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ENDPOINT ESTIMATES FOR COMMUTATORS OF
CALDERON-ZYGMUND TYPE OPERATORS

ZONGGUANG Liu AND SHANZHEN Lu*

Abstract

In this paper, we establish some endpoint estimates for the commutator, [b, T], of a
class of Calderén-Zygmund type operator, such as the weak type L log L estimate, weak
type (H',L') estimate and some estimates in the Hardy type spaces associated with b,
where b € BMO(R").

1. Introduction

Calderén-Zygmund operators and their generalizations on Euclidean space
R" have been extensively studied [1-4]. In particular, Yabuta [3] introduced cer-
tain 6 type Calderén-Zygmund operators to facilitate his study of certain classes
of pseudo-differential operator. In this paper, we study the commutator of the
following so-called 0 type Calderén-Zygmund operator.

DEFINITION 1. Let 6 be a non-negative non-decreasing function on R* with
fol O(t)r|log t| dt < 0. A measurable function K on R" x R"\{(x,x) : xe R"}
is said to be a 6 type kernel if it satisfies

() [K(x, p)| < Clx=y[™" for x# y;

(i) 1K(r. ) — K(z )] + [K(px) — K(p,2)| < S =2/ =y)
for |x—z| <|x—y|/2. [ =¥l

5

Let T be a linear operator from % (R") into its dual ¥'(R"). We say T is a
0 type Calderon-Zygmund operator if

(1) T can be extended to be a bounded linear operator on L*(R");

(2) There is a 6 type kernel K such that T/ (x) = fsuppf K(x,y)f(y) dy for all
feCy(R") and for all x ¢ supp f, where Ci°(R") is the space of all infinitely
differentiable functions on R" with compact supports.
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Remark 1. The 0 type Calderén-Zygmund operator introduced in Definition
1 is a special case of operator which is introduced by Yabuta, so the results for
Yabuta’s operator also hold for our operator. The following lemma is a result
in [4].

Lemma 1. Let 0 be a non-negative non-decreasing function on Rt with
jol O(t)r ' dt < co. Let T be a 0 type Calderén-Zygmund operator. Then the
following conditions are equivalent:

(1) J"Q |Ta(x)| dx < Cllal| .« gn) for a € L*(R") with supp a = Q, a cube in R";

(2) T is a bounded operator from H'(R") to L'(R");

(3) T is a bounded operator from Ly (R") to BMO(R");

(4) T is a bounded operator from LY(R") to WLI(R") for some q € (1,0);

(5) T is a bounded operator on L1(R") for some q € (1,0);

(6) T is weak type (1,1).

In this paper, we establish some endpoint estimates for commutator of the
type Calderon-Zygmund operator:

[b, T1f (x) = b(x)Tf(x) — T(bf)(x),
where b € BMO(R").
Most the notation that we use is standard. Q will always denote a cube
with sides parallel to the axes, AQ (4 > 0) denotes the cube Q dilated by 4. For
a locally integrable function f, fp denotes the average of f on Q:fp =

(1/10]) Jo S (3) dy.

As usual, a function 4 : [0, 0) — [0,00) is said to be a Young function if
it is continuous, convex and increasing and satisfying 4(0) =0, A(f) — oo as
t — oo. We define the A-average of a function f over a cube Q by means of the
following Luxemberg norm:

|ﬁmyﬂﬂ%>0WaLAcﬁm>@sl}

The generalized Holder inequality

1
T@LMUMMmeﬂudﬂw

holds, where A be the complementary Young function associated to A.
It is well known that A4(7) ~ exp ¢ with A(7) = #(1 +log" 7). The maximal
function associated to A(z) = #(1 +log" ¢) was defined as

Mpiogrf(x) = sug 1140
X€E

The maximal function associated to A(¢) = ¢ is the well-known Hardy-Littlewood
maximal function. For 6 >0, we define the J-maximal function as M;(f) =
[(M(|f]°)]"° and the d-Sharp maximal function as

ME(f) = [ME(|f1°))°,

where M* be the well-known Fefferman-Stein’s Sharp maximal function:
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4 =su - )
M f(x) = ;ggd () —fol dy

Following the results in [6], the L? (1 < p < c0) boundedness for com-
mutator [b, T] is the corollary of the following Sharp function estimates.

LemMMmA 2. Let T be a 0 type Calderon-Zygmund operator and 1 < p < 0.
Then

MH(Tf)(x) < CM, f(x).

Proof. For any x € R" and any cube Q with x € Q, let xo be the centre of
0, and
S =0+ Fxrmoo =5 + 1o
By the L? boundedness of 7" and the H&lder inequality, we have

ailmionars (5[ maora) s (L[ vors) s cusm

When y e Q, we apply the condition of 6 to get that

TR = TR = [ 1K(2) = Ko 2] 16)] o

SC \ J 0(|y_x0|/|z_xo‘)|f(z)\dz
2/110\2/0

|Z—Xo|n

< E |2/+1Q|JH]Q|f(Z)|dZ

© 1/p
c3 -0 g ..,V )

J=1

IA

1
< cj 0(0)r" diM, f(x) < CM, f(x).
0
This implies that

1 )
107 ) [ T20) = ThGw)] s = My 1(2).
Thus, we obtain that

M (Tf)(x) < CM, [ (x).
This completes the proof of Lemma 2.

2. Weak type L log L estimates and weak type (H'! L') estimates

In this section, we establish firstly the weak type L log L estimates for [b, T]
by the method of the Sharp function estimates. Then we get the weak type
(H',L") estimates. Our main results are the following theorems
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THEOREM 1. Let b€ BMO(R") and T be a 6 type Calderén-Zygmund op-
erator. Then, there exists a positive constant C such that for each smooth function
f with compact support and for all 1 >0,

< Cl. j'f’(j)' <1 logt If‘gyﬂ) "

Following the ideas of Pérez [9], we only need prove the following two Sharp
function estimates.

[{xeR":|[b,T]f(x)

LemMa 3. Let b€ BMO(R"), T be a 0 type Calderon-Zygmund operator and
0<d<e<1. Then, there exists a positive constant C = Cs, > 0 such that for
each smooth function f with compact support,

M([b, T1f)(x) < ClIbIL(MA(TS)(x) + MLiog LS (x))-
Proof Let Q= Q(x r) be an arbltrary cube. Since 0 <J <& < 1 implies

||o<| - |ﬁ\ | <ou— B|° for o, € R, it is enough to show for some complex con-
stant ¢ = cp that there exists C = Cs > 0 such that

1 _ s 1/0 |
(@JQI[@TV@)—d dy) < Cl||,(Mo(Tf)(x) + Mpiog .f (x)).

Let f = frao + fxrroo =51 +/2. We write
b, T)f = (b—b)Tf —T((b—br)fi) — T((b—b20)S2).

If we pick ¢ =co = (T((b— b20)/2)), We have

(@ J .17 - dy)w

1 ) 0 1 1 g =
_C<|Q|JQb(y)—b2Q| T (»)| dy) +C(|Q|J [ T((b = b20) /1) ()] dy)

1 N 5 1/0
C(@ JQ IT((b = b20) 2)(») = (T((b = b2g) /5)) ] dy)
=L+5L+15.

To estimate I;, we use the Holder inequality with exponents r and ' where
1 <r<e/o:

h <C<|Q|J |b(y) — bag|™ dy)w <|(12|J \Tf ()] dy)w

< C|bl|. Mo (TS )(x) < C|[bl[, Mo(TS)(x)-
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Since T is of weak type (1,1) and 0 <J < 1, the Kolmogorov inequality

implies

1 ”T((b - b2Q>f1)XQ||L'5(R”
|Q|l/¢§—1
< IO (b = bao)ills ey = Cllb = baole .20/ f 1 g .20
< C||b||, ML 10g .f (x).

In the last inequality, we use the estimate that |[b — bgllex, 1 o < ClB., it is
equivalent to the inequality

1 J <|b<y>—bg|)
— | exp|———= ) dy < Cy,
101, P\cppl. )=

it is just a corollary of the well-known John-Nirenberg inequality. Then the
Jensen inequality and the Fubini theorem yield

I < JQ IT((b = bro)f5) () — (T((b — bap)f2)) | dy

L<Clo L < 1o T (b — bao) ol we

C
= 72] J J |K(y,w) — K(z,w)||(b(w) — bag) f(w)| dwdzdy
101" JoJo Jrm20
< oS oo e ) = bl o) s
101 Jolo = arigio X —w
‘ ' {
<C 02*].7J b(w)—>b w)| dw
3007 ) g ) ~ el
<C 0127/ 7J b(w) — by w)| dw
e LRI
+C 027 byjmp — brio| =————— J w)| dw
]; (27)|bysnig 2Q|‘2_,+1Q| 2,+1Q|f( )l
< CY 06 = brrigllesp L2101/ L 10g 2410 + €D, JORT)IB]L M (x)
= =
» 1
<CYJORT)Ibll Mpiog S (x) < CJ 0(1)t |log 2] dr||b||, ML 10g .1 (x)
‘ 0

1

J
< Clpll. ML iog LS ().

This completes the proof of Lemma 3.

Using a similar method, we can establish the following Sharp function esti-
mate and omit the details.
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LemMa 4. Let O <oa <1 and T be a 0 type Calderon-Zygmund operator.
Then, for any f e Cy(R") and x € R", there exists a constant C = C, > 0, such
that

M(TS)(x) < CMf(x).
Now, we establish the weak type (H'!,L') estimate for [b, T].

THEOREM 2. Let b e BMO(R") and T be a 6 type Calderén-Zygmund op-
erator. Then the commutator [b, T] is a bounded operator from H'(R") to weak
L'(R"), ie for any A >0, there exists a constant C >0, such that

{xeR":|[b,T)f(x)| > A} < (R")-

Proof. For any given f e H'(R"), by atomic decomposition we get f =
>4 4, where each a; be a (1, 00,0) atom with || |1 gny = Inf(32,[4]). We
may assume that f is a finite sum _, Agag with >, [ig| < 2|\f\|H (rmy- Once
Theorem 2 is proven for such f, for generdl f is the limit of this kind of f; (in
H'! norm or almost everywhere sense) where f; are finite sums having forms of
ZQ Zpap, Theorem 2 follows by a limiting argument, using the L*-boundedness
of [b, T]. Tt is convenient for us to assume that each Q (the supporting cube of
ag) in the given atomic decomposition of f is dyadic and Agp > 0.

For fixed 4> 0 and the finite collection of dyadic cube Q and associated
positive scalars Ap > 0 in the given atomic decomposition of f, by Lemma 4.1 in
[5], there exists a collection of pairwise disjoint dyadic cubes S such that

1) > dg<2"iS|, forall S;  (2) D IS| <D g
N o

=

<A
L*(R")
Denote E = [ J(2S, then |E| < Ci_]\|f||H1<Rn).
Set h(x) = Y530« s Aodg and g(x) = f(x) = h(x). By (3), Il zn <
and the L?(R") boundedness of [b, T] implies

B D 4lo Mo

O¢any S

n C
v e RMVE: 15, Tlg()] > 2/4}] < S5 Tlal ey < 53 oo

C
< IHQHLI(R”) = 7\|f||L1(R") = 7||f||H1(R")'
Thus, we only need prove following inequality
B C
[{x e R\E - |[b, TIh(x)| > 2/4}] < =1/ |11 e

For any fixed cube Q = Q(xgp,rp), by moments condition for ap we have



CALDERON-ZYGMUND TYPE OPERATORS 85
b Tlag() = | (b(x) = B(3)K (x. y)ao(y) d
— || (b) ~ Bo)[K(x, ) ~ Kix.x0)laot) dy

+ j K(x, y)(bo — b(»))ao(y) dy.
N

Since x € R"\E implies that x € R"\2Q for any cube Q in the given atomic
decomposition, by the smoothness condition of ¢ we get

b, T)h(x)| < ZZ —bol0tre/lx=xol) ;;ST«bg—b)aQ)(x)

|x —xp|"

=I11(x) + L(x).
By the condition of 6(f), we obtain
[{xe R"\E : I;(x) > 1/8}|

- ZZA J |b(x) — bolO(ro/|x — xQI) dx
S A5 0cs R™\20 [x — xo|"
EZ 3 AQEOC:J |b(x) — bolO(ro/|x — XQI)
Z S O0cs  =1J2%0\2/0 |x — xol"

b(x) — bo| dx
o 20 g g 0 ~ 0

%Z Z: i “Hilbll, < C”b” J (e og S 2
q

IA

A
~l 0
(]
'?M

IA

S Q<SS

The weak type (1,1) boundedness of T implies the following estimate

[{xe R"\E : h(x) > 1/8}| < Z Z Agll(b = bg)agll,i g

S QcS
= AZZ@QJ ~heldy
S QcS
Clol, b Cb
S QcS

This finishes the proof of Theorem 2.
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3. The estimates on Hardy type spaces

It is well known that the commutator [b,T] isn’t a bounded operator
from H' to L' even when T is a usual Calderén-Zygmund operator, but it is a
bounded operator from H} to L', where H] is a Hardy type space associated
with b € BMO(R"). In this section, we discuss this problem when 7T is a 6 type
Calderon-Zygmund operator. Let us give some notations.

DerFmNiTION 2. Let b be a locally integrable function, 0 < p < 1. It is said
that a bounded function « is a Hf(R") atom if it satisfies

(1) supp a = Q = Q(xp,r) for some r > 0; ) llall =g < |o|~"7;

n

(ajn%amdwzjx%uwuwkzomrwymhqup—m

It is said that a temperate distribution f belongs to HJ(R") if, in the
'(R") sense, it can be written as f = Y, Za;, where @; is a H](R") atom and
> 1l4il” < co. We define on Hj(R") the quasinorm

@ /p
1/ Ly = inf<Z ) :
=1

THEOREM 3. Let b e BMO(R") and T be a 6 type Calderén-Zygmund op-

1
0 (1)|log ¢|”
erator, 0 < p <1 and L -

bounded operator from H}(R") to L?(R").

2

dt < . Then the commutator [b,T] is a

Proof. By the condition of 0(z), it is easy to see that 0(¢) < 6”(¢) where
€ (0,¢) for some ¢€ (0,1). This implies that

1 L gp p
602 mgcjﬂ@@ELﬁ

{(1=p)n+1 0 {(1-p)n+1

1
J 0(¢)t ' |log ¢] dt < CJ
0 0

Thus we can use the results in Section 1, and get the LY (1 < g < o0)
boundedness of [b, T]. Hence, as in the proof of Theorem 2, we only need to
prove that, for any H/(R") atom a, there exists a constant C > 0 independent of
a, such that [, |[b, T]a(x)|” dx < C.

Let suppa = Q = Q(xo,r) and write

J [, Ta(x)|" dx < J b, T)a(x)|" dx +J [, T)a(x)|" dx
" 20 R™20
=Ji + /5.

Then, by the L7 boundedness of [b, T] and by the Holder inequality, we
have



CALDERON-ZYGMUND TYPE OPERATORS 87

rlq
J1 < |2Q|17P/q (JRn |[b, T]a(x)ld dx)
< €l jallf, e, < ClOI" 0 QP = €

and

0 o) p
ZJ b, T)a(x)|" dx < Z |27+ gt (J [[b, T]a(x)| dx) .
—1 J=1

2/+1Q\2/Q 2/t10\27Q
We write
| Tl s [ bx) = bol Ta(x) dv
2110\2/0 2/10\210

+J CT((b— be)a) ()] dx
2110\2i0

=Jo + Jn.
Since 2|y — xo| < |x — xo| when y e Q and x € 2/*1Q\2/Q with j =1,2,...,
we get

< j |b<x>—bgwj K (x, ) — K(x,x0)] la(y)]| dydx
210\210 0

()~ bol || 00 ) s

<

LHIQ\MQ
1
12710

< GO0 7||..

< o)

|, bt~ bolax
2it1Q

Using the moment vanishing condition of a, we have

j IK(x, ) — K(xx0)|[(3) — bol [a(y)]| dydx

Jn < J
27410\2/0 J 0

S CJ J 0(ly — x0|/|xn— Xo) |b(y) — bol |a(y)| dydx
210\20 [x — xo]

dx J
— | [6(y) — byl |a d
omrg [ 20 Pl ()]

- 1-1/p
< coR)|g) |Q|j Ib(x) — bo| dx

< C@(z—f)J

< o)l |bl,.
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Thus we obtain

< Cy o ree ol bl

J=1

< ol Sy < cpple | POy < e
Jj=1

This finishes the proof of Theorem 3.

Remark 2. In the case that T is a usual Calderén-Zygmund operator,
0(t) = t* for some ¢ > 0, we can see that the conditions of Theorem 3 hold with
n/(n+e¢) < p<1. Thus the commutator [b,T] is a bounded operator from
HJ(R") to L?(R") whenever n/(n+¢) < p<1. This is the main result in [10].

Remark 3. When p = 1, the conditions of 6(¢) in Theorem 3 coincide with
those in Theorem 2.
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