ENDPOINT ESTIMATES FOR COMMUTATORS OF CALDERÓN-ZYGMUND TYPE OPERATORS

ZONGGUANG LIU AND SHANZHEN LU*

Abstract

In this paper, we establish some endpoint estimates for the commutator, [b, T], of a class of Calderón-Zygmund type operator, such as the weak type L log L estimate, weak type (H^1, L^1) estimate and some estimates in the Hardy type spaces associated with b, where $b \in BMO(\mathbb{R}^n)$.

1. Introduction

Calderón-Zygmund operators and their generalizations on Euclidean space \mathbf{R}^n have been extensively studied [1–4]. In particular, Yabuta [3] introduced certain θ type Calderón-Zygmund operators to facilitate his study of certain classes of pseudo-differential operator. In this paper, we study the commutator of the following so-called θ type Calderón-Zygmund operator.

DEFINITION 1. Let θ be a non-negative non-decreasing function on \mathbf{R}^+ with $\int_0^1 \theta(t) t^{-1} |\log t| \ dt < \infty$. A measurable function K on $\mathbf{R}^n \times \mathbf{R}^n \setminus \{(x,x) : x \in \mathbf{R}^n\}$ is said to be a θ type kernel if it satisfies

- (i) $|K(x, y)| \le C|x y|^{-n}$ for $x \ne y$; (ii) $|K(x, y) K(z, y)| + |K(y, x) K(y, z)| \le \frac{C\theta(|x z|/|x y|)}{|x y|^n}$,

Let T be a linear operator from $\mathcal{S}(\mathbf{R}^n)$ into its dual $\mathcal{S}'(\mathbf{R}^n)$. We say T is a θ type Calderón-Zygmund operator if

- (1) T can be extended to be a bounded linear operator on $L^2(\mathbf{R}^n)$;
- (2) There is a θ type kernel K such that $Tf(x) = \int_{\text{supp } f}^{1} K(x, y) f(y) \, dy$ for all $f \in C_0^{\infty}(\mathbb{R}^n)$ and for all $x \notin \text{supp } f$, where $C_0^{\infty}(\mathbb{R}^n)$ is the space of all infinitely differentiable functions on \mathbb{R}^n with compact supports.

^{*}Shanzhen Lu was partially supported by the National 973 Project Foundation of China. MR (1991) Subject Classification: 42B20, 35J05.

Key words: Calderón-Zygmund type operator, commutator, Hardy type space, $BMO(\mathbf{R}^n)$. Received June 11, 2001; revised November 26, 2001.

Remark 1. The θ type Calderón-Zygmund operator introduced in Definition 1 is a special case of operator which is introduced by Yabuta, so the results for Yabuta's operator also hold for our operator. The following lemma is a result in [4].

Lemma 1. Let θ be a non-negative non-decreasing function on \mathbf{R}^+ with $\int_0^1 \theta(t) t^{-1} dt < \infty$. Let T be a θ type Calderón-Zygmund operator. Then the following conditions are equivalent:

- (1) $\int_{Q} |Ta(x)| dx \leq C \|a\|_{L^{\infty}(\mathbf{R}^{n})}$ for $a \in L^{\infty}(\mathbf{R}^{n})$ with supp $a \subset Q$, a cube in \mathbf{R}^{n} ;
- (2) \tilde{T} is a bounded operator from $H^1(\mathbf{R}^n)$ to $L^1(\mathbf{R}^n)$;
- (3) T is a bounded operator from $L_0^{\infty}(\mathbf{R}^n)$ to $BMO(\mathbf{R}^n)$;
- (4) T is a bounded operator from $L^q(\mathbf{R}^n)$ to $WL^q(\mathbf{R}^n)$ for some $q \in (1, \infty)$;
- (5) T is a bounded operator on $L^q(\mathbf{R}^n)$ for some $q \in (1, \infty)$;
- (6) T is weak type (1,1).

In this paper, we establish some endpoint estimates for commutator of the θ type Calderón-Zygmund operator:

$$[b, T]f(x) = b(x)Tf(x) - T(bf)(x),$$

where $b \in BMO(\mathbf{R}^n)$.

Most the notation that we use is standard. Q will always denote a cube with sides parallel to the axes, λQ ($\lambda > 0$) denotes the cube Q dilated by λ . For a locally integrable function f, f_Q denotes the average of f on $Q: f_Q = (1/|Q|) \int_Q f(y) \, dy$.

As usual, a function $A:[0,\infty)\to[0,\infty)$ is said to be a Young function if it is continuous, convex and increasing and satisfying A(0)=0, $A(t)\to\infty$ as $t\to\infty$. We define the A-average of a function f over a cube Q by means of the following Luxemberg norm:

$$||f||_{A,Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_{Q} A\left(\frac{|f(y)|}{\lambda}\right) dy \le 1 \right\}.$$

The generalized Hölder inequality

$$\frac{1}{|Q|} \int_{Q} |f(y)g(y)| \, dy \le ||f||_{A,Q} ||g||_{\bar{A},Q}$$

holds, where \bar{A} be the complementary Young function associated to A.

It is well known that $\bar{A}(t) \approx \exp t$ with $A(t) = t(1 + \log^+ t)$. The maximal function associated to $A(t) = t(1 + \log^+ t)$ was defined as

$$M_{L\log L}f(x) = \sup_{x \in Q} ||f||_{A,Q}.$$

The maximal function associated to A(t)=t is the well-known Hardy-Littlewood maximal function. For $\delta>0$, we define the δ -maximal function as $M_{\delta}(f)=[M(|f|^{\delta})]^{1/\delta}$ and the δ -Sharp maximal function as

$$M_s^{\sharp}(f) = [M^{\sharp}(|f|^{\delta})]^{1/\delta},$$

where M^{\sharp} be the well-known Fefferman-Stein's Sharp maximal function:

$$M^{\sharp}f(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| dy.$$

Following the results in [6], the L^p (1 boundedness for commutator <math>[b, T] is the corollary of the following Sharp function estimates.

Lemma 2. Let T be a θ type Calderón-Zygmund operator and 1 . Then

$$M^{\sharp}(Tf)(x) \le CM_p f(x).$$

Proof. For any $x \in \mathbb{R}^n$ and any cube Q with $x \in Q$, let x_0 be the centre of Q, and

$$f = f\chi_{2O} + f\chi_{\mathbf{R}^n \setminus 2O} = f_1 + f_2.$$

By the L^p boundedness of T and the Hölder inequality, we have

$$\frac{1}{|Q|} \int_{Q} |Tf_{1}(y)| \, dy \le \left(\frac{1}{|Q|} \int_{Q} |Tf_{1}(y)|^{p} \, dy\right)^{1/p} \le C \left(\frac{1}{|Q|} \int_{2Q} |f(y)|^{p} \, dy\right)^{1/p} \le C M_{p} f(x).$$

When $y \in Q$, we apply the condition of θ to get that

$$|Tf_{2}(y) - Tf_{2}(x_{0})| \leq \int_{\mathbb{R}^{n} \setminus 2Q} |K(y, z) - K(x_{0}, z)| |f(z)| dz$$

$$\leq C \sum_{j=1}^{\infty} \int_{2^{j+1}Q \setminus 2^{j}Q} \frac{\theta(|y - x_{0}|/|z - x_{0}|)}{|z - x_{0}|^{n}} |f(z)| dz$$

$$\leq C \sum_{j=1}^{\infty} \theta(2^{-j}) \frac{1}{|2^{j+1}Q|} \int_{2^{j+1}Q} |f(z)| dz$$

$$\leq C \sum_{j=1}^{\infty} \theta(2^{-j}) \left(\frac{1}{|2^{j+1}Q|} \int_{2^{j+1}Q} |f(z)|^{p} dz \right)^{1/p}$$

$$\leq C \int_{0}^{1} \theta(t) t^{-1} dt M_{p} f(x) \leq C M_{p} f(x).$$

This implies that

$$\frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} |Tf_2(y) - Tf_2(x_0)| \ dy \le CM_p f(x).$$

Thus, we obtain that

$$M^{\sharp}(Tf)(x) \le CM_p f(x).$$

This completes the proof of Lemma 2.

2. Weak type $L \log L$ estimates and weak type (H^1, L^1) estimates

In this section, we establish firstly the weak type $L \log L$ estimates for [b, T] by the method of the Sharp function estimates. Then we get the weak type (H^1, L^1) estimates. Our main results are the following theorems

THEOREM 1. Let $b \in BMO(\mathbb{R}^n)$ and T be a θ type Calderón-Zygmund operator. Then, there exists a positive constant C such that for each smooth function f with compact support and for all $\lambda > 0$,

$$|\{x \in \mathbf{R}^n : |[b, T]f(x)| > \lambda\}| \le C||b||_* \int_{\mathbf{R}^n} \frac{|f(y)|}{\lambda} \left(1 + \log^+ \frac{|f(y)|}{\lambda}\right) dy.$$

Following the ideas of Pérez [9], we only need prove the following two Sharp function estimates.

LEMMA 3. Let $b \in BMO(\mathbb{R}^n)$, T be a θ type Calderón-Zygmund operator and $0 < \delta < \varepsilon < 1$. Then, there exists a positive constant $C = C_{\delta,\varepsilon} > 0$ such that for each smooth function f with compact support,

$$M_{\delta}^{\sharp}([b,T]f)(x) \leq C \|b\|_{*}(M_{\varepsilon}(Tf)(x) + M_{L \log L}f(x)).$$

Proof. Let Q=Q(x,r) be an arbitrary cube. Since $0<\delta<\varepsilon<1$ implies $\left|\left|\alpha\right|^{\delta}-\left|\beta\right|^{\delta}\right|\leq\left|\alpha-\beta\right|^{\delta}$ for $\alpha,\beta\in \mathbf{R}$, it is enough to show for some complex constant $c=c_{Q}$ that there exists $C=C_{\delta}>0$ such that

$$\left(\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}|[b,T]f(y)-c|^{\delta}\,dy\right)^{1/\delta} \leq C\|b\|_{*}(M_{\varepsilon}(Tf)(x)+M_{L\log L}f(x)).$$

Let $f = f\chi_{2Q} + f\chi_{\mathbf{R}^n \setminus 2Q} = f_1 + f_2$. We write

$$[b, T]f = (b - b_{2Q})Tf - T((b - b_{2Q})f_1) - T((b - b_{2Q})f_2).$$

If we pick $c = c_0 = (T((b - b_{2Q})f_2))_0$, we have

$$\left(\frac{1}{|Q|} \int_{Q} |[b, T]f(y) - c|^{\delta} dy\right)^{1/\delta} \\
\leq C \left(\frac{1}{|Q|} \int_{Q} |b(y) - b_{2Q}|^{\delta} |Tf(y)|^{\delta} dy\right)^{1/\delta} + C \left(\frac{1}{|Q|} \int_{Q} |T((b - b_{2Q})f_{1})(y)|^{\delta} dy\right)^{1/\delta} \\
+ C \left(\frac{1}{|Q|} \int_{Q} |T((b - b_{2Q})f_{2})(y) - (T((b - b_{2Q})f_{2}))_{Q}|^{\delta} dy\right)^{1/\delta} \\
= I_{1} + I_{2} + I_{3}.$$

To estimate I_1 , we use the Hölder inequality with exponents r and r' where $1 < r < \varepsilon/\delta$:

$$I_{1} \leq C \left(\frac{1}{|Q|} \int_{Q} |b(y) - b_{2Q}|^{\delta r'} dy\right)^{1/\delta r'} \left(\frac{1}{|Q|} \int_{Q} |Tf(y)|^{\delta r} dy\right)^{1/\delta r}$$

$$\leq C \|b\|_{*} M_{\delta r}(Tf)(x) \leq C \|b\|_{*} M_{\varepsilon}(Tf)(x).$$

Since T is of weak type (1,1) and $0 < \delta < 1$, the Kolmogorov inequality implies

$$\begin{split} I_2 &\leq C|Q|^{-1} \frac{\|T((b-b_{2Q})f_1)\chi_Q\|_{L^{\delta}(\boldsymbol{R}^n)}}{|Q|^{1/\delta-1}} \leq C|Q|^{-1} \|T((b-b_{2Q})f_1)\chi_Q\|_{WL^1(\boldsymbol{R}^n)} \\ &\leq C|Q|^{-1} \|(b-b_{2Q})f_1\|_{L^1(\boldsymbol{R}^n)} \leq C\|b-b_{2Q}\|_{\exp L,2Q} \|f\|_{L\log L,2Q} \\ &\leq C\|b\|_* M_{L\log L}f(x). \end{split}$$

In the last inequality, we use the estimate that $\|b-b_Q\|_{\exp L,Q} \le C\|b\|_*$, it is equivalent to the inequality

$$\frac{1}{|Q|} \int_{Q} \exp\left(\frac{|b(y) - b_{Q}|}{C||b||_{*}}\right) dy \le C_{0},$$

it is just a corollary of the well-known John-Nirenberg inequality. Then the Jensen inequality and the Fubini theorem yield

$$\begin{split} I_{3} &\leq \frac{C}{|Q|} \int_{Q} \left| T((b-b_{2Q})f_{2})(y) - (T((b-b_{2Q})f_{2}))_{Q} \right| \, dy \\ &\leq \frac{C}{|Q|^{2}} \int_{Q} \int_{Q} \int_{\mathbb{R}^{n} \setminus 2Q} \left| K(y,w) - K(z,w) \right| \left| (b(w) - b_{2Q})f(w) \right| \, dw dz dy \\ &\leq \frac{C}{|Q|^{2}} \int_{Q} \int_{Q} \sum_{j=1}^{\infty} \int_{2^{j+1}Q \setminus 2^{j}Q} \frac{\theta(|y-z|/|x-w|)}{|x-w|^{n}} \left| b(w) - b_{2Q} \right| \left| f(w) \right| \, dw dz dy \\ &\leq C \sum_{j=1}^{\infty} \theta(2^{-j}) \frac{1}{|2^{j+1}Q|} \int_{2^{j+1}Q} \left| b(w) - b_{2Q} \right| \left| f(w) \right| \, dw \\ &\leq C \sum_{j=1}^{\infty} \theta(2^{-j}) \frac{1}{|2^{j+1}Q|} \int_{2^{j+1}Q} \left| b(w) - b_{2^{j+1}Q} \right| \left| f(w) \right| \, dw \\ &+ C \sum_{j=1}^{\infty} \theta(2^{-j}) \left| b_{2^{j+1}Q} - b_{2^{j}Q} \right| \frac{1}{|2^{j+1}Q|} \int_{2^{j+1}Q} \left| f(w) \right| \, dw \\ &\leq C \sum_{j=1}^{\infty} \theta(2^{-j}) \left| b - b_{2^{j+1}Q} \right|_{\exp L, 2^{j+1}Q} \left| f \right|_{L \log L, 2^{j+1}Q} + C \sum_{j=1}^{\infty} j\theta(2^{-j}) \left| b \right|_{*} Mf(x) \\ &\leq C \sum_{j=1}^{\infty} j\theta(2^{-j}) \left| b \right|_{*} M_{L \log L} f(x) \leq C \int_{0}^{1} \theta(t) t^{-1} \left| \log t \right| \, dt \left| b \right|_{*} M_{L \log L} f(x) \\ &\leq C \left| b \right|_{*} M_{L \log L} f(x). \end{split}$$

This completes the proof of Lemma 3.

Using a similar method, we can establish the following Sharp function estimate and omit the details.

LEMMA 4. Let $0 < \alpha < 1$ and T be a θ type Calderón-Zygmund operator. Then, for any $f \in C_0^{\infty}(\mathbf{R}^n)$ and $x \in \mathbf{R}^n$, there exists a constant $C = C_{\alpha} > 0$, such that

$$M_{\alpha}^{\sharp}(Tf)(x) \le CMf(x).$$

Now, we establish the weak type (H^1, L^1) estimate for [b, T].

THEOREM 2. Let $b \in BMO(\mathbb{R}^n)$ and T be a θ type Calderón-Zygmund operator. Then the commutator [b,T] is a bounded operator from $H^1(\mathbb{R}^n)$ to weak $L^1(\mathbb{R}^n)$, i.e. for any $\lambda > 0$, there exists a constant C > 0, such that

$$\left| \left\{ x \in \mathbf{R}^n : |[b, T] f(x)| > \lambda \right\} \right| \le \frac{C}{\lambda} \|f\|_{H^1(\mathbf{R}^n)}.$$

Proof. For any given $f \in H^1(\mathbf{R}^n)$, by atomic decomposition we get $f = \sum_{j=1}^\infty \lambda_j a_j$, where each a_j be a $(1,\infty,0)$ atom with $\|f\|_{H^1(\mathbf{R}^n)} = \inf(\sum_{j=1}^\infty |\lambda_j|)$. We may assume that f is a finite sum $\sum_Q \lambda_Q a_Q$ with $\sum_Q |\lambda_Q| \le 2\|f\|_{H^1(\mathbf{R}^n)}$. Once Theorem 2 is proven for such f, for general f is the limit of this kind of f_k (in H^1 norm or almost everywhere sense) where f_k are finite sums having forms of $\sum_Q \lambda_Q a_Q$, Theorem 2 follows by a limiting argument, using the L^2 -boundedness of [b,T]. It is convenient for us to assume that each Q (the supporting cube of a_Q) in the given atomic decomposition of f is dyadic and $\lambda_Q > 0$.

For fixed $\lambda > 0$ and the finite collection of dyadic cube Q and associated positive scalars $\lambda_Q > 0$ in the given atomic decomposition of f, by Lemma 4.1 in [5], there exists a collection of pairwise disjoint dyadic cubes S such that

(1)
$$\sum_{Q \subset S} \lambda_Q \le 2^n \lambda |S|$$
, for all S ; (2) $\sum_{S} |S| \le \lambda^{-1} \sum_{Q} \lambda_Q$;

(3)
$$\left\| \sum_{Q \neq \text{any } S} \lambda_Q |Q|^{-1} \chi_Q \right\|_{L^{\infty}(\mathbf{R}^n)} \leq \lambda.$$

Denote $E=\bigcup_S 2S$, then $|E|\leq C\lambda^{-1}\|f\|_{H^1(\mathbf{R}^n)}$. Set $h(x)=\sum_S\sum_{Q\subset S}\lambda_Q a_Q$ and g(x)=f(x)-h(x). By (3), $\|g\|_{L^\infty(\mathbf{R}^n)}\leq \lambda$ and the $L^2(\mathbf{R}^n)$ boundedness of [b,T] implies

$$\begin{split} \left| \left\{ x \in \mathbf{R}^n \backslash E : |[b,T]g(x)| > \lambda/4 \right\} \right| &\leq \frac{C}{\lambda^2} \|[b,T]g\|_{L^2(\mathbf{R}^n)}^2 \leq \frac{C}{\lambda^2} \|g\|_{L^2(\mathbf{R}^n)}^2 \\ &\leq \frac{C}{\lambda} \|g\|_{L^1(\mathbf{R}^n)} \leq \frac{C}{\lambda} \|f\|_{L^1(\mathbf{R}^n)} \leq \frac{C}{\lambda} \|f\|_{H^1(\mathbf{R}^n)}. \end{split}$$

Thus, we only need prove following inequality

$$\left|\left\{x \in \mathbf{R}^n \backslash E : |[b, T]h(x)| > \lambda/4\right\}\right| \le \frac{C}{\lambda} \|f\|_{H^1(\mathbf{R}^n)}.$$

For any fixed cube $Q = Q(x_Q, r_Q)$, by moments condition for a_Q we have

$$[b, T]a_{Q}(x) = \int_{\mathbf{R}^{n}} (b(x) - b(y))K(x, y)a_{Q}(y) dy$$

$$= \int_{\mathbf{R}^{n}} (b(x) - b_{Q})[K(x, y) - K(x, x_{Q})]a_{Q}(y) dy$$

$$+ \int_{\mathbf{R}^{n}} K(x, y)(b_{Q} - b(y))a_{Q}(y) dy.$$

Since $x \in \mathbb{R}^n \backslash E$ implies that $x \in \mathbb{R}^n \backslash 2Q$ for any cube Q in the given atomic decomposition, by the smoothness condition of θ we get

$$|[b, T]h(x)| \le C \sum_{S} \sum_{Q \subset S} \lambda_{Q} \frac{|b(x) - b_{Q}|\theta(r_{Q}/|x - x_{Q}|)}{|x - x_{Q}|^{n}} + \left| \sum_{S} \sum_{Q \subset S} T((b_{Q} - b)a_{Q})(x) \right|$$

$$= I_{1}(x) + I_{2}(x).$$

By the condition of $\theta(t)$, we obtain

$$\begin{split} \left| \left\{ x \in \mathbf{R}^{n} \backslash E : I_{1}(x) > \lambda / 8 \right\} \right| \\ &\leq \frac{C}{\lambda} \sum_{S} \sum_{Q \subset S} \lambda_{Q} \int_{\mathbf{R}^{n} \backslash 2Q} \frac{|b(x) - b_{Q}| \theta(r_{Q} / |x - x_{Q}|)}{|x - x_{Q}|^{n}} \, dx \\ &\leq \frac{C}{\lambda} \sum_{S} \sum_{Q \subset S} \lambda_{Q} \sum_{l=1}^{\infty} \int_{2^{l+1}Q \backslash 2^{l}Q} \frac{|b(x) - b_{Q}| \theta(r_{Q} / |x - x_{Q}|)}{|x - x_{Q}|^{n}} \, dx \\ &\leq \frac{C}{\lambda} \sum_{S} \sum_{Q \subset S} \lambda_{Q} \sum_{l=1}^{\infty} \theta(2^{-l}) \frac{1}{|2^{l+1}Q|} \int_{2^{l+1}Q} |b(x) - b_{Q}| \, dx \\ &\leq \frac{C}{\lambda} \sum_{S} \sum_{Q \subset S} \lambda_{Q} \sum_{l=1}^{\infty} l\theta(2^{-l}) ||b||_{*} \leq \frac{C||b||_{*}}{\lambda} \int_{0}^{1} \theta(t) t^{-1} |\log t| \, dt \sum_{S} \sum_{Q \subset S} \lambda_{Q} \\ &\leq \frac{C||b||_{*}}{\lambda} ||f||_{H^{1}(\mathbf{R}^{n})}. \end{split}$$

The weak type (1,1) boundedness of T implies the following estimate

$$\begin{aligned} \left| \left\{ x \in \mathbf{R}^n \middle| E : I_2(x) > \lambda/8 \right\} \right| &\leq \frac{C}{\lambda} \sum_{S} \sum_{Q \in S} \lambda_Q \| (b - b_Q) a_Q \|_{L^1(\mathbf{R}^n)} \\ &\leq \frac{C}{\lambda} \sum_{S} \sum_{Q \in S} \lambda_Q \frac{1}{|Q|} \int_Q |b(y) - b_Q| \ dy \\ &\leq \frac{C \|b\|_*}{\lambda} \sum_{S} \sum_{Q \in S} \lambda_Q \leq \frac{C \|b\|_*}{\lambda} \|f\|_{H^1(\mathbf{R}^n)}. \end{aligned}$$

This finishes the proof of Theorem 2.

3. The estimates on Hardy type spaces

It is well known that the commutator [b,T] isn't a bounded operator from H^1 to L^1 even when T is a usual Calderón-Zygmund operator, but it is a bounded operator from H^1_b to L^1 , where H^1_b is a Hardy type space associated with $b \in \text{BMO}(\mathbb{R}^n)$. In this section, we discuss this problem when T is a θ type Calderón-Zygmund operator. Let us give some notations.

DEFINITION 2. Let b be a locally integrable function, $0 . It is said that a bounded function a is a <math>H_b^p(\mathbf{R}^n)$ atom if it satisfies

(1) supp
$$a \subset Q = Q(x_0, r)$$
 for some $r > 0$; (2) $||a||_{L^{\infty}(\mathbb{R}^n)} \le |Q|^{-1/p}$;

(3)
$$\int_{\mathbb{R}^n} x^{\beta} a(x) dx = \int_{\mathbb{R}^n} x^{\beta} a(x) b(x) dx = 0$$
 for any $|\beta| \le [1/p - 1]$.

It is said that a temperate distribution f belongs to $H_b^p(\mathbf{R}^n)$ if, in the $\mathscr{S}'(\mathbf{R}^n)$ sense, it can be written as $f = \sum_{j=1}^{\infty} \lambda_j a_j$, where a_j is a $H_b^p(\mathbf{R}^n)$ atom and $\sum_{j=1}^{\infty} |\lambda_j|^p < \infty$. We define on $H_b^p(\mathbf{R}^n)$ the quasinorm

$$||f||_{H_b^p(\mathbf{R}^n)} = \inf\left(\sum_{j=1}^{\infty} |\lambda_j|^p\right)^{1/p}.$$

Theorem 3. Let $b \in BMO(\mathbf{R}^n)$ and T be a θ type Calderón-Zygmund operator, $0 and <math>\int_0^1 \frac{\theta^p(t)|\log t|^p}{t^{(1-p)n+1}} dt < \infty$. Then the commutator [b,T] is a bounded operator from $H_b^p(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$.

Proof. By the condition of $\theta(t)$, it is easy to see that $\theta(t) < \theta^p(t)$ where $t \in (0, \varepsilon)$ for some $\varepsilon \in (0, 1)$. This implies that

$$\int_0^1 \theta(t) t^{-1} |\log t| \ dt < C \int_0^1 \frac{\theta(t)}{t^{(1-p)n+1}} \ dt \le C \int_0^1 \frac{\theta^p(t) |\log t|^p}{t^{(1-p)n+1}} \ dt.$$

Thus we can use the results in Section 1, and get the L^q $(1 < q < \infty)$ boundedness of [b,T]. Hence, as in the proof of Theorem 2, we only need to prove that, for any $H^p_b(\mathbf{R}^n)$ atom a, there exists a constant C>0 independent of a, such that $\int_{\mathbf{R}^n} |[b,T]a(x)|^p dx \le C$.

Let supp $a \subset Q = Q(x_0, r)$ and write

$$\int_{\mathbb{R}^n} |[b, T]a(x)|^p dx \le \int_{2Q} |[b, T]a(x)|^p dx + \int_{\mathbb{R}^n \setminus 2Q} |[b, T]a(x)|^p dx$$

$$= J_1 + J_2.$$

Then, by the L^q boundedness of [b, T] and by the Hölder inequality, we have

$$J_{1} \leq |2Q|^{1-p/q} \left(\int_{\mathbf{R}^{n}} |[b, T]a(x)|^{q} dx \right)^{p/q}$$

$$\leq C|Q|^{1-p/q} ||a||_{L^{q}(\mathbf{R}^{n})}^{p} \leq C|Q|^{1-p/q} |Q|^{-1} |Q|^{p/q} = C.$$

and

$$J_2 \leq \sum_{j=1}^{\infty} \int_{2^{j+1}Q \setminus 2^j Q} |[b,T]a(x)|^p dx \leq \sum_{j=1}^{\infty} |2^{j+1}Q|^{1-p} \left(\int_{2^{j+1}Q \setminus 2^j Q} |[b,T]a(x)| dx \right)^p.$$

We write

$$\int_{2^{j+1}Q\setminus 2^{j}Q} |[b,T]a(x)| dx \le \int_{2^{j+1}Q\setminus 2^{j}Q} |b(x) - b_{Q}| |Ta(x)| dx$$

$$+ \int_{2^{j+1}Q\setminus 2^{j}Q} |T((b - b_{Q})a)(x)| dx$$

$$= J_{21} + J_{22}.$$

Since $2|y-x_0|<|x-x_0|$ when $y\in Q$ and $x\in 2^{j+1}Q\setminus 2^jQ$ with $j=1,2,\ldots,$ we get

$$J_{21} \leq \int_{2^{j+1}Q \setminus 2^{j}Q} |b(x) - b_{Q}| \int_{Q} |K(x, y) - K(x, x_{0})| |a(y)| dydx$$

$$\leq \int_{2^{j+1}Q \setminus 2^{j}Q} |b(x) - b_{Q}| \int_{Q} \frac{\theta(|y - x_{0}|/|x - x_{0}|)}{|x - x_{0}|^{n}} |a(y)| dydx$$

$$\leq C\theta(2^{-j}) |Q|^{1 - 1/p} \frac{1}{|2^{j+1}Q|} \int_{2^{j+1}Q} |b(x) - b_{Q}| dx$$

$$\leq Cj\theta(2^{-j}) |Q|^{1 - 1/p} ||b||_{*}.$$

Using the moment vanishing condition of a, we have

$$J_{22} \leq \int_{2^{j+1}Q\setminus 2^{j}Q} \int_{Q} |K(x,y) - K(x,x_{0})| |b(y) - b_{Q}| |a(y)| dydx$$

$$\leq C \int_{2^{j+1}Q\setminus 2^{j}Q} \int_{Q} \frac{\theta(|y - x_{0}|/|x - x_{0}|)}{|x - x_{0}|^{n}} |b(y) - b_{Q}| |a(y)| dydx$$

$$\leq C\theta(2^{-j}) \int_{2^{j+1}Q\setminus 2^{j}Q} \frac{dx}{|x - x_{0}|^{n}} \int_{Q} |b(y) - b_{Q}| |a(y)| dy$$

$$\leq C\theta(2^{-j}) |Q|^{1-1/p} \frac{1}{|Q|} \int_{Q} |b(x) - b_{Q}| dx$$

$$\leq C\theta(2^{-j}) |Q|^{1-1/p} ||b||_{*}.$$

Thus we obtain

$$\begin{split} J_2 &\leq C \sum_{j=1}^{\infty} |2^{j+1} Q|^{1-p} (j\theta(2^{-j})|Q|^{1-1/p} ||b||_*)^p \\ &\leq C ||b||_*^p \sum_{i=1}^{\infty} j^p 2^{j(1-p)n} \theta^p (2^{-j}) \leq C ||b||_*^p \int_0^1 \frac{\theta^p(t) |\log t|^p}{t^{(1-p)n+1}} \, dt \leq C ||b||_*^p. \end{split}$$

This finishes the proof of Theorem 3.

Remark 2. In the case that T is a usual Calderón-Zygmund operator, $\theta(t) = t^{\varepsilon}$ for some $\varepsilon > 0$, we can see that the conditions of Theorem 3 hold with $n/(n+\varepsilon) . Thus the commutator <math>[b,T]$ is a bounded operator from $H_b^p(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$ whenever $n/(n+\varepsilon) . This is the main result in [10].$

Remark 3. When p = 1, the conditions of $\theta(t)$ in Theorem 3 coincide with those in Theorem 2.

Acknowledgement. The authors would like to express their gratitude to the referee for his very valuable comments and suggestions.

REFERENCES

- [1] J.-L. JOURNÉ, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer-Verlag, Berlin, 1983.
- [2] E. M. STEIN, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993.
- [3] K. Yabuta, Generalizations of Calderón-Zygmund operators, Studia Math., 82 (1985), 17–
- [4] T. QUEK AND D. YANG, Calderón-Zygmund-type operators on weighted weak Hardy spaces over \mathbb{R}^n , Acta Math. Sin. (Engl. Ser.), 16 (2000), 141–160.
- [5] M. CHRIST, Weak type (1,1) bounds for rough operators, Ann. of Math. (2), 128 (1988), 19–42
- [6] J. ALVAREZ, R. J. BAGBY, D. S. KURTZ AND C. PÉREZ, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195-209.
- [7] F. JOHN AND L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415–426.
- [8] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math., 129 (1972), 137–193.
- [9] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163–185.
- [10] J. ALVAREZ, Continuity properties for linear commutators of Calderón-Zygmund operators, Collect. Math., 49 (1998), 17–31.

DEPARTMENT OF MATHEMATICS BEIJING NORMAL UNIVERSITY BEIJING, 100875 P. R. CHINA