INTEGRAL AND BP COHOMOLOGIES OF EXTRASPECIAL p-GROUPS FOR ODD PRIMES

Nobuaki Yagita

Abstract

For each odd prime p, we see $BP^{odd}(Bp_+^{1+4}) = 0$ where p_+^{1+4} is the extraspecial p-group of order p^5 and of exponent p.

1. Introduction

Let G be a compact group and BG its classifying space. All known examples of $BP^*(BG)$ are generated by even dimensional elements. Hence it is conjectured that $BP^{odd}(BG) = 0$. In this paper we give new examples of $BP^{odd}(BG) = 0$.

Throughout this paper, let p be an odd prime number. Let p_+^{1+2n} be the extraspecial p-group of order p^{1+2n} and exponent p. (For p=2, the group 2_+^{1+2n} is the n-th central product of the dihedral group D_8 of order 8.) It is known that the Morava K-theory $K(k)^{odd}(BG)=0$ for $G=p_+^{1+2}$, D_8 in [T-Y2] and for $G=2_+^{1+4}$ in [S-Y]. By a theorem in [R-W-Y], we know $BP^{odd}(BG)=0$ for these cases.

For $m \ge 1$ or $m = \infty$, let us write the central product by

$$G_m^n = \mathbf{Z}/p^m \times_{\mathbf{Z}/p} p_+^{1+2n}, \quad G_\infty^n = S^1 \times_{\mathbf{Z}/p} p_+^{1+2n}$$

so that $G_1^n = p_{\perp}^{1+2n}$.

Theorem 1.1. The homology $H^*(BG_{\infty}^2; \mathbb{Z})$ has no higher p-torsion, i.e., all elements are just p-torsion or torsion free.

Theorem 1.2. For $m \ge 2$ or $m = \infty$, $K(k)^{odd}(BG_m^2) = 0$ for all k, and hence $BP^{odd}(BG_m^2) = 0$. For m = 1, we have $BP^{odd}(BG_1^2) = 0$.

In §2, we recall the Hochschild-Serre spectral sequence converging to $H^*(BG^n_\infty; \mathbb{Z}/p)$, which was studied in [T-Y3]. In §3, we study the similar

²⁰⁰⁰ Mathematics Subject Classification. Primary 55P35, 57T25; Secondary 55R35, 57T05. Key words and phrases. Chow ring, motivic cohomology, BP-theory, extraspecial p group. Received May 16, 2003; revised December 6, 2004.

type spectral sequence but converging the integral cohomology $H^*(BG_\infty^n)$. D. Green also studied this spectral sequence [G]. Transferred elements are studied in §4. The exponent of $H^*(BG_m^n)$ is also studied in this section. For $m \geq 2$, $K(k)^{odd}(BG_m^2) = 0$ and $BP^{odd}(BG_m^2) = 0$ are proved in §5 and §6 respectively. Here we show $K(k)^*(BG_\infty^2) \cong K(k)^* \otimes H(H^*(BG_\infty^2; \mathbb{Z}/p); Q_k)$. The fact $BP^{odd}(BG_1^2) = 0$ is showed in §7. Here we use facts that $K(1)^{odd}(BG_1^2) = 0$ and that the Euler number of $K(1)^*(BG_1^2)$ is known, e.g., by Brunetti [B1]. In the last section, we study the relation $BP^*(BG_m^2)$ and the Chow ring $CH^*(BG_m^2)$.

Discussions with David Green, Björn Schuster, Maurizio Brunetti and Ergün Yalcin have been very helpfull. The author thanks them very much.

2. The central product of p_+^{1+2n} and S^1

Hereafter we assume that p is an odd prime. The extraspecial p-group $G = p_+^{1+2n}$ is the group such that its exponent is p, its center is $C \cong \mathbb{Z}/p$ and there is the extension

$$(2.1) 0 \to C \xrightarrow{i} G \xrightarrow{\pi} V \to 0$$

with $V = \bigoplus^{2n} \mathbf{Z}/p$. Throughout this section, we assume $G = p_+^{1+2n}$.

We can take generators $a_1, \ldots, a_{2n}, c \in G$ such that $\pi(a_1), \ldots, \pi(a_{2n})$ (resp. c) make a base of V (resp. C) such that

$$[a_{2i-1}, a_{2i}] = c \quad \text{and} \quad [a_{2i-1}, a_j] = 1 \quad \text{if} \quad j \neq 2i.$$

Take the cohomologies

$$H^*(BC; \mathbf{Z}/p) \cong \mathbf{Z}/p[u] \otimes \Lambda(z), \quad \beta z = u,$$

$$H^*(BV; \mathbf{Z}/p) \cong \mathbf{Z}/p[y_1, \dots, y_{2n}] \otimes \Lambda(x_1, \dots, x_{2n}) = S_{2n} \otimes \Lambda_{2n} \quad \beta x_i = y_i,$$

identifying the dual of a_i (resp. c) with x_i (resp. z). Then from (2.2) the central extension (2.1) is expressed by

$$f = \sum_{i=1}^{n} x_{2i-1} x_{2i} \in H^{2}(BV; \mathbf{Z}/p).$$

Hence $\pi^* f = 0$ in $H^2(BG; \mathbf{Z}/p)$. Consider the spectral sequence

$$E_2^{*,*} = H^*(BV; H^*(BC; \mathbf{Z}/p)) \Rightarrow H^*(G; \mathbf{Z}/p).$$

Then the first nonzero differential is $d_2(z) = f$ since $\pi^*(f) = 0$. The next differential is

$$d_3(u) = \beta f = z(1)$$
 with $z(1) = \sum y_{2i-1}x_{2i} - y_{2i}x_{2i-1}$.

However this spectral sequence is quite difficult to compute and we consider more easy case.

Let $C_m = Z/p^m$ and $C_\infty = S^1$. Let us define the central product $G_m = G \times_C C_m$ so that its center is isomorphic to C_m .

Hereafter we always assume p > n and let $\tilde{G} = G_{\infty}^{n}$.

We consider the spectral sequence

$$\tilde{E}_{2}^{*,*} = H^{*}(BV; H^{*}(BS^{1}; \mathbf{Z}/p)) = S_{2n} \otimes \Lambda_{2n} \otimes \mathbf{Z}/p[u] \Rightarrow H^{*}(B\tilde{G}; \mathbf{Z}/p).$$

Here $H^*(BS^1) \cong \mathbb{Z}[u]$. This spectral sequence $\tilde{E}_r^{*,*}$ is computed in [T-Y3] when r < 2p(p-1) for general n and all r for n=2. We recall some necessary facts and explain briefly how to compute this spectral sequence.

Given a graded \mathbb{Z}/p -algebra A and $z \in A^{odd}$, we define the homology H(A,z) with the differential d(a) = za since $z^2 = 0$. The first nonzero differential in $\tilde{E}_r^{*,*}$ is $d_3(u) = \beta f = z(1)$ from the naturality for $G \subset \tilde{G}$. Hence we want to compute $H(S_{2n} \otimes \Lambda_{2n}, z(1))$. For this, we use the following lemma taken from [T-Y3].

LEMMA 2.1. Let $y, z \in A$, and |z| = odd, |y| = even. Let us consider the \mathbb{Z}/p -algebra $A \otimes \Lambda(x)$ for |x| = |z| - |y|. Then we have an additive isomorphism

$$H(A \otimes \Lambda(x), yx + z) \cong (H(A, z)/y)\{x\} \oplus \operatorname{Ker}(y \mid H(A, z))$$

where Ker(y|H(A,z)) is the \mathbb{Z}/p -submodule of H(A,z) generated by the elements annihilated by the y-multiplication.

From this lemma, we have $H(S_{2n} \otimes \Lambda_1, y_2x_1) \cong S_{2n}/(y_2)\{x_1\}$. By induction we get

$$E_4^{*,2} \cong H(S_{2n} \otimes \Lambda_{2n}, z(1)) \cong Z/p\{x_1 \cdots x_{2n}\} = Z/p\{f^n\}$$
 since $n < p$.

Since $Ker(z) \cong Im(z) \oplus H(A, z)$ for $z \in A^{odd}$, it is immediate that

Lemma 2.2. There is an isomorphism $(A/z)/H(A,z) \cong \operatorname{Im}(z) \subset A$. In particular, if A is w-torsion free for $w \in A^{even}$, then so is (A/z)/H(A,z).

Apply this lemma with $A = S_{2n} \otimes \Lambda_{2n}$, z = z(1), $w = y_1$. Since y_1 is injective on A, so is on A/(z + H(A, z)). Since f^n is y_i -torsion, there is no nonzero differential $d_r : \mathbb{Z}/p\{f^n u^s\} \to A/z$ for r < 2p - 1.

Next nonzero differential is the Kudo's transgression

$$d_{2p-1}(z(1) \otimes u^{p-1}) = \beta P^1 \beta f = w(1)$$
 with $w(1) = \sum_{i=1}^{p} y_{2i-1}^p y_{2i} - y_{2i}^p y_{2i-1}$.

By the above lemma with w = w(1), we know $Ker(d_{2p-1} | Im(z(1))) = 0$. Moreover we need

Lemma 2.3.
$$d_{2p-1}(f^n \otimes u^{p-1}) = nz(2)f^{n-1}$$
 where $z(2) = P^1z(1) = \sum y_{2i-1}^p x_{2i} - y_{2i}^p x_{2i-1}$.

Proof. Since $\tilde{E}_r^{*,odd}=0$, the Bockstein operation maps from $\tilde{E}_r^{*,even}$ to $\tilde{E}_r^{*+1,even}$. The element $\beta(f^nu^{p-1})=n\beta(f)f^{n-1}u^{p-1}$ goes to $nw(1)f^{n-1}$ by

 d_{2p-1} . Since $\beta(z(2)) = w(1)$, we know that $d_{2p-1}(f^n u^{p-1}) = nz(2)f^{n-1} + a$ with $a \in \text{Ker}(\beta)$. Since $x_i f^n = 0$ and $x_i z(2)f^{n-1} = 0$ in $S_{2n} \otimes \Lambda_{2n}/(z(1))$, we know also $x_i a = 0$ and hence $\beta(x_i a) = y_i a = 0$ but $\text{Ker}(y_i) = Z/p\{f^n\}$. This means a = 0.

Therefore we have the theorem

Theorem 2.4 ((3.7) in [T-Y3]). There is an isomorphism $u^p: \tilde{E}_{2p}^{*,*} \to \tilde{E}_{2p}^{*,*+2p}$ and

$$\tilde{E}_{2p}^{*,2j} \cong \begin{cases} S_{2n} \otimes \Lambda_{2n}/(z(1), w(1), z(2)f^{n-1}) & \text{if } j = 0 \mod(p) \\ \mathbf{Z}/p\{f^n \otimes u^j\} & 1 \leq j < p-1 \\ 0 & j = p-1. \end{cases}$$

By the transgression theorem, the next differential is $d_{2p+1}(u^p) = z(2)$. Let $E = S_{2n} \otimes \Lambda_{2n}/(z(1), w(1))$. We want to know $H(E/(z(2)f^{n-1}), z(2))$. First we note the additive isomorphism

$$H(E/(z(2)f^{n-1}), z(2)) \cong H(E, z(2)) \oplus \mathbb{Z}/p\{f^{n-1}\}.$$

By the similar but after some computations, we get

Theorem 2.5 (Corollary 5.19 in [T-Y3]). The term $\tilde{E}_{2p+2}^{*,2p}\cong H(E/(z(2)f^{n-1}),z(2))$ is generated by $f^{n-1}\otimes u^p$ as an $S_{2n}\otimes \Lambda_{2n}$ -module and

$$\beta: H(E, z(2))^{odd} \cong H(E, z(2))^{even}/(\mathbf{Z}/p\{f^n\})$$

$$H(E/(z(2)f^{n-1}), z(2))^{even} \cong S_{2n}/(y_i^p y_j - y_j^p y_i | i \neq j) \{f^{n-1}\} \oplus \mathbb{Z}/p\{f^n\}.$$

Let $w(2) = P^p w(1) = \sum_{i=1}^p y_{2i-1}^{p^2} y_{2i} - y_{2i-1} y_{2i}^{p^2}$. It is known that (w(1), w(2)) is a regular sequence in S_{2n} [T-Y1]. By using this fact and Lemma 2.2, we see

Theorem 2.6. (1) The multiplying by w(2) is injective on

$$E/(z(2)) + \mathbb{Z}/p\{f^{n-1}\} + H(E, z(2)) \cong E/(z(2) + S_{2n} \otimes \Lambda_{2n}\{f^{n-1}\})$$

(2) The multiplying by w(2) is zero on $H(E/z(2)f^{n-1}, z(2))$.

By using the facts that $S_{2n}/(w(1))$ is w(2)-free but $H(E/(z(2)f^{n-1}), z(2))$ is not w(2)-free, we can prove (Section 6 in [T-Y3])

Lemma 2.7.
$$ilde{E}_{2p+2}^{*,*}\cong ilde{E}_{2p(p-1)+1}^{*,*}.$$

By the Kudo's transgression, $d_{2p(p-1)+1}(z(2)u^{p(p-1)}) = w(2)$. However for general n, it is unknown yet $d_{2p(p-1)+1}(f^{n-1}u^{p(p-1)})$.

Let us use the notation such that

$$a \doteq b$$
 means $a = \lambda b$ for $0 \neq \lambda \in \mathbb{Z}/p$.

For n = 2, we know

$$d_{2p(p-1)+1}(fu^{p(p-1)}) \doteq w_{12}(2)'\beta(x_1x_2) + w_{34}(2)'\beta(x_3x_4)$$

where $w_{ij}(2)' = (y_i^{p^2} y_j - y_j^{p^2} y_i)/(y_i^p y_j - y_j^p y_i)$. Hereafter let us write by w(2)' the element $w_{12}(2)' - w_{34}(2)'$. When n = 2, there is the another differential

$$d_{2p^3}(f^2u^{p^2-2}) \doteq z(3) = P^p z(2).$$

Thus we can compute $\tilde{E}_{\infty}^{*,*}$ for n=2.

Theorem 2.8 ([T-Y3]). For the spectral sequence converging to $H^*(G^2_\infty; \mathbf{Z}/p)$, we have the isomorphisms

$$\tilde{E}_{\infty}^{*,2pj} \cong \begin{cases} S_4 \otimes \Lambda_4/(z(1), z(2), z(3), w(1), w(2), w(2)'\beta(x_1x_2)), & j = 0 \mod(p) \\ H(E/(z(2)f), z(2)) & 0 < j < p - 1 \mod(p) \\ \mathbf{Z}/p\{f^2\} & j = p - 1 \mod(p), \end{cases}$$

$$\tilde{E}_{\infty}^{*,2j} \cong \begin{cases} \mathbf{Z}/p\{f^2\} & 0 < j < p - 1 \mod(p) \text{ and } j \neq p^j - 2 \\ 0 & j = p - 1 \mod(p) \text{ or } j = p^2 - 2. \end{cases}$$

Given $H^*(B\tilde{G}; \mathbb{Z}/p)$ (or $H(B\tilde{G})$), to compute $H^*(BG_m^n; \mathbb{Z}/p)$ (or $H^*(BG_m^n)$) we use the following fibration induced from (2.1)

$$S^1 = \tilde{G}/G_m^n \to BG_m^n \to B\tilde{G}.$$

The induced spectral sequence is

$$E_2^{*,*} = H^*(B\tilde{G}; H^*(S^1; \mathbf{Z}/p)) \cong H^*(B\tilde{G}; \mathbf{Z}/p) \otimes \Lambda(z) \Rightarrow H^*(BG_m^n; \mathbf{Z}/p).$$

Let us write $d_2z = f'$. When m = 1 this f' = f but when n > 1, f' = 0 (see Proposition 3.17 in [Y2]).

Lemma 2.9. As
$$S_{2n}$$
-modules, $H^*(BG_m^n; \mathbf{Z}/p)$ is isomorphic to
$$\begin{cases} (\operatorname{Ker}(f) \mid H^*(B\tilde{G}; \mathbf{Z}/p)\{z\} \oplus H^*(B\tilde{G}; \mathbf{Z}/p)/(f) & \text{if } m=1\\ H^*(B\tilde{G}; \mathbf{Z}/p) \otimes \Lambda(z) & \text{if } m \geq 2. \end{cases}$$

3. Integral cohomology

We consider the integral coefficient spectral sequence

$$IE_2^{*,*} = H^*(BV; H^*(BS^1)) \Rightarrow H^*(B\tilde{G}).$$

This spectral sequence is also studied in [G] by Green. First we note that $H^*(BV) \cong \operatorname{Im}(\beta) \subset H^*(BV; \mathbf{Z}/p)$ since the cohomology $H(H^*(BV; \mathbf{Z}/p), \beta) \cong \mathbf{Z}/p\{1\}$. The cohomology $H(H^*(BV); z(1))$ is given by D. Green.

Lemma 3.1 ([G]).
$$H(H^*(BV), z(1)) \cong \mathbb{Z}\{p\} \oplus \mathbb{Z}/p\{z(1)f, \dots, z(1)f^{n-1}\}.$$

Proof. Let $V' \oplus (\mathbf{Z}/p)^2 \cong V$. By induction we assume that $H^+(H^*(BV'), z(1)) \cong \mathbf{Z}/p\{z(1), z(1)f, \dots, z(1)f^{n-2}\}.$

Considering the spectral sequence

$$E_2^{*,*} = H(H^*(B(\mathbf{Z}/p)^2); H^*(BV')) \Rightarrow H^*(BV)$$

we can write $\operatorname{gr} H^*(BV) \cong A \oplus B \oplus \mathbf{Z}\{1\}$ where $A = E_2^{*,+} \cong H^*(BV')^+ \otimes \mathbf{Z}/p[y_1, y_2] \otimes \Lambda(x_1, x_2)$ and $B = E_2^{+,0} \cong (\mathbf{Z}/p[y_1, y_2] \otimes \Lambda(\beta))^+$ with $\beta = \beta(x_1x_2)$. From Lemma 2.1, we have

$$H(A, z(1)) \cong H(H^*(BV')^+, z(1))\{x_1x_2\}$$

and $H(B, z(1)) \cong \mathbb{Z}/p\{\beta\}$ since $1 \notin B$ and $z(1) \mid B = \beta$. Thus we get

$$H(\operatorname{gr} H^*(BV)^+, z(1)) \cong \mathbb{Z}/p\{\beta, z(1)x_1x_2, \dots, z(1)f^{n-2}x_1x_2\}.$$

Since $z(1)f^i$ is really cycle for the differential z(1), and we have the lemma from

$$H(H^*(BV)^+, z(1)) \cong H(H^*(BV), z(1)) \oplus \mathbb{Z}/p\{z(1)\}.$$

COROLLARY 3.2. The term $IE_4^{*,2i}$ is isomorphic to

$$\begin{cases} \mathbf{Z}\{1\} \oplus \beta H^*(BV; \mathbf{Z}/p)/(z(1)\beta H^*(BV; \mathbf{Z}/p)) & 2i = 0 \\ \mathbf{Z}\{p\} \oplus \mathbf{Z}/p\{z(1)f, \dots, z(1)f^{n-1}\} & 0 < 2i < 2(p-1) \\ \mathbf{Z}\{p\} \oplus z(1)\beta H^*(BV; \mathbf{Z}/p) \oplus \mathbf{Z}/p\{z(1)f, \dots, z(1)f^{n-1}\} & 2i = 2p - 2. \end{cases}$$

We use the following notations. For an element $a \in E_{\infty}^{*,*}$ converging to $H^*(X)$ (or $H^*(X; \mathbb{Z}/p)$), let us write by $\{a\}$ one of the correspondences elements in $H^*(X)$ (or $H^*(X; \mathbb{Z}/p)$). For an element $x \in H^*(X)$, let $[x] \in E_{\infty}^{*,*}$ be the corresponding nonzero element in the spectral sequence. Therefore $[\{a\}] = a$ for $a \neq 0$ but $x \equiv \{[x]\}$ modulo $\{E^{*+1,*}\}$.

Let $r: H^*(X) \to H^*(X; \mathbb{Z}/p)$ be the reduction map.

Lemma 3.3. Let $1 \le s \le n$. Then $d_{2i+1}(p^{i-1}u^s) = z(1)f^{i-1}u^{s-i}$ for all $i \le s$, and p^su^s generates $IE_{2s+2}^{0,2s} \cong IE_{\infty}^{0,2s}$. Moreover $r(\{p^su^s\}) = f^s$.

Proof. By the naturality for the reduction map r, $d_3(u) = z(1)$ also in $IE_3^{*,*}$. Hence $pu \in E_4^{0,2}$ generates $E_\infty^{0,2}$ and $r(\{pu\}) \neq 0$. But it is easily seen that $\operatorname{Ker}(\beta)/\operatorname{Im}(\beta) \cap E_\infty^{2,0} \cong \mathbf{Z}/p\{f\}$. Thus we can take $r(\{pu\}) \doteq f$. For $s \leq n$, we have

$$r(\{p^s u^s\}) = r(\{pu\})^s \doteq \{f\}^s = f^s.$$

This means $p^s u^s$ generates $E^{0,2s}_{\infty}$, and by dimensional reason, we have $d_{2i+1}(p^{i-1}u^s) \doteq z(1)f^{i-1}u^{s-i}$ for all i < s.

Similarly, we have

LEMMA 3.4. Let $1 \le i \le n$ and $n \le s \le p-1$. Then $d_{2i+1}(p^{i-1}u^s) \doteq z(1)f^{i-1}u^{s-i}$.

For the proof of this lemma, we prepare the following lemma.

Lemma 3.5. Let A be a graded algebra acting the Bockstein β with $H(A,\beta)=0$. Let $z\in A^{odd}$ with $\beta z=0$ and write H(A,z)=H and $H(\beta A,z)=IH$. Then

$$H(A/(z+H),\beta) \subset z^{-1}IH$$
, $\operatorname{Im}(\beta)(A/(z+H)) \cong \beta A/(z\beta A + IH)$ identifying $z^{-1}IH$ as the submodule of $A/(z+H) \cong A/\operatorname{Ker}(z)$.

Proof. We note that

$$\operatorname{Ker}(\beta) \mid (A/(z+H)) \cong \operatorname{Ker}(\beta) \mid (A/\operatorname{Ker}(z)) \stackrel{\times z}{\cong} \operatorname{Im}(z) \cap \operatorname{Ker}(\beta) \subset A.$$

On the other hand,

$$\operatorname{Im}(\beta)(A/(z+H)) \stackrel{\times z}{\cong} \operatorname{Im}(\beta)(\operatorname{Im}(z)) \cong \operatorname{Im}(z)(\operatorname{Im}(\beta)) \cong \operatorname{Im}(z)(\operatorname{Ker}(\beta))$$
 since $\beta(za) = z\beta(a)$ and $H(A,\beta) = 0$. Thus we get

$$H(A/(z+H),\beta) \stackrel{\times z}{\cong} (\operatorname{Im} z \cap \operatorname{Ker}(\beta))/\operatorname{Im}(z)(\operatorname{Ker}(\beta))$$

$$\subset (\operatorname{Ker}(z) \cap \operatorname{Ker}(\beta))/\operatorname{Im}(z)(\operatorname{Ker}(\beta)) = H(\operatorname{Ker}(\beta),z).$$

Moreover we have

$$\beta A/(z\beta A + IH) \cong \beta A/\ker(z) \stackrel{\times z}{\cong} \operatorname{Im}(z)(\operatorname{Im}\beta).$$

Let us write $A = E_2^{*,0} \cong S_{2n} \otimes \Lambda_{2n}$, $B = E_4^{*,0} \cong A/z(1)$, and $IA = IE_2^{+,0} \cong \beta A$, $IB = IE_4^{+,0} \cong IA/(z(1)IA)$. From the above lemma. We have

COROLLARY 3.6. $H(B^+,\beta) \cong Z/p\{f,\ldots,f^n\}$ and $IB/IH \cong \beta B$ where $IH \cong \mathbb{Z}/p\{z(1)f,\ldots,z(1)f^{n-1}\}$.

Proof. Here $H(A^+,\beta)=H=0$ and hence

$$H(B^+,\beta) = H(A^+/z(1),\beta) = H(A^+/(z(1)+H),\beta) \subset z(1)^{-1}IH$$

where $IH \cong \mathbb{Z}/p\{z(1)f, \dots, z(1)f^{n-1}\}$ is still given in Lemma 3.1. Since $\beta f = z(1) = 0$ in B, f^i are in $Ker(\beta)$.

Let us write $\Delta = H(B^+, \beta) \cong \mathbb{Z}/p\{f, \dots, f^n\}$.

Proof of Lemma 3.4. From Theorem 2.4, we know for * < 2(p-1),

Ker
$$\beta(H^*(B\tilde{G}; \mathbf{Z}/p)^+) \cong \beta B \oplus \Delta \oplus \mathbf{Z}/p\{f^n u, \dots, f^n u^{p-2}\}.$$

This module is also isomorphic to $H^*(BG)/p$. For each $i \le p-1$, $p^s u^i$ are in

 $\tilde{E}_{\infty}^{0,*}$ for sufficient large s. Hence there is s' such that $r\{p^{s'}u^i\} \doteq \{f^nu^{i-n}\}$, when $n \leq i \leq p-1$. Moreover each element of form $z(1)f^ku^i$ must be killed in the spectral sequence $IE_{\infty}^{*,*}$. By dimensional reason, we have the lemma. q.e.d.

Next consider differentials for elements in $IE_4^{*,2(p-1)}$. The fact that $IE_4^{*,2(p-1)} \cong \operatorname{Ker}(z(1)) \cap IA$ is y_i -torsion free implies that there does not exist differential such that $d_r(x) \neq 0 \in E_r^{*,2(p-1)}$ for $4 \leq r \leq 2p-1$ since $z(1)f^iu^s$ is y_j -torsion. Similarly since $A/(z+H) \cong B/H$ is y_j -torsion free, and so is $IB/IH \cong \beta B/H$. Hence each element $z(1)f^iu^s$ does not go by differential into a nonzero element in IB/IH.

For the element $w(1) \in IE_{\infty}^{*,0}$, since $r(w(1)) = 0 \in \tilde{E}_{\infty}^{*,0}$, we have $w(1) = \lambda p\{p^{s'}u^{p+1}\}$ in $H^*(B\tilde{G})$ where note $|z(1)f^iu^s| = odd$. But w(1) is p-torsion also in $H^*(B\tilde{G})$ and $\{p^{s'}u^{p+1}\}$ is torsion free and $\lambda = 0$. Therefore there is an element z with $d_r(z) = w(1)$ in $IE_r^{*,*}$. By dimensional reason or by naturality, we have

$$d_{2p-1}(z(1)u^{p-1}) = w(1).$$

Similarly we get

$$d_{2p-1}(z(1)f^{i-1}u^{p-1}) = \beta(z(2)f^{i-1}) = w(1)f^{i-1} - (i-1)z(2)z(1)f^{i-2}.$$

Recall that $E = S_{2n} \otimes \Lambda_{2n}/(z(1), w(1))$. Let us write $IE = IE_{2p+1}^{+,0} = IB/(w(1)IB, \Gamma)$ where

$$\Gamma = \mathbf{Z}/p\{\beta(z(2)f), \dots, \beta(z(2)f^{n-1})\}.$$

Lemma 3.7.
$$IE_{2p+1}^{0,+} \cong IE \subset E/(z(2)f^{n-1}) \cong \tilde{E}_{2p+1}^{0,*}$$

Proof. Let $x \in IB$ and $x = 0 \in E$. Then $x = \beta(x') = w(1)a$ in B. Hence $w(1)\beta a = 0$. Here $\operatorname{Ker}(w(1)) \cong \operatorname{Im} z(1) \oplus \mathbf{Z}/p\{f^n\}$. So $\beta a = \lambda f^n$ but it does not hold $\lambda \neq 0$ in B, indeed, $f^n \notin \beta B$. Thus $\beta a = 0$. This means $a = \beta a' + \sum \lambda_i f^i$. Therefore

$$w(1)a = w(1)\beta a' + \sum w(1)\lambda_i f^i$$

= $w(1)\beta a' + \sum \lambda_i (w(1)f^i - iz(2)z(1)f^{i-1})$ in B

since $z(1) = 0 \in B$. Thus we see that $x \in (w(1)IB, \Gamma)$ and x = 0 in IE.

Lemma 3.8. $H(E^+/z(2), \beta) \cong \Delta$.

Proof. Let $x \in \text{Ker}(\beta \mid E/z(2))$. Since E/(z(2)) = B/(w(1), z(2)), this means

$$\beta x = z(2)a + w(1)b$$
 in *B*.

Take more β , and we get

$$0 = \beta^2 x = w(1)a - z(2)\beta a + w(1)\beta b.$$

Multiply by z(2), we have $z(2)w(1)(a+\beta b)=0$. Here we note that Ker(w(1)) in B is isomorphic to $Ker(z(1))\cong Im\ z(1)+Z/p\{f^n\}$ in A. This fact is shown from that the Kudo's transgression $d_{2p-1}: Im\ z(1)\to B$ via. $z(1)\mapsto w(1)$ is injective. Hence w(1)x=0 in B means that z(1)x=0 in A. By dimensional reason $|z(2)|>|f^n|$, we have $z(2)(a+\beta b)=0$. Thus

$$\beta x = z(2)(-\beta b) + w(1)b = \beta(z(2)b).$$

Hence $\beta(x-z(2)b)=0$ in B. Since $H(B,\beta)=\Delta$, we have

$$x - z(2)b \in \operatorname{Im} \beta + \Delta$$
 in B .

Thus $x \in \text{Im } \beta + \Delta \text{ in } E/z(2)$.

From Theorem 2.5, Lemma 2.7 and the above lemma, we see;

COROLLARY 3.9. When $* < 2p^2 - 2p$, each element of $H^*(B\tilde{G})$ is torsion free or just p-torsion.

From the above corollary, the map $r: IE_{\infty}^{m,0} \to \tilde{E}_{\infty}^{m,0}$ is injective for $0 < m < 2p^2 - 2p$. In particular elements $\beta(z(2)x) \in \tilde{E}_{2p-1}^{*,0}$, $* \leq 2(p+n) < 4p-1$ must be target $d_r(z)$ for some $z \in \tilde{E}_r^{*,*}$ by arguments before Lemma 3.7. By the naturality, we see

$$d_{2p+1}(\beta(x)u^p) = \beta(xz(2))$$
 in $IE_{2p+1}^{*,*}$

from the fact $d_{2p+1}(xu^p)=xz(2)$ in $\tilde{E}_r^{*,*}$. For the cases $|\beta(x)|\geq 4p-1$, we can write $x=\sum x'\beta(x'')$ with |x'|<2p and we also have $d_{2p+1}(u^p\beta(x))=z(2)\beta(x)$. Let $F=\tilde{E}_{2p+2}^{*,0}\cong E/(z(2))$ and $IF=IE/(\beta(z(2)E))$.

Lemma 3.10. IF \subset F and $\beta H(E, z(2)) \cong IH(IE, z(2))$ where $IH(IE, z(2)) = \{\beta(x) \in IE \mid \beta(z(2)x) = 0\}/(\beta(z(2)E)).$

Proof. Let $\beta(x) \in IE$ and $\beta(x) = 0 \in F$. From the proof of Lemma 3.7, we can see that $\beta(x) = z(2)\beta b - w(1)b = \beta(z(2)b) \in E$. So $x = 0 \in IF$.

From the above corollary and lemma, we show that all nonzero elements in $IE_r^{*,+}$ * $\neq 0 \mod(p)$ must be killed.

LEMMA 3.11. When $s \le n$, we get

$$\begin{cases} d_{2i+1}(p^{i-1}u^{s+p}) \doteq z(1)f^{i-1}u^{s+p-i} & \text{if } s \geq i \\ d_{2s+1}(p^su^{s+p}) = 0 \\ d_{2i+3}(p^{i-1}u^{s+p}) \doteq z(1)f^iu^{s+p-i-1} & n \geq i > s+1. \end{cases}$$

COROLLARY 3.12.

$$\begin{split} IE_{2p(p-1)+1}^{*,2j} &\cong \begin{cases} IF \cong \mathbf{Z}\{1\} \oplus \beta E/(\beta(z(2)E)) & j=0 \\ \mathbf{Z}\{p^{j}u^{j}\} & 0 < 2j < 2n \\ \mathbf{Z}\{p^{n}u^{j}\} & 2n \leq 2j \leq 2p-2 \end{cases} \\ IE_{2p(p-1)+1}^{*,2p+2j} &\cong \begin{cases} \beta H(E,z(2)) \oplus \mathbf{Z}\{p^{n-1}u^{p}\} & j=0 \\ \mathbf{Z}\{p^{n-1}u^{p+j}\} & 0 < 2j < 2n \\ \mathbf{Z}\{p^{n}u^{p+j}\} & 2n \leq 2j \leq 2p-2. \end{cases} \end{split}$$

Now we consider the case n=2. Recall $w(2)/(y_1^p y_2-y_1y_2^p)=w_{12}(2)'-w_{34}(2)'$ and write it by w(2)' so that $d_{2p(p-1)}(fu^{p(p-1)})\doteq w(2)'\beta(x_1x_2)\in \tilde{E}_r^{*,0}$. Hence $w(2)'\beta(x_1x_2)=pa$ in $H^*(\tilde{G};\mathbf{Z})$. But nonzero elements in $IE_{2p(p-1)+1}^{*,s}$ for $0< s< 2p^2$ are even dimensional from Cor. 3.12 and Theorem 2.5. Hence $w(2)'\beta(x_1x_2)=0$ also in $H^*(\tilde{G};\mathbf{Z})$. By dimensional reason we have

$$d_{2(p-1)p+3}(pu^{p(p-1)+1}) \doteq w(2)'\beta(x_1x_2)$$
 in $IE_r^{*,0}$.

Define

$$G = E_{\infty}^{*,0} \cong F/(w(2), w(2)'\beta(x_1x_2), z(3))$$

and $IG = IF/(w(2)\{1, IF\}, w(2)'\beta(x_1x_2)IF).$

LEMMA 3.13. When n = 2, $IG = \beta G$ and $IG \cong IE_{\infty}^{+,0}$. Moreover $H(G,\beta) \cong \Delta \oplus \mathbf{Z}/p\{w(2)'x_1x_2\}$.

Proof. Let $x = 0 \in G$ and $x = \beta x' \in F$. Then in F,

$$\beta(x') = w(2)a + w(2)'\beta(x_1x_2)c + z(3)d$$
 for $c \in H(E; Z(2)), d \in \mathbb{Z}/p$.

By dimensional reason, we see d = 0. First consider the case |x| = even. Applying β , we see

$$w(2)\beta a + w(2)'\beta(x_1x_2)\beta(c) = 0.$$

Here |c| = odd and c = 0 otherwise $w(2)'\beta(x_1x_2)\beta(c) \neq 0 \mod(w(2))$ from Theorem 2.5 and Theorem 2.6 (2). Thus $w(2)\beta(a) = 0$. Hence for this case, we can prove the lemma by the arguments similar to those of the proof of Lemma 3.9.

Let |x| = odd. Then |c| = even and also from Theorem 2.5, $\beta c = 0$ and $\beta(x_1x_2)c = \beta(x_1x_2c)$. Therefore we can prove the lemma similarly to the case |x| = even.

Remark. The fact $H(G,\beta) \cong \Delta \oplus \mathbf{Z}/p\{w(2)'x_1x_2\}$ is also proved in Section 4 below.

Thus we get the results for the case n = 2.

THEOREM 3.14. When n=2

$$IE_{\infty}^{*,2pj} \cong \begin{cases} \mathbf{Z}\{1\} \oplus IG & \text{if} \quad j = 0 \mod(p) \\ \mathbf{Z}\{p\} \oplus IH(E, z(2)) & 0 < j < p-1 \mod(p) \\ \mathbf{Z}\{p\} & j = p-1 \mod(p), \end{cases}$$

For $j \neq 0 \mod(p)$,

$$IE_{\infty}^{*,2j} \cong \begin{cases} \mathbf{Z}\{p\} & j = 1 \mod(p), \ j \neq p(p-1) + 1 \mod(p^2) \\ \mathbf{Z}\{p^2\} & 2 \leq j \leq p-1 \mod(p) \ or \ j = p(p-1) + 1 \mod(p^2). \end{cases}$$

Corollary 3.15. All elements in $H^*(BG^2_{\infty})$ are just p-torsion or torsion free.

Corollary 3.16. The reduced map $r: H^*(BG^2_{\infty}) \to H^*(BG^2_{\infty}; \mathbf{Z}/p)$ is given bv

$$\begin{cases} r\{pu^{sp}\} \doteq \{f^2u^{sp-2}\} & 1 \le s \le p-1 \\ r\{pu^{sp+1}\} \doteq \{fu^{sp}\} & 0 \le s \le p-2 \\ r\{p^2u^{p(p-1)+1}\} \doteq \{w(2)'x_1x_2\} \\ r\{p^2u^{sp+j}\} \doteq \{f^2u^{sp+j-2}\} & 2 \le j \le p-1. \end{cases}$$

Now we study the integral cohomology of the finite groups G_m^n . The integral version of the spectral sequence is

(3.2)
$$IE_2^{*,*} = H^*(B\tilde{G}) \otimes \Lambda(z) \Rightarrow H^*(BG_m^n).$$

Here the differential is $d_2(z) = f' \doteq \{p^m u\} \in H^*(B\tilde{G})$. This fact is proved by the naturality to the restriction maps

$$S^1 \rightarrow B\mathbf{Z}/p^m \rightarrow BS^1$$

and by the isomorphism $H^*(B\mathbb{Z}/p^m) \cong \mathbb{Z}[u]/(p^m u)$. Similarly to the mod p case, we have the isomorphism

$$H^*(BG_m^n) \cong (\operatorname{Ker} f' | H^*(B\tilde{G})) \oplus H^*(B\tilde{G})/(f').$$

For the integral case, $d_2(z) \neq 0$ even if $m \geq 2$. Let $p^{m(i)}u^i$ generate $IE_{\infty}^{0,*}$.

$$d_2\{p^{m(i-1)}u^{i-1}z\} \doteq \{p^{m(i-1)}u^{i-1}\}\{p^mu\} = \{p^{m(i-1)+m}u^i\},$$

we have

$$p^{m(i-1)+m-m(i)} \mid \exp(H^*(BG_m^n))$$

where $\exp(H^*(BG_m^n))$ is the exponent of $H^*(BG_m^n)$. Since each element of $H^*(BG_\infty^2)$ is just p-torsion or torsion free, and $m(p^2)=0$ and $m(p^2-1)=2$, we easily see that

COROLLARY 3.17.
$$\exp(H^*(BG_m^2)) = p^{m+2}$$
.

This fact is extended for all n < p in Corollary 4.7 bellow.

4. Transfers

In this section, we study about generators $p^{m(i)}u^i \in IE_{\infty}^{0,2i}$. We can take $\{p^su^s\}$ as a Chern class $c_s(\xi)$ where ξ is a one dimensional representation with $\xi(x) = e^{2\pi xi}$ for $x \in \mathbf{R}/\mathbf{Z} \cong S^1$ and $\xi(a_j) = 1$. Moreover $\{p^nu^n\}$ is represented by transfer.

Let A^{odd} be the maximal abelian subgroup of \tilde{G} generated by

$$A^{odd} = \langle a_1, a_3, \dots, a_{2n-1} \rangle \times S^1$$

so that

$$H^*(BA^{odd}; \mathbf{Z}/p) \cong \mathbf{Z}/p[y_1, y_3, \dots, y_{2n-1}] \otimes \Lambda(x_1, x_3, \dots, x_{2n-1}) \otimes \mathbf{Z}/p[u].$$

Consider the transfer

$$\operatorname{tr}(i) = \operatorname{Cor}_{A^{odd}}^{\tilde{G}}(u^i) \in H^*(B\tilde{G}) = H^*(BG_{\infty}^n).$$

Since $[\tilde{G}; A^{odd}] = p^n$, we have $tr(i) | S^1 = p^n u^i$. Moreover r(tr(i)) is x_{even} -torsion and y_{even} -torsion because by the Frobenius formula

$$y_{even} \operatorname{tr}(i) = y_{even} \operatorname{Cor}(u^{i}) = \operatorname{Cor}(i_{odd}^{*}(y_{even})u^{i}) = 0$$

where $i_{odd}: A^{odd} \to \tilde{G}$ is the inclusion and $i_{odd}^*(y_{even}) = 0$.

Lemma 4.1. If
$$i \le n(p-1)$$
, then $r(\operatorname{tr}(i)) \doteq \{f^n u^{i-n}\}$ or 0.

Proof. The transfer $r(\operatorname{tr}(i))$ is y_{even} -torsion, and x_{even} -torsion in $H^*(B\tilde{G}; \mathbf{Z}/p)$, and also in $E_{2p^2+1}^{*,*}$ for $i < 2p^2$. Hence $r(\operatorname{tr}(i))$ is $w(2) = \sum y_{2i-1}^p y_{2i} - y_{2i}^p y_{2i-1}$ -torsion in $E_{2p^2+1}^{*,*}$. From Theorem 2.6, there is no nonzero such torsion element in

$$E_{2p^2+1}^{*',*}/(H(E,z(2))+Z/p\{f^{n-1}\})$$
 for $*'<2p(p-1)+1$.

Also from Theorem 2.5 and Lemma 4.3 (2) below, the nonzero y_{even} -torsion elements of degree less than 2n(p-1)+1 is only the f^n in $H(E,z(2))+\mathbf{Z}/p\{f^{n-1}\}$.

From Corollary 3.12, we have (see also Lemma 4.6 bellow)

COROLLARY 4.2. If
$$n \le i \le (p-1) \mod(p)$$
, then $r(\operatorname{tr}(i)) = \{f^n u^{i-n}\}$.

Proof. Recall $\operatorname{tr}(i) \mid S^1 = p^n u^i$. From Corollary 3.12, we know $\operatorname{tr}(i) \neq 0 \mod(p)$ in $H^*(B\tilde{G})$. Hence $r(\operatorname{tr}(i)) \neq 0$. Thus we have the corollary from the above lemma.

Lemma 4.3. Given $k \ge 1$, let $a \in S = S_l/(y_i^{p^k}y_j - y_iy_j^{p^k} \mid 1 \le i < j \le l)$. Then we have

(1) if
$$y_i a = 0$$
 for all i , then $a = 0$.

(2) if
$$a \in \text{Ideal}(y_1 \cdots y_s)$$
 and $y_i a = 0$ for all $1 \le i \le s$, then $|a| \ge s(p^k - 1) + 1$.

Proof. Replacing $y_i y_i^{p^k}$ by $y_i^{p^k} y_i$ for i < j, we can uniquely write an element $a \in S$ as

$$(a) a = \sum \lambda_I y_I = \sum \lambda y_1^{i_1} \cdots y_I^{i_I}$$

where $I = (i_1, \dots, i_l) = (0, \dots, 0, i_{m(I)}, i_{m(I)+1}, \dots, i_l)$ with $i_{m(I)} \neq 0$ and $0 \leq i_s \leq 1$ $p^k - 1$ for all $m(I) + 1 \le s \le l$.

For the proof of (1), let \tilde{I} be the smallest I for $\lambda_I \neq 0$ by the lexicographic order (i.e., I > J if there is s such that $i_k = j_k$ for all k < s and $i_s > j_s$). Then $y_{m(\tilde{I})}a \neq 0$ because $y_{m(\tilde{I})}y_I > y_{m(\tilde{I})}y_{\tilde{I}}$ for $I > \tilde{I}$. This shows (1).

Suppose that $y_i a = 0$ for $l - s \le i \le l$. Then $\tilde{i}_l \ge p^k - 1$, otherwise $y_l y_{\tilde{l}}$ becomes the smallest in $y_l y_l$, and hence $y_l a \neq 0$. Since $a \in \text{Ideal}(y_{l-s} \cdots y_l)$, we know $\tilde{i}_l = p^k - 1$ if $s \ge 1$. Next applying y_{l-1} on a implies $\tilde{i}_{l-1} = p^k - 1$ if $s \ge 2$. Continue this arguments, we know $\tilde{i}_t = p^k - 1$ for $l - s \le t \le l$. This shows (2).

For a finite group G, an element $x \in H^*(BG; \mathbb{Z}/p)$ is said to be essential if it restricts trivially to all proper subgroups of G. We consider essential elements for $G = G_1^n = p_+^{1+2n}$. Similar arguments are also done by Minh ([Mi]).

PROPOSITION 4.4. If n < i < (p-1), then $tr(i) \in H^*(BG_1^n; \mathbb{Z}/p)$ is essential.

Proof. Any maximal subgroup M of G_1^n is isomorphic to $G_1^{n-1} \times \mathbb{Z}/p$. Let $\langle M,g\rangle = G_1^n$. Suppose that $A^{odd} = A \subset M$. Then by the double coset formula,

$$\operatorname{tr}(i) \mid M = \sum_{k=0}^{p-1} \operatorname{Cor}_{g^k A g^{-k} \cap M}^M(g^{k*} u^i) = \operatorname{Cor}_A^M \left(\sum_k g^{k*} u^i \right).$$

Let $H^*(M; \mathbf{Z}/p) \cong H^*(BG_1^{n-1}; \mathbf{Z}/p) \otimes \mathbf{Z}/p[y] \otimes \Lambda(x)$ so that $g^*(u) = u + y$. Then

$$\sum_k g^{k*}u^i = \sum_k (y+ky)^i = \sum_{j=0}^i \binom{i}{j} \Bigl(\sum k^j\Bigr) u^i y^{i-j} = 0 \ \operatorname{mod}(p)$$

since $\sum_{k=0}^{p-1} k^j = 0 \mod(p)$ for j < p-1. Next suppose that $\langle A, M \rangle = G$. Let $\tilde{A} = A \cap M$. Then $\tilde{A} \cong (Z/p)^s$ for $s \le n$. Since all maximal elementary abelian p-subgroup of G_1^n have the rank = n+1, there is a subgroup $A \cap M \subset B \subset M$ with $B \cong (Z/p)^{n+1}$. By the double coset formula, we also have

$$\operatorname{tr}(i) \mid M = \operatorname{Cor}_{\tilde{A}}^{M}(u^{i}) = \operatorname{Cor}_{B}^{M} \operatorname{Cor}_{\tilde{A}}^{B}(u^{i}).$$

Since $B \cong \tilde{A} \times (\mathbf{Z}/p)^{n+1-s}$, we see $\operatorname{Cor}_{\tilde{A}}^{B}(-) = 0$.

Let $A' = \langle A, G_1^1 \rangle \subset G_1^n$. Then from Corollary 3.12 and Theorem 2.4, we see

$$\{f^n u^{p-n}\} \doteq \operatorname{Cor}_{A'}^{G_1^n}(u_p) \quad \text{where } u_p = \{u^p\} \in H^*(BG_1^1; \mathbf{Z}/p) \subset H^*(BA'; \mathbf{Z}/p).$$

PROPOSITION 4.5. For $n \ge 2$, the element $\operatorname{Cor}_{A^{l}}^{G_{1}^{n}}(u_{p}) \in H^{*}(BG_{1}^{n}; \mathbb{Z}/p)$ is essential.

Proof. Suppose that $A' \subset M$. Then by the double coset formula

$$\operatorname{Cor}_{A'}^{G_1^n}(u_p) \mid M = \sum_{k=0}^{p-1} \operatorname{Cor}_{g^k A' g^{-k} \cap M}^M(g^{k*} u_p) = \operatorname{Cor}_{A'}^M \left(\sum_k g^{k*} u_p \right).$$

It is known that $u_p | \langle a_1, c \rangle = u^p - y_1^{p-1} u$ [L]. Hence

$$g^*u_p | A = (u+y)^p - y_1^{p-1}(u+y) = (u^p + y_1^{p-1}u) + (y^p - y_1^{p-1}y).$$

From this equation we can prove (for details, see [L])

$$g^*u_p = u_p + y^p - \chi y$$
 where $\chi = \operatorname{Cor}_{\langle a_1, c \rangle}^{G_1^1}(u^{p-1}) + y_2^{p-1}$.

Here we identify $\operatorname{Cor}_{\langle a_1, c \rangle}^{G_1^1}(-) = \operatorname{Cor}_A^{A'}(-)$ since $\langle a_1, c \rangle \times (\mathbf{Z}/p)^{n-1} \cong A$ and $G_1^1 \times (\mathbf{Z}/p)^{n-1} \cong A'$. Thus we get $\sum_k g^{k*} u_p = 0$ since $g^* \chi = \chi$.

Next suppose that $\langle A', M \rangle = G$. Let us write $\tilde{A} = A' \cap M$. If

Next suppose that $\langle A', M \rangle = G$. Let us write $\tilde{A} = A' \cap M$. If $\operatorname{rank}_p(\tilde{A}) \leq n$, then we can take B as the proof of Proposition 4.4. Similarly we get $\operatorname{Cor}_{\tilde{A}}^B(-) = 0$ for the above case. Hence let $\tilde{A} \cong (\mathbf{Z}/p)^{n+1}$ and this implies $\tilde{A} = A$. Also by the double coset formula

$$\operatorname{Cor}_{A'}^{G_1^n}(u_p) \mid M = \operatorname{Cor}_A^M(u^p - y_1^{p-1}u) = \operatorname{Cor}_A^M(u^p) - y_1^{p-1} \operatorname{Cor}_A^M(u).$$

But the above formula is zero by the following reason. We take $\tilde{A} = A \subset B \subset M$ such that $B \cong G_1^1 \times (\mathbf{Z}/p)^{n-1}$. Here let us reorder i of a_i so that $B \supset G_1^1 = \langle c, a_3, a_4 \rangle$. The restrictions

$$\operatorname{Cor}_{\langle a_3,c\rangle}^{G_1^1}(u^p) \mid \langle a_3^{\lambda}a_4,c\rangle = \operatorname{Cor}_{\langle c\rangle}^{\langle a_3^{\lambda}a_4,c\rangle}(u^p) = 0 \text{ for } 0 \leq \lambda \leq p-1,$$

$$\operatorname{Cor}_{\langle a_3, c \rangle}^{G_1^1}(u^p) \, | \, \langle a_3, c \rangle = \sum_{k=0}^{p-1} (a_4)^{*k} (u^p) = \sum_{k=0}^{p-1} (u + ky_3)^p = 0$$

implies $\operatorname{Cor}_{\langle a_3,c\rangle}^{G_1^1}(u^p)=0$ (in fact, there is no essential element of degree 2p in $H^*(BG_1^1;\mathbf{Z}/p)$). Moreover $\operatorname{Cor}_{\langle a_3,c\rangle}^{G_1^1}(u)=f=0$. Hence we know

$$\operatorname{Cor}_{\tilde{A}}^{B}(u^{p}) = 0$$
 and $\operatorname{Cor}_{\tilde{A}}^{B}(u) = 0$.

Remark 4.1. For the group G_1^2 , we note that

$$\{w(2)'x_1x_2\} \doteq (\{pu^{p(p-1)}\}\{pu\}) \doteq r(\{pu^{p(p-1)}\})f \doteq \{f^2u^{p(p-1)-2}\}f.$$

There contains errors in Theorem 8.18 in [T-Y3]. The elements $z_{p(p-1)-1}z$ and $\{w(2)'x_1x_1\}$ in $H^*(BG_1; \mathbf{Z}/p)$ should be deleted. Ignoring the assumption $|b| \neq$

2p(p-1)+2 in Lemma 8.18 occurred the errors. Hence $\eta=0$ in Prop. 6 in [Mi], while the main theorem in [Mi] is of course correct.

Remark 4.2. Considering the restriction to G^1_{∞} and using the arguments in Lemma 7.3 below, we can prove

$$\{fu^p\} \mid (G_1^1 \times \mathbb{Z}/p) \doteq \operatorname{tr}(2) y_3^{p-1}.$$

Now we study m(i) for $n \le i \le p-1 \mod(p)$.

Lemma 4.6. Let $n \le i \le p-1 \mod(p)$. Then for the group G_{∞}^n , the number m(i) = n, that is, $p^n u^i$ generates $IE_{\infty}^{0,*}$.

Proof. By induction, we assume the above fact for n. Consider the map of extensions

and the induced spectral sequences

$$E(n+1)_2^{*,*} = H^*(B(\mathbf{Z}/p \oplus \mathbf{Z}/p); H^*(BG_{\infty}^n)) \Rightarrow H^*(BG_{\infty}^{n+1})$$

$$E(1')_2^{*,*} = H^*(\mathbf{Z}/p \oplus \mathbf{Z}/p; H^*(B(S^1 \oplus (\mathbf{Z}/p)^n)) \Rightarrow H^*(B(G_{\infty}^1 \oplus (\mathbf{Z}/p)^n)).$$

The differential of the transferred element is

$$d_2(\operatorname{tr}(i)) = d_2(j_{1!}(u^i)) = j_{2!}d_2(u^i)$$

= $j_{2!}(iu^{i-1} \otimes z_{12}(1)) = ij_{1!}(u^{i-1}) \otimes z_{12}(1) = i\operatorname{tr}(i-1) \otimes z_{12}(1)$

where j_1 is the transfer map induced from an injection j.

We assume that $n+1 \le i \le p-1 \mod(p)$, and so $n \le i-1 \mod(p)$. This means that $\operatorname{tr}(i-1)$ generates $IE_{\infty}^{0,2(i-1)}$ and $\operatorname{tr}(i-1) \ne 0$ by inductive assumption. Thus $\operatorname{tr}(i)$ is not a permanent cycle in $E(n+1)_r^{*,*}$. Hence $p^{n+1}u^i$ generates $IE_{\infty}^{0,2i}$ for $H^*(BG_{\infty}^{n+1})$.

COROLLARY 4.7 ([T-Y2] Theorem 5.2).
$$p^{m+n} | \exp(H^*(BG_m^n))$$
.

Proof. Note that $IE_{\infty}^{0,*}$ is generated by $p^nu^{p^n-1}$ (resp. u^{p^n}) when $*=2(p^n-1)$ (resp. $*=2p^n$). Therefore the differential in (3.2) is

$$d_2((p^n u^{p^n-1}) \otimes z) = p^n u^{p^n-1} p^m u = p^{m+n} u^{p^n}.$$

5. Morava K-theory

In this section, we compute the Morava K-theory of the group \tilde{G} . Let us write the infinitive term $E_{\infty}^{*,0}$ by A, i.e.,

$$A = S_4 \otimes \Lambda_4/(w(1), w(2), z(1), z(2), z(3), w(2)'\beta(x_1x_2)).$$

Write by A_i , $0 \le i \le 4$, the S_4 -submodule of A generated by i-th product $x_{j_1} \cdots x_{j_i}$ of odd degree generators. In particular, $A_0 = S_4/(w(1), w(2))$.

We consider the additive decomposition

$$A_0 = B_0 \oplus C_0$$
 with $B_0 = A_0/(w_{12}(1)), C_0 = A_0\langle w_{12}(1)\rangle$

where $A_0\langle w\rangle$ means the A_0 -submodule of A generated by w (while $A_0\{w\}$ means the free A_0 -module). Here we have

$$B_0 \cong S_{12}/(w_{12}(1)) \otimes S_{34}/(w_{34}(1)), \quad C_0 \cong S_4/(w(1), w(2)')\{w_{12}(1)\}$$

where $S_{ij} = \mathbf{Z}/p[y_i, y_j]$, $w_{ij}(1) = y_i^p y_j - y_i y_j^p$, so that $w(1) = w_{12}(1) + w_{34}(1)$ and $w(2) = w(2)' w_{12}(1)$.

We also consider the decomposition of A_{+} such that

$$A_{+} = B_{+} \oplus C_{+}$$
 with $B_{+} = A_{+}/(z_{12}(1), z_{12}(2), x_{1}x_{2}, x_{3}x_{4}),$
 $C_{+} = A\langle z_{12}(1), z_{12}(2), x_{1}x_{2}, x_{3}x_{4}\rangle$

Let $B = B_0 \oplus B_+$ and $C = C_0 \oplus C_+$ so that $A = B \oplus C$. Let us write

$$B_{ij} = B_{ij,0} \oplus B_{ij,+}$$
 where $B_{ij,0} = S_{ij}/(w_{ij}(1))$,

$$B_{ij,+} = S_{ij}\{x_i, x_j\}/(z_{ij}(1), z_{ij}(2), x_i x_j)$$

$$\cong S_{ii}\{x_i, x_i\}/(v_i x_i - v_i x_i, v_i^p x_i - v_i x_i^p, x_i x_i) \cong S_{ii}/(v_{ii})\{x_i\} \oplus \mathbf{Z}/p[v_i]\{x_i\}$$

so that $B \cong B_{12} \otimes B_{34}$. Here

$$y_{ji} = w_{ji}(1)/y_i = y_j^p - y_i^{p-1}y_j.$$

The Q_k -action is given by $Q_k x_i = y_i^{p^k}$. Hence $Q_k : B_{ij,+} \to B_{ij,0} = S_{ij}/(w_{ij}(1))$ is injective since $w_{ij}(1) = y_i y_{ji}$. Then we can easily compute the Q_k homology

$$H(B_{ii}, Q_k) \cong S_{ii}/(y_i^{p^k}, y_i^{p^k}, w_{ii}(1)).$$

By Kunneth formula, we have;

LEMMA 5.1.

$$H(B; Q_k) \cong S_4/(y_1^{p^k}, \dots, y_4^{p^k}, w_{12}(1), w_{34}(1)).$$

Next we will study $H(C; Q_k)$. Recall

$$C_0 = S_4/(w(1), w(2)')\{w_{12}(1)\}$$
 $C_+ = (S_4 \otimes \Lambda_4)\langle z_{12}(1), z_{12}(2), x_1x_2, x_3x_4 \rangle.$

For ease of notation, let us write $D = S_4/(w(1), w(2)')$. We already know $z_{12}(1)$ generates the *D*-module in C_+ since $\beta(x_1x_2) = z_{12}(1)$.

Lemma 5.2.
$$w(2)'z_{12}(2) = 0$$
.

Proof. In S_{12} , we have $P^1w_{12}(1) = 0$ and

$$P^{1}w_{12}(2) = P^{1}(y_{1}^{p^{2}}y_{2} - y_{1}y_{2}^{p^{2}}) = y_{1}^{p^{2}}y_{2}^{p} - y_{1}^{p}y_{2}^{p^{2}} = w_{12}(1)^{p}.$$

Since $w_{12}(2) = w_{12}(2)'w_{12}(1)$, we get $P^1w_{12}(2)' = w_{12}(1)^{p-1}$. Hence in C, we get

$$0 = P^{1}(w(2)'z_{12}(1)) = (w_{12}(1)^{p-1} - w_{34}(1)^{p-1})z_{12}(1) + w(2)'P^{1}z_{12}(1)$$

The first term of the righthand side of the above equation is zero since $w_{12}(1) = -w_{34}(1)$ in A. The fact $P^1z_{12}(1) = z_{12}(2)$ implies the result $w(2)'z_{12}(2) = 0$.

Thus we get the map $Q_1: D\langle z_{12}(1)\rangle \to D\{w_{12}(1)\}$. Here $Q_1(z_{12}(1))=w_{12}(1)$ and its image is a D-free module. Therefore this map is an isomorphism, i.e., $z_{12}(1)$ generates a free D-module. Since $Q_0(z_{12}(2))=w_{12}(1),\ z_{12}(2)$ also generates a free D-module. Moreover $Q_0(z_{12}(1))=0$ and $Q_1(z_{12}(2))=0$. This means that $D\langle z_{12}(1)\rangle$ and $D\langle z_{12}(2)\rangle$ have no intersection except for zero. Thus we have

Lemma 5.3.
$$C_1 \cong D\{z_{12}(1)\} \oplus D\{z_{12}(2)\}.$$

Next consider the module C_2 , Note that $x_1z_{12}(1) = -y_2x_1x_2$ and $x_3z_{12}(1) = -x_3z_{34}(1) = y_4x_3x_4$. Similar fact holds for $z_{12}(2)$. Thus we get

$$C_2 = S_4 \langle x_1 x_2, x_3 x_4 \rangle \cong S_4 \langle x_1 x_2, f \rangle.$$

We have the map $Q_0: D\langle x_1x_2 \rangle \to D\{z_{12}(1)\}$ with $Q_0(x_1x_2) = z_{12}(1)$. While $w(2)'x_1x_2 \neq 0$, but the fact $y_1x_1x_2 = x_1z_{12}(1)$ $(y_3x_1x_2 = -y_3x_3x_4 = -x_3z_{34}(1))$ implies that $S_4^+\langle x_1x_2\rangle$ is a *D*-module. Hence we have the isomorphism

Lemma 5.4. There is an additive isomorphism

$$C_2 \cong D\{x_1x_2\} \oplus \mathbb{Z}/p\{w(2)'x_1x_2\} \oplus S_4/(w_{ii}(1) | i < j)\{f\}.$$

Proof. We already know the module $S_4\langle f\rangle$ from Theorem 2.5. The kernel of the map $Q_0:C_2\to D\{z_{12}(1)\}$ is direct sum of $\mathbb{Z}/p\{w(2)'x_1x_2\}$ and the S_4 -module generated by f.

The generators $x_{i_1}x_{i_2}x_{i_3} \in C_3$ are represented as x_if , e.g., $x_1x_2x_3 = fx_3$. The S_4 -submodule generated by x_if , $1 \le i \le 4$ is still given in Theorem 2.5

$$C_3 \cong H(E, z(2))^{odd} \cong S_4\{x_i f \mid 1 \le i \le 4\}/(y_{ji}x_i f \mid i \ne j).$$

We also note that $Q_0: C_3 \to S_4^+/(w_{ij}(1) | i < j)\{f\}$ is an isomorphism. The fact

$$C_4 \cong \mathbb{Z}/p\{x_1x_2x_3x_4 = f^2\}$$

is also given in Theorem 2.5.

First note that $Q_k(f^2) = 0$, since this element is represented as the transfer.

Lemma 5.5.
$$H(S_4/(w_{ij}(1))\{f\} \oplus C_3; Q_k) \cong S_4/(w_{ij}(1), y_i^{p^k})\{f\}.$$

Proof. Exchanging $y_i y_j^p$ by $y_i^p y_j$ if i > j, each element $a \in S_4/(w_{ij}(1))$ $y_i^p y_i - y_i y_i^p$) is uniquely represented as

$$a = \sum a_I y_I$$
 with $a_I \in \mathbf{Z}/p$, $y_I = y_m^{i_m} \cdots y_4^{i_4}$, $m < \cdots < 4$

such that $i_m \neq 0$ and $0 \leq i_j < p$ for all m < j. Similarly using the relation $0 = y_{ji}x_i = (y_j^p - y_i^{p-1}y_j)x_i$, each element $b \in C_3$ is uniquely written as

$$b = \sum b_I z_I f$$
 with $b_I \in \mathbf{Z}/p, z_I = x_m y_m^{i_m} \cdots y_4^{i_4}, m < \cdots < 4$

such that $0 \le i_i < p$ for all m < j. The Q_k action is given by

$$Q_k(b) = \sum b_I y_m^{p^k + i_m} y_{m+1}^{i_{m+1}} \cdots y_4^{i_4} f.$$

Hence if $b \neq 0$ in C_3 , then $Q_k(b) \neq 0$ also in $S_4/(w_{ij}(1))\{f\}$. This proves the lemma. П

Lemma 5.6. Let k be an algebraic closed field of ch(k) = p. For each $\lambda \in k$, the sequence $(w(1), w(2)', y_3 - \lambda y_4, y_4)$ is regular in $S_4 \otimes k$.

The sequence is regular if and only if the dimension of the variety

$$\dim_k \operatorname{Var}(w(1), w(2)', y_3 - \lambda y_4, y_4) = 4 - 4 = 0.$$

Letting $y_3 = y_4 = 0$, we only need to show $\dim_k \operatorname{Var}(w_{12}(1), w_{12}(2)') = 0$ where $w_{12}(2)' = (y_1^{p^2}y_2 - y_1y_2^{p^2})/(y_1^py_2 - y_1y_2^p)$. The regularity of $(w_{12}(1), w_{12}(2)')$ in S_2 is well known, in fact, these elements are Dickson invariants

$$\mathbf{Z}/p[y_1, y_2]^{SL_2(Z/p)} = \mathbf{Z}/p[w_{12}(1), w_{12}(2)'].$$

Let us write $w_{12}(k) = (y_1^{p^k} y_2 - y_1 y_2^{p^k}) = Q_k z_{12}(1) = Q_k Q_0(x_1 x_2).$

LEMMA 5.7. Suppose that $aw_{12}(k) + bw_{12}(k-1)^p = 0$ in $S_4/(w(1), w(2))$. Then

$$a = (w_{12}(k-1)^p/w_{12}(1))c$$
, $b = (w_{12}(k)/w_{12}(1))c$ for $c \in S_4/(w(1), w(2)')$.

Proof. When $k \le 2$, the theorem is almost immediate. We assume that $aw_{12}(k)/w_{12}(1) + bw_{12}(k-1)^p/(w_{12}(1)) = 0$ in D = $k \geq 3$. Suppose $S_4/(w(1), w(2)')$. We have the decomposition

$$w_{12}(k)/w_{12}(1) = \prod_{\lambda \in F_{p^k} - F_p} (y_2 - \lambda y_1).$$

Let $y_2 - \lambda y_1 = 0$ for $\lambda \in F_{p^k} - F_p$. Then by the supposition we get

$$0 = bw_{12}(k-1)^p/w_{12}(1) = b\lambda' y_1^{p^k-p}$$

in $S_4 \otimes \overline{F}_p/(w(1), w(2)', y_2 - \lambda y_1)$ and $\lambda' \neq 0 \in \overline{F}_p$ because $F_{p^k} - F_p$ and $F_{p^{k-1}} - F_p$ have no intersection in \overline{F}_p . Since $(w(1), w(2)', y_2 - \lambda y_1, y_1)$ is regular, we have b = 0 in $S_4 \otimes \overline{F}_p/(w(1), w(2)', y_2 - \lambda y_1)$ and we can take $b = (y_2 - \lambda y_1)c' \in S_4 \otimes \overline{F}_p/(w(1), w(2)')$. Continuing this argument for all other $\lambda \in F_{p^k} - F_p$ and we get $b = w_{12}(k)/w_{12}(1)c$.

Apply the similar arguments for $y_2 - \mu y_1$, $\mu \in F_{p^{k-1}}$, we get the lemma.

Lemma 5.8. The homology $H(C_0 \oplus C_1 \oplus D\{x_1x_2\}; Q_k)$ is isomorphic to $D/(w_{12}(k)/w_{12}(1), w_{12}(k-1)^p/w_{12}(1))\{w_{12}(1)\}.$

Proof. We will show that the following sequence is exact

$$0 \to D\{x_1x_2\} \stackrel{Q_k}{\to} D\{z_{12}(1), z_{12}(2)\} \stackrel{Q_k}{\to} D\{w_{12}(1)\}.$$

The Q_k -operations are given

$$Q_k(z_{12}(1)) = Q_k(y_1x_2 - y_2x_1) = y_1y_2^{p^k} - y_2y_1^{p^k} = -w_{12}(k)$$

$$Q_k(z_{12}(2)) = Q_k(y_1^px_2 - y_2^px_1) = (y_1^py_2^{p^k} - y_1^{p^k}y_2^p) = -w_{12}(k-1)^p.$$

Hence if $c_1 = az_{12}(1) + bz_{12}(2) \in C_1$ is in the kernel $Ker(Q_k)$, then from Lemma 5.7, we have

 $c_1 = c(w_{12}(k-1)^p/(w_{12}(1))z_{12}(1) + w_{12}(k)/(w_{12}(1))z_{12}(2))$ with $c \in D$ which is just $cQ_k(x_1x_2)$, indeed,

$$Q_0Q_k(x_1x_2) = w_{12}(k)$$
 and $Q_1Q_k(x_1x_2) = w_{12}(k-1)^p$

imply that

$$Q_k(x_1x_2) = w_{12}(k-1)^p/(w_{12}(1))z_{12}(1) + w_{12}(k)/(w_{12}(1))z_{12}(2)$$

since
$$Q_1z_{12}(1) = w_{12}(1)$$
, $Q_0z_{12}(2) = w_{12}(1)$, and $Q_0z_{12}(1) = 0$, $Q_1z_{12}(2) = 0$.

Since $w_{12}(k)$ and $w_{12}(k-1)^p$ are in Ideal $(y_i^{p^k})$ in A_0 we have

Corollary 5.9.
$$H(B \oplus C_0 \oplus C_1 \oplus D\{x_1x_2\}, Q_k) \cong S_4/(w(1), w(2), y_i^{p^k}).$$

COROLLARY 5.10. $H(E_{\infty}^{*,0}, Q_k)$ is generated as an S₄-module by 1, $w(2)'x_1x_2$, f and f^2 .

Recall the isomorphism $E_{\infty}^{*,ps} \cong C_3 \oplus S_4/(w_{ij}(1)\{f\} \oplus \mathbb{Z}/p\{f^2\})$. Hence its cohomology is still given in Lemma 5.5. As for elements $\{f^2u^s\}$, we may assume that its Q_k -action is trivial because $H(E_{\infty}^{*,0};Q_k)$ is generated by even dimensional elements. Thus we get

THEOREM 5.11. There is an isomorphism

$$H(H^*(BG_{\infty}^2; \mathbf{Z}/p); Q_k) \cong \mathbf{Z}/p[u^{p^2}] \otimes (S_4/(w(1), w(2), y_i^{p^k}) \oplus \mathbf{Z}/p\{w(2)'x_1x_2\}$$

$$\oplus \bigoplus_{s} \mathbf{Z}/p\{f^2u^s\} \oplus \bigoplus_{t} S_4/(w_{ij}(1), y_i^{p^k})\{fu^{pt}\})$$

where $0 \le s \ne (p-1) \mod p$ and $s \ne p^2 - 2$ and $0 \le t \le p-2$. Thus this homology is generated by even dimensional elements. Hence we have

$$K(k)^*(BG^2_{\infty}) \cong K(k)^* \otimes H(H^*(BG^2_{\infty}; \mathbb{Z}/p), Q_k).$$

Next consider the cases of finite groups G_m^2 , $m \ge 2$. By arguments after (3.2), we see

$$H(H^*(BG_m^2; \mathbf{Z}/p), Q_k) \cong H(H^*(BG_\infty^2; \mathbf{Z}/p), Q_k) \otimes \Lambda(z).$$

We consider the Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*} = H^*(BG_m^2; K(k)^*) \Rightarrow K(k)^*(BG_m^2).$$

Recall $K(k)^* \cong \mathbf{Z}/p[v_k, v_k^{-1}]$. Since the first nonzero differential is the form $d_{2p^k-1}(x) = v_k \otimes Q_k(x)$, we still have the $E_{2p^k}^{*,*}$ -term. Since all elements in $H(H^*(BG_\infty^2; \mathbf{Z}/p), Q_k)$ are permanent cycles in the above spectral sequence, we only need to study $d_r z$.

Consider the injection $\mathbb{Z}/p^m \subset G_m^2$. The Morava K-theory is

$$K(k)^*(B\mathbf{Z}/p^m) \cong K(k)^*[u]/([p^m](u)).$$

Here $[p](u) = v_k u^{p^k}$ implies $[p^m](u) = v_k^{1+p^k+\cdots+p^{(m-1)k}} u^{p^{mk}}$. Thus in the Atiyah-Hirzebruch spectral sequence converging $K(k)^*(B\mathbf{Z}/p)$, the differential

$$d_{2p^{mk}-1}(z) = v_k^{1+p^k+\cdots+p^{(m-1)k}} u^{p^{mk}}.$$

Thus we get

Theorem 5.12. Let $m \ge 2$. Then

$$K(k)^*(BG_m^2) \cong K(k)^*(BG_\infty^2)/(u^{p^{mk}}).$$

6. BP-theory

Let $BP^*(-)$ be the Brown-Peterson cohomology theory with the coefficient ring $BP^* = \mathbf{Z}/p[v_1,\ldots], \ |v_i| = -2(p^n-1).$ Since $K(k)^{odd}(BG_m^2) = 0$ for $m \ge 2$, we also have $BP^{odd}(BG_m^2) = 0$ from the theorem by Ravenel-Wilson-Yagita [R-W-Y]. In this section we will study $BP^*(BG_m^2)$ more explicitly.

Recall that $\tilde{E}_r^{*,*}$ (resp. $IE_r^{*,*}$) is the Hochschild-Serre spectral sequence converging to $H^*(BG_\infty^2; \mathbf{Z}/p)$ (resp. $H^*(BG_\infty^2)$). From Lemma 3.13, we already know that $IE_\infty^{+,0} \cong \beta E_\infty^{+,0} \oplus \mathbf{Z}/p\{f,f^2,w(2)'x_1x_2\}$. The decomposition $\tilde{E}_\infty^{+,0} \cong B^+ \oplus C$ is given in §5 with

$$H(B^+, \beta) \cong 0$$
 and $H(C; \beta) \cong \mathbb{Z}/p\{w(2)'x_1x_2, f, f^2\}.$

Note that B and C are closed under the Bockstein operation. The Bockstein images of C is

$$\beta C \cong D\{w_{12}(1), z_{12}(1)\} \oplus (S_4^+/(w_{ij}(1)\{f\}).$$

Here $Q_1 z_{12}(1) = w_{12}(1)$. The Bockstein of *B* is

$$S_4/(w_{12}(1), w_{34}(1)) \oplus S_4 \langle \beta \{x_s x_t \mid 1 \le s \le 2, 3 \le t \le 4\} \rangle.$$

Lemma 6.1. If $0 \neq x \in B_2$ in the notation in §5, then $Q_1Q_0x \neq 0$ in B_0 .

Proof. Each element x in B_2 is expressed as (recall the arguments before Lemma 5.1)

$$x = a_{13}x_1x_3 + a_{14}x_1x_4 + a_{23}x_2x_3 + a_{24}x_2x_4$$

where $a_{13} \in S_4/(y_{21}, y_{43})$, $a_{23} \in S_{34}/(y_{43}) \otimes \mathbf{Z}/p[y_2]$, $a_{14} \in S_{12}/(y_{12}) \otimes \mathbf{Z}/p[y_4]$, $a_{24} \in \mathbf{Z}/p[y_2, y_4]$.

Suppose that $Q_1Q_0x = 0$ in $B_0 = S_4/(w_{12}(1), w_{34}(1))$. First let $y_1 = y_3 = 0$. Then $Q_1Q_0x = Q_1Q_0a_{24}x_2x_4 = a_{24}w_{24}(1)$. But $w_{24}(1) = y_2^p y_4 - y_2 y_4^p$ is a non-zero divisor in $\mathbb{Z}/p[y_2, y_4]$. Hence $a_{24} = 0$.

Next let $y_1 = 0$. Then $Q_1Q_0x = a_{23}w_{23}(1)$. But $y_2 - \lambda y_3$ is a nonzero divisor in $S_{34}/(y_{34}) \otimes \mathbf{Z}/p[y_2]$ because the dimension of the variety

$$Var(y_{43}, y_2 - \lambda y_3) = \bigcup_{\mu} (y_4 - \mu y_3, y_2 - \lambda y_3)$$

is just one. Hence $a_{23} = 0$. Similarly letting $y_3 = 0$, we have $a_{14} = 0$. Lastly, consider $Q_1Q_0x_1x_3$. The dimension of the variety is

$$Var(y_{21}, y_{34}, y_1 - \lambda y_3) = \bigcup_{\mu, \mu'} Var(y_2 - \mu y_1, y_4 - \mu' y_3, y_1 - \lambda y_3)$$

is also just one. Hence $w_{13}(1)=y_1^py_3-y_1y_3^p$ is also nonzero divisor in $S_4/(y_{21},y_{43})$. So $a_{13}=0$.

Since $Q_1Q_0(x_sx_t) = w_{st}(1)$ and $Q_1(z_{12}(1)) = w_{12}(1)$, we have;

Corollary 6.2.
$$Q_1(IE_{\infty}^{+,0}) \cong S_4 \langle w_{ii}(1) | i < j \rangle$$
.

We also known $IE_{\infty}^{+,2p} \cong S_4/(w_{ij}(1))\{f\}$. Considering the Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*} = H^*(BG_{\infty}^2; BP^*) \Rightarrow BP^*(BG_{\infty}^2).$$

The first nonzero differential is $d_{2p-1}(x) = v_1 \otimes Q_1(x)$. The term $E_{2p}^{*,*}$ is generated by even dimensional elements. Hence we have;

Theorem 6.3. The graded ring $\operatorname{gr} BP^*(BG^2_{\infty})$ is isomorphic to

$$(BP^* \otimes S_4/(w(1), w(2), v_1w_{ij}(1)) \oplus BP^* \otimes (F \oplus U)) \otimes \mathbf{Z}[\{u^{p^2}\}]$$
where $F = S_4^+/(w_{ij}(1))\{fu^{sp} \mid 1 \le s \le p-2\}, \ U = \mathbf{Z}\{u_t \mid 0 \le t \le p^2-1\},$

$$u_t = \begin{cases} \{1\} & t = 0\\ \{pu^t\} & t = 0, 1 \mod(p) \ and \ 0 < t \ne p(p-1) + 1\\ \{p^2u^t\} & 2 \le t \le p-1 \mod(p) \ or \ t = p(p-1) + 1. \end{cases}$$

COROLLARY 6.4. All BP*-linear relations in BP*(BG $_{\infty}^2$) are deduced from the relations in BP*(BV).

Proof. Since $[p](y_i) = py_i + v_1y_i^p + \cdots = 0$ in $BP^*(BV)$, we have the relation in $BP^*(BV)$,

$$y_j[p](y_i) - y_i[p](y_j) = v_1(y_i^p y_j - y_i y_j^p) + \dots = v_1 w_{ij}(1) + \dots = 0.$$

We consider the cases of finite groups G_m^2 , $m \ge 2$. Recall that

$$H^*(BG_m^2) \cong IE_{\infty}^{+,0} \otimes \Lambda(z) \oplus IE_{\infty}^{0,*}/(\{p^m u\}).$$

We easily see that $IE_{\infty}^{0,*}/(\{p^mu\})$ is generated by $u_t,\ 0 \le t \le p^2-1$ and $\{u^{p^2}\}$ with

$$\exp(u_t) = \begin{cases} p^{m-1} & (t = 2 \mod(p) \text{ but } t \neq p(p-1) + 2) \\ & \text{or } (t = 1) \text{ or } (t = p(p-1) + 1) \\ p^m & (3 \leq t \leq p-1 \mod(p)) \text{ or } (1 \mod(p) \text{ but } t \neq 1, \neq p(p-1) + 1) \text{ or } (t = p(p-1) + 2) \\ p^{m+1} & (t = ps, 0 < s < p) \\ p^{m+2} & (t = p^2). \end{cases}$$

Theorem 6.5. For $m \ge 2$, we have the isomorphism

$$\operatorname{gr} BP^*(BG_m^2) \cong \operatorname{gr} BP^*(BG_\infty^2)/(v_1^{s_1}y_iu^{p^m}, v_2^{s_2}w_{ij}(1)u^{p^{2m}}, \exp(u_t)u_t)$$

where $s_k = 1 + p^k + \cdots + p^{(m-1)k}$.

Proof. We consider the Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*} = H^*(BG_m^2; BP^*) \Rightarrow BP^*(BG_m^2).$$

The first nonzero differential is $d_{2p-1}(x) = v_1 \otimes Q_1(x)$. The 2p-term is

$$E_{2p}^{*,*} \cong (BP^* \otimes S_4/(w(1), w(2), v_1w_{ij}(1)) \oplus BP^* \otimes (F)) \otimes \Lambda(z)$$

$$\oplus BP^* \otimes U/(\exp(u_t)u_t) \otimes \tilde{\mathbf{Z}}/(p^{m+2})[u^{p^2}]$$

where $\tilde{\mathbf{Z}}/(p^{m+2})[u^{p^2}]$ means $\mathbf{Z}[u^{p^2}]/(p^{m+2}u^{p^2})$. By $K(1)^*(-)$ theory, the next nonzero differential is $d_{2p^{m-1}}(y_iz)=v_1^{s_1}y_iu^{p^m}$. The last nonzero differential is $d_{2p^{2m}-1}(w_{ij}(1)z)=v_2^{s_2}w_{ij}(1)u^{p^{2m}}$ from $K(2)^*(-)$ theory. Thus we get the theorem.

7.
$$BP^*(Bp_{\perp}^{1+4})$$

In this section, we will study the *BP*-theory of the case m=1, i.e., $G_1^2=p_1^{1+4}$. The integral cohomology is (the integral version of Lemma 2.9)

(7.1)
$$\operatorname{gr} H^*(BG_1^2) \cong ((\operatorname{Ker}(f) | H^*(BG_\infty^2))\{z\} \oplus H^*(BG_\infty^2)/(f).$$

Recall (see §6 also)

$$\begin{cases} IE_{\infty}^{+,0}/(f) \cong \beta B \oplus D\{w_{12}(1), z_{12}(1)\} \\ \operatorname{Ker}(f) \mid IE_{\infty}^{+,0} \cong S_4 \langle w_{st}(1), \beta(x_s x_t) \mid 1 \le s \le 2 < t \le 4 \rangle \oplus \beta C \\ IE_{\infty}^{+,2ps}/(f) \cong \operatorname{Ker}(f) \mid IE_{\infty}^{+,2ps} \cong S_4^+/(w_{ij}(1)\{fu^{ps}\}) & 1 \le s \le p-2. \end{cases}$$

Hence from Lemma 6.1 and the arguments before the lemma, we have

$$\begin{cases} H(IE_{\infty}^{+,0}/(f), Q_1) \cong S_4^+/(w_{ij}(1)), \\ H(\operatorname{Ker}(f) | IE_{\infty}^{+,0}, Q_1) \cong S_4^+/(w_{ij}(1)) \{fz\}, \\ H(IE_{\infty}^{+,2ps} \otimes \Lambda(z), Q_1) \cong S_4^+/(w_{ij}(1) \{fu^{ps}\}\Lambda(z). \end{cases}$$

Thus we can prove that

Lemma 7.1. The homology
$$H(\operatorname{gr} H^*(BG_1^2), Q_1)$$
 is isomorphic to $((S_4^+/(w_{ij}(1)) \otimes (\Lambda(fz) \oplus \mathbb{Z}/p\{u^pf, \dots, u^{p(p-2)}f\} \otimes \Lambda(z)) \oplus U) \otimes \tilde{\mathbb{Z}}/p^3[u^{p^2}].$

We will study the Atiyah-Hirzebruch spectral sequence

(7.2)
$$E_2^{*,*} = H^*(\operatorname{gr} H^*(BG_1^2); \tilde{K}(1)^*) \Rightarrow \tilde{K}(1)^*(BG_1^2)$$

where $\tilde{K}(1)^*(-)$ is the integral K-theory with the coefficient ring $\tilde{K}(1)^* = \mathbf{Z}_{(p)}[v_1,v_1^{-1}]$. The first nonzero differential is also

$$d_{2p-1}(x) = v_1 \otimes Q_1(x)$$

but $Q_1(x)$ is considered as an element in gr $H^*(BG_1^2)$. We want to prove the following lemma;

Lemma 7.2.
$$d_{2p-1}(y_ifzu^{p(s-1)}) \doteq v_1y_ifu^{ps}$$
 for $1 \leq s \leq p-2$ and hence $Q_1(y_ifzu^{p(s-1)}) \doteq y_ifu^{ps}$ in $H^*(BG_1^2; \mathbf{Z}/p)$.

To prove this lemma, we prepare some lemmas. For a compact group G, it is known that $\tilde{K}(1)^{odd}(BG) = 0$ and $\tilde{K}(1)^*(BG)$ is torsion free by the Atiyah theorem. Hence $K(1)^{odd}(BG) = 0$. Moreover it is given

$$\dim_{K(1)^*} K(1)^* (BG_1^2) = p^4 + p - 1$$

by Brunetti [B1]. In [B2], he also showed that the Euler characteristic for $K(n)^*$ -theory has the property $\chi_{n,p}(G_2^2)=p^n\chi_{n,p}(G_1^2)$. Indeed, from Theorem 5.11 and Theorem 5.12, we know $\dim_{K(1)^*}K(1)^*(BG_2^2)=p^5+p^2-p$.

Given $\lambda_i \in F_p^{\times}$, $1 \le i \le 4$ with $\lambda_1 \lambda_2 = \lambda_3 \lambda_4$, let $g = g(\lambda_1, \dots, \lambda_4)$ be the automorphism of G_1^2 defined by

$$a_i \mapsto a_i^{\lambda_i}, \quad c \mapsto c^{\lambda_1 \lambda_2}.$$

Then the induced map g^* defines the automorphism of $H^*(BG_1^2)$, and moreover the automorphism of the Hochschild-Serre spectral sequence converging to $H^*(BG_1^2)$ so that

$$y_i \mapsto \lambda_i y_i \quad u \mapsto \lambda_1 \lambda_2 u.$$

Indeed this gives the (weight) decomposition of the spectral sequence.

For a sequence $I = (i_1, \dots, i_4)$, let $y^I = y_1^{i_1} \cdots y_4^{i_4}$. Suppose that in $\tilde{K}(1)^*(BG_1^2)$, there is a relation

$$(*) py^{I}\{u^{pt}\} = v_1^{s} \sum_{K} a_K y^{K} \mod(p^2, v_1^{s+1}),$$

where $y^K \neq 0 \in S_4/(y_i^p)$, $0 \neq a_K \in \mathbb{Z}/p$. Let J = K - I. Applying g^* on the above equation, we have

$$(\lambda_1 \lambda_2)^t = \lambda_1^{j_1} \lambda_2^{j_2} \lambda_3^{j_3} (\lambda_1 \lambda_2 / \lambda_3)^{j_4}.$$

Hence we get

$$j_1 = j_2$$
, $j_3 = j_4$, $t = j_1 + j_3 \mod(p-1)$.

On the other hand, by dimensional reason,

$$2t = |u^{pt}| = |v_1^s| + |v_1^J| = 4i_1 + 4(t - i_1) \mod(2(p - 1)).$$

This means $t = 0 \mod(p-1)$. Similar facts hold for the differentials since the action g^* is compatible with the differentials of the spectral sequence. Thus we get

Lemma 7.3. If (*) holds or $d_r(y^Izfu^{(t-2)p}) = righthandside$ of (*), then $t = 0 \mod(p-1)$ and letting J = K - I,

$$j_1 = j_2 = p - 1 - j_3 = p - 1 - j_4 \mod(p - 1).$$

LEMMA 7.4. In (*), letting t = 0, we have $s \ge 2$.

Proof. If s = 1, then by [Y1], there is an element $x \in H^*(BG_1^2; \mathbb{Z}/p)$ such that $Q_0(x) = y^I$ and $Q_1x = y^K$. But $Q_1x_i = y_i^p \in S_4 \otimes \Lambda_4$ so this contradicts to $y^K \neq 0$ in $S_4/(y_i^p)$.

Let us write by IV the vector space in $S_4/(y_i^p)$

$$IV = \{ y \in S_4/(y_i^p) \mid \deg(y) > 4(p-1) \} \oplus \mathbf{Z}/p \{ (y_1y_2)^j (y_3y_4)^{p-1-j} \mid 0 \le j \le p-1 \}.$$

LEMMA 7.5.
$$\dim_{\mathbb{Z}/p}(S_4/(y_i^p, IV)) > (p^4 + p - 1)/2$$
.

Proof. First note that $\dim_{\mathbb{Z}/p}(S_4/(y_i^p)) = p^4$. Since the largest degree of $S_4/(y_i^p)$ is 8(p-1), by the duality the *t*-dimensional homogeneous parts are

$$\dim_{\mathbf{Z}/p}(S_4/(y_i^p))^t = \dim_{\mathbf{Z}/p}(S_4/(y_i^p))^{8(p-1)-t}.$$

The degree of $(y_1y_2)^j(y_3y_4)^{p-1-j}$ is of course 4(p-1) and it generates a p-dimensional \mathbb{Z}/p -vector space. Note $\deg(IV) \geq 4(p-1)$. The 4(p-1)-homogeneous parts of $S_4/(y_i^p)$ is quite large, e.g., $\dim_{\mathbb{Z}/p}(S_4/(y_i^p))^{4(p-1)} > p^2$. Since

$$\begin{aligned} \dim_{\mathbf{Z}/p} & \{ y \mid \deg(y) \le 4(p-1) \} \\ &= 1/2 \, \dim_{\mathbf{Z}/p} \{ S_4/(y_i^p) \} + 1/2 \, \dim_{\mathbf{Z}/p} \{ y \mid \deg(y) = 4(p-1) \}, \end{aligned}$$

we know

$$\dim_{\mathbf{Z}/p}(S_4/(y_i^p, IV)) > p^4/2 + p^2/2 - p > (p^4 + p - 1)/2.$$

Lemma 7.6. As $K(1)^*$ -modules, we have the injection

$$K(1)^* \otimes S_4/(y_i^p, IV) \subset K(1)^*(BG_1^2).$$

Proof. First we note that additively $\tilde{K}(1)^* \otimes S_4/(y^p, IV) \subset \tilde{K}(1)^*(BG_1^2)$, because all targets of differentials are in IV by dimensional reasons and Lemma 7.3. If $0 \neq y \in S_4/(y_i^p, IV)$ is zero in $K(1)^*(BG_1^2)$, then there is $y' \in \tilde{K}(1)^*(BG_1^2)$ such that

$$py' = v_1^s y$$
 for $s \le 2$.

But this does not happen from Lemma 7.3 and the definition of IV.

Lemma 7.7. If $d_{2p-1}(y_izf) = 0$, then $d_{4p-3}(y_izf) = 0$ in the spectral sequence (7.2).

Proof. From Lemma 7.1, we can write

$$d_{4p-3}(y_1fz) = v_1^2 \sum b_J y^J y_1 u^p f \mod(v_1^3).$$

If $|J| \ge 0$ and if there is $j_i \ne 0 \mod(p-1)$, then from Lemma 7.3, we see $|y^J| \ge 4(p-1)$, and this contradicts to the dimensional reason. Hence all $j_i = 0 \mod(p-1)$ if $j_1 \ge 0$. If $j_1 = -1$, there is the case $y^J y_1 = y_2^{p-2} y_3 y_4$ by the similar arguments. Let us write

$$(**) d_{4p-3}(y_1fz) = v_1^2 \left(\left(\sum_i b_i y_i^{p-1} \right) y_1 + b' y_2^{p-2} y_3 y_4 \right) f u^p \mod(v_1^3).$$

We consider the (twisted) automorphism tw defined by

$$tw: a_1 \leftrightarrow a_3, \quad a_2 \leftrightarrow a_4, \quad c \mapsto c,$$

which induces

$$tw^*: y_1 \leftrightarrow y_3, \quad y_2 \leftrightarrow y_4, \quad u \mapsto u$$

on the spectral sequence. Applying tw^* on (**), we get

$$d_{4p-3}(y_3fz)$$

$$= v_1^2((b_1y_3^{p-1} + b_2y_4^{p-1} + b_3y_1^{p-1} + b_4y_2^{p-1})y_3 + b'y_4^{p-2}y_1y_2)fu^p \mod(v_1^3).$$

Since $y_3d_{4p-3}(y_1fz) = y_1d_{4p-3}(y_3fz)$, we know $b_4 = b_2$ and b' = 0. We also have the other twisted map, e.g., $tw': a_1 \leftrightarrow a_4$. Similarly, we get $b_1 = b_2 = b_3 = b_4$. We consider the other automorphism f_{λ} of G_1^2 defined by

$$f_{\lambda}: a_3 \mapsto a_3 a_4^{\lambda}, \quad f_{\lambda}: a \mapsto a \quad \text{for } a = a_i, i \neq 3 \text{ or } c$$

which induces

$$f_{\lambda}^*: y_4 \mapsto y_4 + \lambda y_3, \quad f_{\lambda}^*: y \mapsto y \quad \text{for } y = y_i, i \neq 4 \text{ or } u.$$

Apply f_{λ}^* on (**) with $b_i = b$. Then the left hand side of $(f_{\lambda}^* - id.)(**)$ is zero, but the righthand side is

$$v_1^2 b((y_4 + y_3)^{p-1} - y_4^{p-1}) y_1 f u^p \neq 0$$
, if $b \neq 0$.

Hence b must be zero.

Proof of Lemma 7.2. If $d_{2p-1}(y_izf) \neq 0$, then it is $\lambda v_1 y_i f u^p$ for $\lambda \neq 0 \in \mathbb{Z}/p$ by the dimensional reason. Suppose $d_{2p-1}(y_izf) = 0$. Then from above lemma, $d_{4p-3}(y_ifz) = 0$. This means that all nonzero element in $\tilde{K}(1)^* \otimes S_4/(y_i^p, IV)$ are not targets of differentials. By arguments similar to the proof of Lemma 7.6 and Lemma 7.4, we can show

$$K(1)^* \otimes S_4/(y_i^p, IV)\{1, fu^p\} \subset K(1)^*(BG_1^2).$$

The dimension of the left hand side $K(1)^*$ -vector space is larger than p^4+p-1 by Lemma 7.5. This contradicts to the result of $\dim_{K(1)^*}K(1)^*(BG_1^2)$ by Brunetti. Thus we get $d_{2p-1}(y_izf) \doteq \{y_iu^pf\}$. By the induction on s we get the lemma. q.e.d.

Therefore we get

$$E_{2p}^{*,*} \cong \tilde{K}(1)^* \otimes (S_4^+/(w_{ij}(1)\{1, u^{p(p-2)}zf\} \oplus U) \otimes \mathbf{Z}/p^3[u^{p^2}].$$

From Theorem 5.12, we know $u^{p^2} = 0 \in K(1)^*(BG_2^2)$. Hence so in $K(1)^*(BG_1^2)$. However from Lemma 7.3, there is no $y' \in \tilde{K}(1)^*(BG_1^2)$ such that $py' = v_1^s y_i u^{p^2}$ since $y' \in S_4^+/(w_{ij}(1))$ or $y' \in U$. (Note that there is such $y' \in U$ for $v_1^s u^{p^2}$.) Hence for some s, the element $v_1^s y_i u^{p^2}$ is a target of differential in the spectral sequence. By dimensional reason we have

$$d_{4p-3}(y_iu^{p(p-2)}fz) \doteq v_1^2 y_iu^{p^2}.$$

Thus we get;

LEMMA 7.8.

gr
$$\tilde{K}(1)^*(BG_1^2) \cong \tilde{K}(1)^* \otimes (S_4^+/(w_{ij}(1)) \oplus U \otimes \tilde{\mathbf{Z}}/p^3[u^{p^2}]),$$

gr $K(1)^*(BG_1^2) \cong K(1)^* \otimes (S_4/(y_i^p) \oplus \mathbf{Z}/p\{u_3, \dots, u_{p+1}\}).$

Proof. We study elements in U. In $H^*(BG_{\infty}^2)$, we have

$$u_1 = \{pu\} = f, \quad u_2 = \{p^2u^2\} = f^2,$$

which are zero in $H^*(BG_1^2)$ from (7.1). Relations $p^3u^i = v_1p^2u^{p+i-1}$ in $\tilde{K}(1)^*(B\langle c \rangle)$ give that for U in $\tilde{K}(1)^*(BG_1^2)$, e.g., $pu_3 = v_1u_{p+2}$, $pu_4 = v_1u_{p+3}$, ...

Note that $\dim_{K(1)^*} K(1)^* (BG_1^2)$ is in fact $p^4 + p - 1$.

Theorem 7.9. The BP^* -algebra gr $BP^*(BG_1^2)$ is isomorphic to the quotient of the free BP^* -algebra

$$BP^* \otimes (S_4^+/(w(1), w(2)) \oplus U \oplus S_4^+/(w_{ij}(1)) \{ fu^p, \dots, fu^{p(p-2)} \}) \otimes \tilde{\mathbf{Z}}/p^3[u_{p^2}]$$

by the following relations

$$(v_1w_{ij}(1), v_1y_ifu^{sp}, v_1^2y_iu_{p^2}, v_2w_{ij}(1)u_{p^2})$$

Proof. We consider the Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*} = H^*(BG_1^2; BP^*) \Rightarrow BP^*(BG_1^2).$$

The first nonzero differential is $d_{2p-1}(x) = v_1 \otimes Q_1(x)$, which was still given in the arguments for $\tilde{K}(1)^*$ -theory.

$$E_{2p}^{*,*} \cong BP^* \otimes (U \oplus S_4^+/(w(1), w(2), v_1 w_{ij}(1)) \oplus S_4 \langle w_{ij}(1) \rangle / (v_1) \{z\}$$

$$\oplus S_4^+/(w(1),v_1)\{fu^p,\ldots,fu^{p(p-2)}\}\oplus S_4^+/(w_{ij}(1)\{fzu^{p(p-2)}\})\otimes \tilde{\mathbf{Z}}/p^3[u^{p^2}].$$

Here note that $BP^*/(v_1) \otimes S_4 \langle w_{ij}(1) \rangle \{z\}$ remains, while it disappears for $\tilde{K}(1)^*$ -theory.

The next nonzero differential is $d_{4p-3}(y_iu^{p(p-2)}fz) \doteq v_1^2y_iu^{p^2}$ same as the $\tilde{K}(1)^*$ -theory. The last nonzero differential is

$$d_{2p^2-1}w_{ij}(1)z \doteq v_2w_{ij}(1)u^{p^2}$$

which is given from $K(2)^*$ -theory and $(v_2$ -version of) Lemma 7.3.

Proof of Remark 4.2. First we consider the element $\{fu^p\}$ in $H^*(BG_{\sim}^2; \mathbb{Z}/p)$. Recall that [L]

$$H^{even}(BG^1_{\infty})/p \cong (S_2/(w_{12}(1)) \oplus \mathbb{Z}/p\{\operatorname{tr}(1), \dots, \operatorname{tr}(p-1)\}) \otimes \mathbb{Z}/p[u_p]$$

where $\operatorname{tr}(i) = \operatorname{Cor}_{\langle g_1, e_2 \rangle}^{G^1_{\infty}}(u^i)$ and $u_p = \{u^p\}$. Since

Im
$$\rho(BP^*(BG^1_{\infty} \times B\mathbf{Z}/p)) \cong H^{even}(BG^1_{\infty}) \otimes \mathbf{Z}/p[y_3]$$

for the Thom map $\rho: BP \to H\mathbf{Z}_{(p)}$, we can write

(*)
$$\{fu^p\} \mid G^1_{\infty} \times \mathbf{Z}/p = \sum a(i', i'', J) \operatorname{tr}(i') u_p^{i''} y^J.$$

By arguments similar to the proof of Lemma 7.3, we have

$$i' + i'' + j_1 = 2$$
, $j_1 = j_2$, $j_3 = 0 \mod(p-1)$.

Hence by the dimensional reason, we can write

$$(*) = \operatorname{tr}(1)u_p + \operatorname{tr}(2)ay_3^{p-1}.$$

here we use the fact $y_i \operatorname{tr}(1) = y_2 \operatorname{tr}(i) = 0$ for i .

Now we consider the conjugation map a_4^* on $H^*(BG_\infty^2; \mathbf{Z}/p)$ (or $H^*(BG_\infty^1 \times \mathbf{Z}/p; \mathbf{Z}/p)$, $H^*(B(\langle a_1, a_3, c \rangle); \mathbf{Z}/p)$) which induces

$$a_4^*: u \mapsto u + y_3, \quad y_i \mapsto y_i.$$

This action is invariant on the cohomology of G_{∞}^2 , and so is on (*)

$$(a_4^* - 1) \operatorname{tr}(1)u_p = \operatorname{Cor}(u + y_3)a_4^*u_p - \operatorname{Cor}(u)u_p = \operatorname{tr}(1)(a_4^* - 1)u_p.$$

We already know $u_p | \langle a_1, c \rangle = u^p - y_1^{p-1}u$. By the same argument as the proof of Proposition 4.5, we have

$$(a_4^* - 1)u_p = y_3^p - \chi y_3$$
 where $\chi = \operatorname{Cor}_{\langle a_1, c \rangle}^{G_1^1}(u^{p-1}) + y_2^{p-1}$.

On the other hand

$$(a_4^* - 1) \operatorname{tr}(2) = \operatorname{Cor}((u + y_3)^2) - \operatorname{Cor}(u^2) = 2 \operatorname{tr}(1) y_3.$$

Hence we have

$$(a_4^* - 1)(*) = \operatorname{tr}(1)(y_3^p - \chi y_3) + 2a \operatorname{tr}(1)y_3^p.$$

Here it is known that $\chi \operatorname{tr}(1) = 0([L])$. Thus a = -1/2 and we get $(*) = \operatorname{tr}(1)u_p - 1/2\operatorname{tr}(2)y_3^{p-1}$. Consider the restriction $(*) \mid G_1^1 \times \mathbb{Z}/p$, and we have the remark since $\operatorname{tr}(1) = 0$ in $H^*(BG_1^1; \mathbb{Z}/p)$. q.e.d.

8. Algebraic cobordism and Chow ring

Let X be a smooth algebraic variety over C. Recently Levine-Morel [L-M1,2] defined an algebraic cobordism $\Omega^*(X)$ having following properties.

- (1) There is the natural map $\rho: \Omega^*(X) \to MU^*(X)$ such that $\Omega^* = \Omega^*(pt) \cong MU^*(pt)$ where $MU^*(-)$ is the complex cobordism theory.
 - (2) $\Omega^*(X) \otimes_{\Omega^*} \mathbf{Z} \cong CH^{*/2}(X)$; the classical Chow ring.
- (3) $\Omega^*(X) \otimes_{\Omega^*} \tilde{K}(1)^* \cong K_0(X) \otimes \tilde{K}(1)^*$; where $K_0(X)$ is the Grothendieck group of algebraic bundle over the variety X.

Let G be an algebraic group over \mathbb{C} , Totaro [To1,2] defines the Chow ring $CH^*(BG)$ of the classifying space as a limit of algebraic varieties. He conjectured that

$$CH^{*/2}(BG)_{(p)} \cong BP^*(BG) \otimes_{BP^*} \mathbf{Z}_{(p)}.$$

In particular he showed above conjecture for $* \le 4$ ([To2] Corollary 3.5).

Recall that except for elements in $F = S_4^+/(w_{ij}(1))\{fu^{ps}\}$ in Theorem 6.3, all elements in $BP^*(BG_\infty^2)$ are represented by transferred Chern classes, and hence come from the algebraic cobordism where transfers and Chern classes exist. Hence we only need to see whether fu^{ps} are in the Chow ring or not.

Theorem 8.1. $\{fu^p\} \in BP^*(BG_\infty^2)$ comes from the algebraic cobordism.

Corollary 8.2. When p=3, the natural maps $\rho: \Omega^*(BG_m^2) \to BP^*(BG_m^2)$ are epic for all $m \geq 1$ or $m=\infty$.

Proof of Theorem 8.1. By Totaro (Theorem 3.1 in [To2]), $K_0(BG) \otimes \tilde{K}(1)^* \cong \tilde{K}(1)^*(BG)$. From Theorem 6.3, fu^{ps} is nonzero in $\tilde{K}(1)^*(BG_{\infty}^2)$. Hence from (3) there is $f_s \in \Omega^*(BG_{\infty}^2)$ with $\rho(f_s) = v_1^t fu^{ps}$. Now consider the case s = 1. Note that $\Omega^*(X)$ is generated by positive degree elements as a Ω^* -module from (2). Hence t = 0, 1. If t = 1, then $|f_s| = 4$ and this contradicts to Totaro's conjecture for * = 4. Thus t = 0 and we have the theorem. q.e.d.

REFERENCES

- [B1] M. Brunetti, The K(n)-Euler characteristic of extraspecial p-groups. J. Pure and Appl. Algebra 155 (2001), 105–113.
- [B2] M. BRUNETTI, Higher Euler characteristics for almost extraspecial p-groups. Contemporary Math. 293 (2002), 69–74.
- [G] D. J. Green, Calculations related to the integral cohomology of extraspecial p-groups. preprint (1996).
- [L] I. J. LEARY, The integral cohomology rings of some *p* groups. Math. Proc. Cambridge Philos. Soc. **110** (1991), 245–255.
- [L-M1] M. LEVINE AND F. MOREL, Coborsime algébrique I. C. R. Acad. Sci. Paris 332 (2001), 723–728.
- [L-M2] M. LEVINE AND F. MOREL, Coborsime algébrique II. C. R. Acad. Sci. Paris 332 (2001), 815–820.
- [Mi] P. A. Minh, Essential cohomology and extraspecial p-groups. Trans. AMS 353 (2000), 1937–1957.
- [R-W-Y] D. C. RAVENEL, W. S. WILSON AND N. YAGITA, Brown-Peterson cohomology from Morava K-theory. K-theory 15 (1998), 147–199.
- [Sc-Y] B. Schuster and N. Yagita, Morava K-theory of extraspecial 2-groups. Proc. AMS. 132 (2004), 1229–1239.
- [T-Y1] M. TEZUKA AND N. YAGITA, The varieties of the mod p cohomology rings of extra special p-groups for an odd prime p. Math. Proc. Cambridge Phil. Soc. **94** (1983), 449–459.
- [T-Y2] M. TEZUKA AND N. YAGITA, Cohomology of finite groups and the Brown-Peterson cohomology. Lecture Notes in Math. 1370 (1989), 396–408.

- [T-Y3] M. TEZUKA AND N. YAGITA, Calculations in mod p cohomology of extra special p-groups I. Contemporary Math. 158 (1994), 281–306.
- [To1] B. TOTARO, Torsion algebraic cycles and complex cobordism. J. Amer. Math. Soc. 10 (1997), 467–493.
- [To2] B. TOTARO, The Chow ring of classifying spaces. Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67 (1999), 248–281.
- [Y1] N. YAGITA, On relations between Brown-Peterson cohomology and the ordinary mod p cohomology theory. Kodai Math. J. 7 (1984), 273–285.
- [Y2] N. Yagıra, Localization of the spectral sequence converging to the cohomology of an extra special *p*-group for odd prime *p*. Osaka J. Math. **35** (1998), 83–116.

DEPARTMENT OF MATHEMATICS
FACULTY OF EDUCATION
IBARAKI UNIVERSITY
MITO, IBARAKI, JAPAN

E-mail address: yagita@mx.ibaraki.ac.jp