition

wi(k)/w(1) = J[ (2= 4p).

/VEFPA»—F,)

Let y» —4y1 =0 for A€ F,x — F,. Then by the supposition we get
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k
_ P — polpr
0=>bwp(k—1)"/win(l) =bi'y|

in S4®F,/(w(l),w(2),y2—4y1) and 2 #0eF, because F,—F, and
F,i1 — F, have no intersection in F,. Since (w(1),w(2)’,y2— iy, y1) is reg-
ular, we have b=0 in Sy ® F,/(w(1),w(2)’, 2 — 4y1) and we can take b=
(y2— 4y1)c’ € Sa ® F,/(w(1),w(2)"). Continuing this argument for all other
A€ Fy — F, and we get b =wpy(k)/wiz(1)c.
Apply the similar arguments for y; —uy1, u€ F1, we get the lemma.
U

LemmA 5.8. The homology H(Cy @ C) @ D{x1x2}; Qk) is isomorphic to
D/ (wia(k)/wia(1), wia(k — 1)? /w2 (1)) {w12(1)}.
Proof. We will show that the following sequence is exact
0 — D{xixa} 2 D{zin(1),22(2)} & D{wia (1)}
The Qg-operations are given
Ou(z12(1)) = Qul(y1xa — yax1) = y1yy = yayt = —wia(k)
Ou(202(2)) = Qx> = ¥x1) = (W08 = ¥ 34) = —wia(k — 1)".

Hence if ¢; = azi2(1) 4+ bz12(2) € C; is in the kernel Ker(Qy), then from Lemma
5.7, we have

c1 = cwip(k —1)7/(wi2(1))z12(1) + wia(k)/(w12(1))z12(2))  with ce D
which is just c¢Q(x1x2), indeed,
Q0 0k(x1x2) = wia(k) and  Q10k(x1x2) = wia(k — 1)
imply that
Ok (x1x2) = wia(k — 1)"/(wia (1)) z12(1) + wia (k) / (w12(1))z12(2)
since Q1z12(1) = wia(1), Qoz12(2) = wia(1), and Qozi2(1) =0, Q1z12(2) =0. I

Since wia(k) and wia(k — 1)? are in Ideal(yf’k) in Ay we have
COROLLARY 5.9. H(B@® C) @ C; ® D{x1x2}, Q) = Ss/(w(1),w(2), y").

COROLLARY 5.10. H(E%°, Qy) is generated as an Sy-module by 1, w(2) x1x2,

f and f>.

Recall the isomorphism E5™ =~ C3 @ Su/(wy(1){/} @ Z/p{f?}. Hence its
cohomology is still given in Lemma 5.5. As for elements {/?u*}, we may
assume that its Qy-action is trivial because H(E%";Qy) is generated by even
dimensional elements. Thus we get
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THEOREM 5.11.  There is an isomorphism
H(H*(BG;Z,/p); Q) = Z/ple”’] @ (Sa/ (w(1), w(2), ¥) @ Z/p{w(2)' x1x2}
® @ Z/p{/*u'} @ @ S/ (wy(1), 37 ) {fu"})

where 0 <s# (p—1) mod p and s # p>—2 and 0 <t < p—2. Thus this ho-
mology is generated by even dimensional elements. Hence we have

K(k)"(BG3,) = K(k)" ® H(H"(BG,; Z/p), Or)-

Next consider the cases of finite groups G2, m > 2. By arguments after

(3.2), we see "
H(H'(BG,;Z/p), Ox) = H(H"(BG3;Z/p), Ox) ® A(z).
We consider the Atiyah-Hirzebruch spectral sequence
Ey* = H*(BGX;K(k)*) = K(k)"(BG2).

Recall K (k)" = Z/p[vk,v;']. Since the first nonzero differential is the form
dypi_1(x) = vp ® Ok(x), we still have the E);-term. Since all elements in
H(H*(BG2;Z/p),Qx) are permanent cycles in the above spectral sequence, we
only need to study d,z.

Consider the injection Z/p™ < G,i. The Morava K-theory is

K(k)"(BZ/p™) = K (k) [ul/([p"(w)).

Here [p](u) = v’ implies [p™](u) = v,lﬂ’u'“ﬂwl)kul’mk. Thus in the Atiyah-
Hirzebruch spectral sequence converging K(k)*(BZ/p), the differential

14pk g pm=Dk —mic
dzprnlx',l(Z) = Uker totp ul .

Thus we get

THEOREM 5.12. Let m > 2. Then
K(k)*(BG,,) = K(k)*(BG?)/(u”

mk

).

6. BP-theory

Let BP*(—) be the Brown-Peterson cohomology theory with the coefficient
ring BP* = Z/plv1,...], |[vi| = =2(p" —1). Since K(k)**“(BG2) =0 for m > 2,
we also have BP°¥(BG2)=0 from the theorem by Ravenel-Wilson-Yagita
[R-W-Y]. In this section we will study BP*(BG?) more explicitly.

Recall that E* (resp. IE"*) is the Hochschild-Serre spectral sequence
converging to H*(BG2;Z/p) (resp. H*(BG%)). From Lemma 3.13, we already
know that IE5* =~ BELO@® Z/p{f, >, w(2)'x1x2}. The decomposition EF 0 =
BT @ C is given in §5 with
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H(B",p) =0 and H(C;p) = Z/p{w(2) x1x2, f, f?}.

Note that B and C are closed under the Bockstein operation. The Bockstein
images of C is

BC = D{wn(1),z12(1)} @ (S / (w(D{f})-
Here Q;z12(1) = wi2(1). The Bockstein of B is
S4/(W12(1),W34(1)) &) S4<ﬁ{xsx, | 1<s<23<t< 4}>
LEmMMA 6.1. If 0 # x € By in the notation in §5, then Q1Qox # 0 in By.
Proof. Each element x in B, is expressed as (recall the arguments before
Lemma 5.1)
X = A13X1X3 + A14X1X4 + A23X2X3 + A24X2X4

where a3 € S4/(¥21, y43), a3 € S3a/(ya3) ® Z/p[y2], ais € Si2/(y12) ® Z/p[y4l,

axs € Z/p[y2, ya).

Suppose that Q1 Qox =0 in By = S4/(wia(1),ws4(1)). First let y; = y3 =0.
Then Q] Q()x = Q] Qoaz4X2X4 = a24W24(1). But 1/1/24(1) = y§y4 — yzyf is a non-
zero divisor in Z/p[y,, y4]. Hence ay = 0.

Next let y; =0. Then Q;Qox = axnwy(l). But y, —Ays is a nonzero
divisor in S34/(y34) ® Z/p[y2] because the dimension of the variety

Var(yss, y2 — Ays) = J(va — w3, y2 — 23)

u

is just one. Hence ap; = 0. Similarly letting y3; =0, we have a4 = 0.
Lastly, consider Q;Qx;x3. The dimension of the variety is

Var(yar, yaa, y1 — Ays) = | Var(ya — w1, ya — @'y, yi — 4y3)
wp'

is also just one. Hence wi3(1)= p{ys— y1p4 is also nonzero divisor in
Sa/(ya1, y43). So a3 =0. O

Since Q1Qo(xsx;) = wy(1) and Qi(z12(1)) = wi2(1), we have;
COROLLARY 6.2. Qi(IE®?) = Sqwy(1) i < j).

We also known [ELY =S,/ (wi(1){f}. Considering the Atiyah-
Hirzebruch spectral sequence
E;* = H*(BG%; BP*) = BP*(BG2).
The first nonzero differential is d,1(x) = v1 ® Q1(x). The term E," is gen-
erated by even dimensional elements. Hence we have;

THEOREM 6.3. The graded ring gr BP*(BG2) is isomorphic to
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(BP* ® S4/(w(1),w(2),v1w;(1)) ® BP* @ (F ® U)) @ Z[{u""}]
where F = S /(wy(IN){fu? |1 <s<p-2}, U=2Z{u|0<t<p*-1},

{1} =0
ur =< {pu'y t=0,1 mod(p) and 0 <t+# p(p—1)+1
{p*u'} 2<t<p—1mod(p) or t=p(p—1)+1.

COROLLARY 6.4. All BP*-linear relations in BP*(BG2) are deduced from the
relations in BP*(BV).

Proof. Since [p](y:) = pyi+uviyf +---=0 in BP*(BV), we have the re-
lation in BP*(BV),
yilel(i) = wilpl(v) = vi (07 vy = yiyf) + - = viwy(1) +--- = 0. O

We consider the cases of finite groups G2, m > 2. Recall that

H*(BG,) = IE;" ® A(z) @ IEY" /({p™u}).

We ecasily see that TE%*/({p™u}) is generated by u,, 0 << p?>—1 and {u?’}
with
p™ ' (t=2 mod(p) but t# p(p—1)+2)

or (t=1)or (t=p(p-1)+1)
p" 3<t<p—1 mod(p)) or (1 mod(p) but

t#L, #p(p—1)+1)or (t=plp—1)+2)
P (t=ps,0 <5< p)
Pt (1=p?).

exp(u;) =

THEOREM 6.5. For m > 2, we have the isomorphism
gr BP*(BG2) = gr BP*(BG2) /(v}y, v5wy(1)u™"  exp(us)uy)
where s =1+ p*+ ... 4 pm=Dk,

Proof. We consider the Atiyah-Hirzebruch spectral sequence
E;* = H*(BG%; BP*) = BP*(BG?2).

m?

The first nonzero differential is ds,_1(x) = v; ® Qi(x). The 2p-term is
Ey" =~ (BP*® Sa/(w(1),w(2),v1w;(1)) @ BP* ® (F)) ® A(z)

2p =
@ BP* ® U/(exp(u)u) ® Z/(p" ) u”"]
where Z/(p™+?)[u”’] means Z[u”’]/(p™2ur’). By K(1)*(—) theory, the next
nonzero differential is do,m_1(piz) = v{'yu?”. The last nonzero differential

is dyyan 1 (w5(1)z) = vy?wy(1u?™ from K(2)*(—) theory. Thus we get the the-
orem. [l
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1+4
7. BP*(Bp'tt)

In this section, we will study the BP-theory of the case m=1, ie.,
Gi = p!™. The integral cohomology is (the integral version of Lemma 2.9)

n
(7.1) gr H'(BGY) = ((Ker(f) | H'(BG3,)){z} @ H*(BG2)/(f).
Recall (see §6 also)

IEL/(f) = BB ® D{wiz(1), z12(1)}

Ker(f) [ IEL? = Sywy (1), B(xex,) |1 <s <2<t <4)@®BC

IES)(f) = Ker(f) [ IEZ™ = S} /0wy (') 1 <5< p—2.

Hence from Lemma 6.1 and the arguments before the lemma, we have

H(IEL'/(f), 01) = S5/ (wy(1)),
H(Ker(f) [IEL°, Q1) = S§/(wy(1){fz},
H(IEZ™ @ A(z), 01) = S5/ (wy(D{ i }A(2).

Thus we can prove that

LeMMA 7.1.  The homology H(gr H*(BG?}), Q1) is isomorphic to
((S3/(wy(1) ® (A(f2) @ Z/p{w’f,...,u" "I} @ A(2)) @ U) @ Z/p’[u”"].
We will study the Atiyah-Hirzebruch spectral sequence
(7.2) Ey" = H"(gr H'(BG}); K(1)") = K(1)"(BG})
where K(1)*(—) is the integral K-theory with the coefficient ring K(1)* =
Z,[vi,v7']. The first nonzero differential is also

dyp-1(x) = v1 ® Q1(x)

but Q)(x) is considered as an element in gr H*(BG?). We want to prove the
following lemma,;

LemMMA 7.2 dap 1 (yifeu?C™V) = vy fu?  for 1<s<p—2 and hence
O1(yifaur®™V) = yifur* in H*(BG{; Z/p).

To prove this lemma, we prepare some lemmas. For a compact group G, it
is known that K(1)*“(BG) =0 and K(1)"(BG) is torsion free by the Atiyah
theorem. Hence K(1)°™(BG) =0. Moreover it is given

dimg,y- K(1)"(BG}) = p* + p— 1

by Brunetti [B1]. In [B2], he also showed that the Euler characteristic for K(n)"-
theory has the property y, p(Gzz) = P"Xn, p(Glz). Indeed, from Theorem 5.11 and
Theorem 5.12, we know dimg - K(1)"(BG3) = p°> + p* — p.
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Given 4; € FPX, 1 <i<4 with 1Ay = A344, let g = g(}vl, e ,/14) be the au-
tomorphism of G defined by
a — af", ¢ chi,

Then the induced map g* defines the automorphism of H*(BG?), and moreover
the automorphism of the Hochschild-Serre spectral sequence converging to
H*(BG?) so that

Vi Ay u— M.

Indeed this gives the (weight) decomposition of the spectral sequence.

For a sequence I =(i,...,i), let y’zy{l---y}{‘. Suppose that in

K(1)*(BG}), there is a relation
(*) py'{urt =0}y axy® mod(p?,vfth),
I3

where yX #0e Ss/()), 0#axeZ/p. Let J=K—1. Applying g* on the
above equation, we have

(Mda)" = A28 08 (Gnda)23) .
Hence we get
N=Ja  J3=Ja t=j1+j3 mod(p—1).
On the other hand, by dimensional reason,
2t = [u”| = [vj| + |y7| = 4i) +4(t — i) mod(2(p — 1)).

This means =0 mod(p — 1). Similar facts hold for the differentials since the
action g* is compatible with the differentials of the spectral sequence. Thus we
get

LemMa 7.3. If (%) holds or d.(y'zful'=2?) = righthandside of (%), then
t=0 mod(p—1) and letting J =K — 1,

h=p=p—1-js=p—1-js mod(p—1).
LemMAa 7.4. In (%), letting t =0, we have s > 2.

Proof. If s=1, then by [Y1], there is an element x € H*(BG};Z/p) such
that Qy(x) = ' and Q1x = yX. But Qix; = y’ € S4 ® A4 so this contradicts to
yE#£0 in Si/(07). O

Let us write by IV the vector space in Sy/(y7)
IV ={yeSs/(y])|deg(y)>4(p = D} ®Z/p{(»132) (y3pa)' 70 < j< p—1}.

LemMA 7.5. dimg,,(S4/(yF,1V)) > (p* + p—1)/2.
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Proof. First note that dimg,,(Ss/(»7)) = p*. Since the largest degree of
Ss/(»?) is 8(p — 1), by the duality the s-dimensional homogeneous parts are

dimg,,(Sa/(¥7))" = dimz/p(54/(),[{’))8(1771)4

The degree of (yyy2)’(v3ya)”” %/ is of course 4(p—1) and it generates a p-

dimensional Z/p-vector space. Note deg(/V)>4(p—1). The 4(p—1)-

homogeneous parts of S4/(y) is quite large, e.g., dimZ/[,(S4/(y{'))4(p71> > p.
Since

dimgz,,{y|deg(y) <4(p— 1)}
= 1/2dimg,{Sa/(y7)} + 1/2 dimz, {y | deg(y) = 4(p — 1)},
we know
dimg,(Ss/ (V. 1V)) > p*/2+ p*/2 = p > (p* + p —1)/2. O
Lemma 7.6.  As K(1)"-modules, we have the injection
K(1)" ® Sa/(y1,1V) = K(1)"(BGY).

Proof. First we note that additively K(1)* ® S4/(y?,1V) = K(1)*(BG}),
because all targets of differentials are in /7 by dimensional reasons and Lemma
73. If0# yeSq/(y,IV) is zero in K(1)*(BG?), then there is 3’ € K(1)"(BG?)
such that

py' =vjy for s<2.
But this does not happen from Lemma 7.3 and the definition of IV. O

Lemma 7.7. If dop1(yizf) =0, then ds,—3(yizf) = 0 in the spectral sequence
(7.2).

Proof. From Lemma 7.1, we can write

dap3(11/2) =01 > by yiulf mod(v}).

If |[J] >0 and if there is j; # 0 mod(p — 1), then from Lemma 7.3, we see
|y/| > 4(p—1), and this contradicts to the dimensional reason. Hence all
ji=0 mod(p—1) if j; >0. If j; = —1, there is the case y’y; = y§72y3y4 by
the similar arguments. Let us write

(**) d4p 3(y1fZ =] ((Z blyz >y1 + b’ygzy3y4> fu” mOd(Uf)

We consider the (twisted) automorphism sw defined by

tw:ay < as, a)<d4, CH>C,
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which induces

Wiy Y3, Y2 ya, U U

on the spectral sequence. Applying tw* on (x%), we get

dap—3(3/2)
= o} (b1} + by + b3yl bayh Y ys + 0V v 3a) fuP mod (v]).
Since y3day—3(y1/z) = yidap—3(y3/z), we know by = b, and b’ = 0. We also have
the other twisted map, e.g., tw': ay < a4. Similarly, we get by = by = by = by.
We consider the other automorphism f; of G? defined by
ﬁ:a3n—>a3ai', foia—a fora=a;i#3 orc
which induces
S tvar yatays, fiiyey for y=y,i#4 oru
Apply /¥ on (+x) with b; = b. Then the left hand side of (f;* —id.)(xx*) is zero,
but the righthand side is
oib((ya+ y3)" " = ¥y yifuh #£0, if b #£0.

Hence b must be zero. O

Proof of Lemma 7.2. If dy,_1(yizf) # 0, then it is Av\y; fu? for 4 #0e€Z/p
by the dimensional reason. Suppose da,_( ylzf ) =0. Then from above lemma,
dsp-3(yifz) = 0. This means that all nonzero element in K(1)* ® Sy/(y7,IV) are
not targets of differentials. By arguments similar to the proof of Lemma 7.6 and
Lemma 7.4, we can show

K(1)" ® 84/ (], IV){1, fu’} = K(1)"(BGY).

The dimension of the left hand side K(1)*-vector space is larger than p* + p — 1
by Lemma 7.5. This contradicts to the result of dimg()- K(1)"(BG}) by
Brunetti. Thus we get da,—1(yizf) = {yu’f}. By the induction on s we get the
lemma. g.e.d.

Therefore we get
Ey' = K(1)' @ (S{/(wy(D{Lu’" 22} @ U) @ Z/p[u"].
From Theorem 5.12, we know u?" =0 € K( )" (BG3). Hence so in K(l) (BGZ)
However from Lemma 7.3, there is no y'e K(1)* (BGZ) such that py' = vly,up
since ' € S;/(w;(1)) or y' eU. (Note that there is such )’ e U for v Sup’ )

Hence for some s, the element v ylul’ is a target of differential in the spectral
sequence. By dimensional reason we have

d4p,3(yiu”(”’2>fz) = vlzy,-upz.
Thus we get;
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Lemma 7.8.

er K(1)"(BG}) = K(1)" ® (5§ /(w;(1)) @ U @ Z/p*[u”"]),

gr K(1)"(BG) = K(1)" ® (S4/ () ® Z/p{us, ..., upi1}).

I

Proof. We study elements in U. In H*(BG2), we have
w=A{pu} =1, w={p*u’}=r7
which are zero in H*(BGf) from (7.1). Relations p*u’=v;p*u?™! in
K(1)"(B{cy) give that for U in K(1)"(BG?}), e.g., pus = vitp12, ps = Uithyy3, . ..
Ul

Note that dimgy- K(1)"(BG}) is in fact p*+ p— 1.
THEOREM 7.9. The BP*-algebra gr BP*(BG?) is isomorphic to the quotient of
the free BP*-algebra
BP*® (S /(w(1),w(2) ® U@ S§/(wy(D){fu,... fu"""2}) @ Z/p*[uy2]
by the following relations
(vlw,j(l),vlyifus”,vlzy,-upz,vzw,j(l)u[,z)
Proof. We consider the Atiyah-Hirzebruch spectral sequence
Ey* = H*(BG}; BP*) = BP*(BG?).

The first nonzero differential is d5,_1(x) = v; ® Q1(x), which was still given in the
arguments for K(1)*-theory.

E;’p* ~ BP* @ (U@ Sy /(w(1),w(2),v1w;(1)) @ Salwy(1)>/(v1){z}
@ ST/ w(l), o) {fu? ..., fu? Py @ S§/(wy(D{fzu? PP} ® Z/p*[u”).

Here note that BP*/(v;) ® Sy{w;(1)>{z} remains, while it disappears for K(1)*-
theory.

_ The next nonzero differential is dy,_3(yu”P~2fz) = v}yu”” same as the
K(1)"-theory. The last nonzero differential is

dypr_wii(1)z = vzwij(l)ul’2

which is given from K(2)"-theory and (v;-version of) Lemma 7.3. O

Proof of Remark 4.2. First we consider the element {fu?} in
H*(BG2;Z/p). Recall that [L]

He”e”(BGCIL)/p = (S2/(wi2(1)) @ Z/p{tr(1),...,tr(p —1)}) ®Z/p[uﬂ}

where tr(i) = Corgl”liw(u") and u, = {u}. Since
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Im p(BP*(BG!, x BZ/p)) =~ H"*(BG))) ® Z/ply3]

for the Thom map p: BP — HZ,), we can write

) LY G < Zfp =) ali', ", ) tr(iu v
By arguments similar to the proof of Lemma 7.3, we have
i/+i’/+j1 =2, ji=j, Jj3=0mod(p-1).

Hence by the dimensional reason, we can write
() = tr(1)u, + tr(2)ay§_1.

here we use the fact y; tr(1) = y, tr(i) =0 for i< p— 1.
Now we consider the conjugation map a on H*(BG2;Z/p) (or
H*(BGL x Z/p;Z/p), H*(B({ai,as,c));Z/p)) which induces

agu—u+y;, Yi— i
2

This action is invariant on the cohomology of G-, and so is on ()

(ay — 1) tr(1)u, = Cor(u + y3)aju, — Cor(u)u, = tr(1)(a; — 1)u,.

We already know u, | <aj,c) = u? — y§ . By the same argument as the proof
of Proposition 4.5, we have

# G| _ _

(ay — Du, = y§ — yy3 where y = Cor, o (U’ DR h
On the other hand

(a; — 1) tr(2) = Cor((u+ y3)*) — Cor(u?) = 2 tr(1) ys.

Hence we have
(az = 1)(x) = tr(1)(y5 — xp3) + 2a tr(1) y3.

Here it is known that ytr(1) =0(L]). Thus a=—1/2 and we get (x) =
tr(1)u, — 1/2 tr(2)y§”71. Consider the restriction (x) |G} x Z/p, and we have the
remark since tr(1) =0 in H*(BG};Z/p). q.e.d.

8. Algebraic cobordism and Chow ring

Let X be a smooth algebraic variety over C. Recently Levine-Morel
[L-M1,2] defined an algebraic cobordism Q*(X) having following properties.

(1) There is the natural map p:Q*(X) — MU*(X) such that Q" =
Q*(pt) = MU*(pt) where MU*(—) is the complex cobordism theory.

(2) Q*(X) ®q- Z =~ CH*/*(X); the classical Chow ring.

(3) Q*(X) ®q- K(1)" = Ko(X) ® K(1)*; where Ko(X) is the Grothendieck
group of algebraic bundle over the variety X.



COHOMOLOGY OF EXTRASPECIAL p-GROUPS FOR ODD PRIMES 29

Let G be an algebraic group over C, Totaro [Tol,2] defines the Chow ring
CH*(BG) of the classifying space as a limit of algebraic varieties. He con-
jectured that

CH'*(BG),, = BP*(BG) ®gp- Z).

In particular he showed above conjecture for * <4 ([To2] Corollary 3.5).

Recall that except for elements in F = S, /(w;(1)){ fu?*} in Theorem 6.3, all
elements in BP*(BG?2) are represented by transferred Chern classes, and hence
come from the algebraic cobordism where transfers and Chern classes exist.
Hence we only need to see whether fu”* are in the Chow ring or not.

THEOREM 8.1. {fu} € BP*(BG>) comes from the algebraic cobordism.

COROLLARY 8.2. When p =3, the natural maps p : Q*(BG?2) — BP*(BG?2)
are epic for all m>1 or m = 0.

Proof of Theorem 8.1. By Totaro (Theorem 3.1 in [To2]), Ky(BG)®
K(1)" 2 K(1)*(BG). From Theorem 6.3, fu?* is nonzero in K(1)*(BG2).
Hence from (3) there is f; € Q"(BG2) with p(f;) = v{fu?*. Now consider the
case s =1. Note that Q*(X) is generated by positive degree elements as a Q*-
module from (2). Hence t =0,1. If r =1, then |f;| =4 and this contradicts to
Totaro’s conjecture for x =4. Thus 1 =0 and we have the theorem. q.e.d.
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