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DYNAMICS OF POLYNOMIAL MAPS ON C?> WHOSE ALL
UNBOUNDED ORBITS CONVERGE TO ONE POINT

TOMOKO SHINOHARA

Abstract

In this paper, we study a family of iteration of polynomial map on the 2-
dimensional complex Euclidean space C* whose all unbounded orbits converge to one
point of the line at infinity in the 2-dimensional complex projective space P2. In
particular, we show some sufficient condition for the Lebesgue measure of its Julia set to
be equal to 0.

1. Introduction

Recently, several authors have researched Hénon maps F, . which have
the form F, .(z,w) = (w,w?> —az+¢) for (a,c) e C* x C. From the works of
Bedford and Smillie, for instance [1], one can see that Hénon maps are the most
fundamental and essential among all polynomial automorphisms of C2.  One of
the reasons why Hénon maps are studied so well may be that:

(¥) All unbounded orbits of them converge to one point of the line /,
at infinity in P2

Therefore, their dynamics are very similar to those of polynomial maps in C.
On the other hand, it goes without saying that there are many other classes of
holomorphic or meromorphic dynamics of several complex variables to be under-
stood. In this paper, we focus our study on a family of polynomial maps F on
C? with the property () above.

We assume that F has only one super attracting fixed point p., on I, and F
sends all non-indeterminate points on /,, to p.

In section 2, we first prove that F is conjugate to the map in Theorem 2.1.
Let A, be the attracting basin of p, for F and K, the set of points whose for-
ward orbits are bounded in C2. Then, under some conditions, we can show that
K. is the complement of A, in C?; in particular, F has the property (x).

Now, we define the iteration {F°"} of F as usual, and denote by g (w) the
second component of F°"(zo,w). Let J;, be the set of points in the extended
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complex plane C where {g” } is not normal as a family of polynomials in one
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variable w. Then, in section 3, we verify that J;; is a non-empty compact subset
of C = C, and also we obtain some results on its connectivity.

In order to state our main results, we need a few preparations. Let
J. be the set of points where {F°"} is not normal, and set J.(R;)=
J.N{(z,w) e C? ||zl < R} for a given R; > 0. We write the complex Jacobian

matrix of F°" for n=1,2,..., as

N o))

cn(z,w)  du(z,w)

Then, we can prove the following: (For the definitions of terminology and no-
tation, see sections 3 and 4.)

MaIN RESULT 1 (THEOREM 4.6). If F satisfies the condition (F), then
J+(R1) = U\zo\gR{ZO} X Jzo~

MaAIN RESULT 2 (THEOREM 4.10). Let zy be an arbitrary point of C with
|zo| < Ri. We assume that the following three conditions are satisfied:

(1) There exist a constant 6 > 0 such that

inf inf |w,—w)| >0 for all n,
weJs, w' e Cy(zp)
where we have set w, = g’ (w),w, = gl (w') for we J,,w'e C,(z0), respectively.

(2) F satisfies the condition (F).

(3) Let Iy, = {(z,w) e C* | W=y (z), z€ A(R\)} be the leaf of S, which
converges to the leaf I, = {(z,w) € C* |lw=1, (z), z€ A(R\)} of J.(R) contain-
ing (zo,We). Then there exist real numbers o, ff with 0 < o <1< f such that

(1) |dus1(z0,wo)| > Bldn(z0, wo)l,

(ii) |cn,/(zoo>‘//$i (Z@))bnj(z()7M}0>|/|dnj(zf737 \:li (ch))dnj(ZmWO” <
Jor all sufficiently large integers n, j and for any wg e J,.

Then the 2-dimensional Lebesgue measure of J., is equal to 0. In particular,
the 4-dimensional Lebesgue measure of J.(R)) is equal to 0.

Here, we would like to remark that the conditions in Main results (except
for (ii) of Main result 2) correspond to the expandingness in dynamical theory of
polynomial maps in C. In [4; Corollary 3.29] Fornass and Sibony obtained the
same result as in our Main result 2 for some Hénon map F, . whose parameter |¢|
is sufficiently small and ¢ belongs to the set M := {c e C|P(z) := z*> + ¢ has an
attracting periodic point}. The main tool in their proof is the perturbation of
dynamical systems of P. The perturbation is useful to discussion of a dynamical
structure under small change of parameters of maps; however, it is not suitable
for general maps. Therefore we prove Main result 2 without using the perturba-
tion. In section 5, we give some concrete example of maps F, which satisfy the
assumption of Main result 2; and, their F, . appears as a special one of our F,.
Therefore, our proof of Main result 2 provides an alternative proof of [4; Corollary
3.29].
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2. Normal form of a map whose all unbounded orbits converge to
one point

Let us fix an affine coordinate system (z,w) of C* and a homogeneous co-
ordinate system [z : w : 7] of P>. Sometimes we identify C* with {[z: w : {] € P? |
t #0}.

We consider a polynomial map F(z,w) = (fy, fi) on C? with degree d, where
Jo, fi are polynomials of z,w and d := max{deg fy,deg f1}. As usual, the itera-
tion F°" of Fis defined by setting F°' = F and F°" = Fo F°"~1) for n>2. Also,
we put F°0 =id, the identity map. We extend F to a self-map of P? by setting

Flz:w:t) = [t%(z/t,w/t) - t°fi(z/t,w]1) - t].

Clearly, F is a rational map of P2. Set fy = tfy(z/t,w/1), f, = t*fi(z/t,w/1) and
lo={[z:w:{eP? | t=0}. A point p is called a super attracting fixed point
of Fif F(p)=p and the eigenvalues of the differential dF, of F at p are 0 and
a with |a| < 1. Define the map F: C* — C? by (z,w,1) — (fo,fl, 4).  Then we
have no F = For on C* except some analytic sets, where 7 : C* — {0} — P?
denotes the canonical projection. A point p € P? is said to be an indeterminate
point of F if F(p)=0 for some pomt pen'(p). In general, if p is an in-
determinate point of F, then ) N, F(N,) is not a singleton, where the intersection
is taken over all open nelghbourhoods N, of p. Hence, F is not continuous at
such a point p.

THEOREM 2.1. Assume that F has only one fixed point p., of the line I,
at infinity and that all non-indeterminate points on l,, are mapped to p, by
F. Then, up to a suitable conjugation of prOJeclwe linear tra}zsformation of P*, F
can be written in the form Flz:w: ] = [tfy : f, : t], where fo is a homogeneous
polynomial of degree d — 1 and f, has the form f; = wé + O(w?=") with no term
of z%. In particular, [0 :1:0] is a super attracting fixed point of F and [1:0 : 0]
is an indeterminate point of F.

Proof. By a suitable change of the coordinates, we can assume that p,, =

[0:1:0]. As a result, f, does not have the term of w? and £, (0, w,0) = w?. By
the assumption that all points of /., except indeterminate points are mapped to

Po by F, we have fo tfy, where f, is a homogeneous polynomial with degree
d—1. On the other hand, there exist roots o; of the equation f;(1,w,0) = 0.
Then, [1:;:0], i=1,...,d, are indeterminate points of F. By a change of the
coordinates which fixes [0 : 1 : 0], we can further assume that [1 : o : 0] =[1:0:0].
Then we see that f; does not have the term of z¢, as required. By a direct cal-
culation, one can check that eigenvalues of the differential of F at [0:1:0] are 0
and 0. Therefore, [0:1:0] is a super attracting fixed point of F. O

Notice that Hénon maps F, . belong to the category of maps in Theorem
2.1. In general, one knows that, for any non-indeterminate point p of /,,, there
is an open neighbourhood N, of p with F°"(N,) — p,, asn — oo. (See [7; §6.2].)
Hence, to see the dynamical structure near /.., it suffices to consider the behaviour
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of {F°"} near each indeterminate point on /,,. In case of Hénon maps F, ., it is
known [1] that any unbounded orbits converge to p,,. However, some F in The-
orem 2.1 has an unbounded orbit which converges to an indeterminate point on /.
For an example of such a map, we have F(z,w) = (w,w? — azw + ¢) with |a| > 1.
(For further detail, see [11].) These illustrate that the kinds of dynamical struc-
ture of F given by Theorem 2.1 are not unique. We would like to choose a map
F in Theorem 2.1 whose all unbounded orbits converge to p.,.
Throughout this paper, we always assume that F has the form

m | .d ny,n
(21) F(27 W) = (W , W +Zmn1+nzSd,nz<a’an|nzz 'w 2); Anny € C7

where m is a fixed integer with 1 <m < d and ny,n, are non-negative integers.
Under some additional conditions, it will be shown that all unbounded orbits of
F converge to p,,. (See the remark at the end of this section.)

Before proceeding, we need to introduce some notation and terminology.
For positive constants Ry, R, > 0 and g > 0 with R)' = R} — &, we define the
sets V., D and V, by

V. ={(z,w) e C? } lz| > Ry, |z] > |w|™ + &0},
(22) D={(zw) e C| 2| < Ry, Iwl < Ra},
Vi ={(z,w) € C*||w| > Ry, [w|" > |z — &0}

Let S be a subset of a given set X. Then we denote by S¢,dS,int(S) and S the
complement, the boundary, the interior and the closure of the set S in X, respec-
tively. Finally, for a given point (z,w)e C?, we put

(zuywy) = F"(z,w) for n=0,1,2,....

Then, by our assumption on F, we see that z, = (w, ;)" for n > 1.

PROPOSITION 2.2.  Assume that Zpy, in,—d|dnn,| < 1. Then, for sufficiently
large (resp. small) positive constants Ry and R, (resp. &), we have the following:
(1) There exists p > 1 such that (z1,wy) € Vi, |wi| > p|w| for any (z,w) € V..
(2) For each (z,w) € V_, we have that |zi| < |z| — ¢o; and hence (zn,, Wy,) €

V. UD for some ny. 3
(3) For every (z,w) € D and for every n > 1, we have that F°"(z,w) € V, UD.

Proof. (1) For a given point (z,w) e V,,
lwi| = |w? 4 Zaay,z" w"|
> || = Z|ap 2w
> || = Zldny | (9] + e0)" ]

= ‘W‘d - me+n2:d|anlngwmnl+n2| - Zmnl+n2<d|énlnzwmnl+n2|

d ~ _
= w[(1 = Zpny tny=al@nny| — Zmnl+nz<d|anlnzwml+n2 d|)~
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Set B=1— X, tny=dltnn,| > 0 and p = R§~!/2. By rechoosing a large R, and
a small &, if necessary, we can assume that p > 1 and Zmnl+nz<d|d,,l,,2w”’”‘*”rd\ <
B/2. Hence, |wi|=> |w|’8/2>|w|R¢'/2> p|w|. Moreover, since |w;|" >
prw|™ = p™|z1l,

m

|W1‘ —|Z]|—|—80me|21|—|Z]|—|—80Z(pm—l)|21|—|—8()>07

and so |wy|" > |z;] — . Combining this with |w;| > p|w| > pRy > R,, we have
that (z;,w) € V.

(2) For a given point (z,w) e V-, we have |z;| = |w|" and |z1] < |z| — &o.
Similarly, if (z;,w;) € V_ for each /=1,...,k—1, then |z| < |z| —kep. As a
result, for an arbitrary point (z,w) € V_, there exists a positive integer ny such
that (zy,, wn,) € V4 UD.

(3) For a given point (z,w)eD, |z|=|w|" <Ry =R, —¢& and so
(z1,w1) € V. UD. Hence, (3) follows immediately from (1). O

In the reminder of this paper, we always assume that Xy, sn,—d|dnn,| < 1 and
the constants Ry, Ry,&0 and p are chosen as in Proposition 2.2.

Here we recall quickly the definition of a normal family of maps. Let M
be a complex manifold. A sequence of maps f,: M — M, v=1,2,..., diverges
locally uniformly to infinity in M if for any compact subsets K and K of M there
is an integer vy such that f,(K)NK =0 for v>v,. A collection T of self-maps
of M is said to be normal if every infinite sequence of maps chosen from I' contains
either a subsequence which converges locally uniformly or a subsequence which
diverges locally uniformly to infinity in M. Now we can define the Fatou set N
and the Julia set J, of F as follows:

N, ={xeC? ] {F°"} is a normal family in a neighbourhood of x},
J. =C*\N,.

As an immediate consequence of the definition, we have the following:
PROPOSITION 2.3.  We have that F~'(N,) = N, and F(J,) < J,.

Remark. Since not all holomorphic maps in C? are open, the reverse in-
clusions do not hold in Proposition 2.3, in general.

In order to characterise N, and J,. we define some sets. Denoting by || - ||
the Euclidean norm on C?, we define

A ={(z,w) e C? | [|F°"(z,w)|| — o0 as n— o0},
K. ={(z,w) e C*|{F°"(z,w)},>o is bounded}.

We call A, the set of escaping points of F and K the set of non-escaping points
of F.



20 TOMOKO SHINOHARA

THEOREM 2.4. We have the following:

(1) 44 = Ufo F™(V,) and A is an open subset of Cc?.

( ) mn‘ 0 7’1(C2\I/_+)
(3) C* =4, UK, and K, is a closed subset of C*.
(4) 3K+ =J5.

Proof. By Proposition 2.2, for an arbitrary point (z,w) € C?, there exists a
positive integer ng such that F°"(z,w) € V. UD for n > ny. Together with (1) of
Proposmon 2.2, this implies that either ||F°"(z,w)|| — oo as n — oo or {F°"(z,w)}
is bounded. From these facts we have (1), (2) and (3).

(4) For an arbltrary point x € int(K.), one can choose a small open ball
B,(xo) := {xe€ C?||lx — xo|| < &} in such a way that B,(xo) <int(K;). By (2)
of Proposition 2.2, there exists some integer ny such that F°"(B,(x¢)) < D for
all n > ny. Consequently, {F°"} is a normal family in int(K.). On the other
hand, it is clear that {F°"} diverges to infinity on 4, and A, = N;. As a result,
0K, o J;. The reverse inclusion is clear. O

Remark By the proof of Proposition 2.2, for (z,w)e A;, we see that
[Wag1] > [wa|?B/2 for all sufficiently large . Hence Wit l/|Zns1] = Was1]/|wa]™ =

lwa|“"B/2 — o0 as n— oo, by d >m. As a result,

Ay ={(z,w) e C2|F°”(z,w) =F"(z:w:1]) > pey=1[0:1:0] as n — 0}.
In particular, it is reasonable that one calls A the attracting basin of p,, of F.
Moreover, we see that Ny = N, N{[z:w: 7 eP?|r+0}, where we have set

N+ ={p e P? | {F°"} is a normal family in a neighbourhood of p}.

3. The slice of Julia set for F

We define the functions f,(z,w),ga(z,w) and g’ (w) for fixed zp e C, by
setting

(fu(z,w), gu(z,w)) = F"(z,w), g% (W) = gn(z0,w) for n=0,1,2,....

Since F has the form as in (2.1), it follows that f,(z,w) = (gu—1(z,w))" for n > 1,
and g7 (w) is a polynomial in w of degree d”. The proof of the following prop-
osition is similar to that of Proposition 2.2 and hence is left to the reader:

PrOPOSITION 3.1. Let zy € C be an arbitrary point with |zo| < Ry. Assume
that there exist some point w and a non-negative integer ng such that |g” (w)| < Ra

for every n, 0 <n <no, and |g2°(w)| = Ry.  Then gl (w)| > plg? (w)| for all I = ny.

20

Now let us set
A, ={weC|lg!(w)] — o as n— w0}, K., ={weC|{g!(w)} is bounded},
N, ={weC | {g (w)} is a normal family in a neighbourhood of w},
40 - C\ Z0*
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We call N, and J;, the Fatou set and the Julia set of {g! }, respectively. Note
that N, is open and J-, is closed in C, respectively. In the proofs of Proposition
3.2, Theorems 3.4 and 3. 5, we will set E={we C’ lw| > Ra}.

PrOPOSITION 3.2.  Assume that |zo| < R;. Then we have the following:

(1) A, UK., = C and A,,NK., = 0.

(2) A, is an open connected subset of C and K., is a non-empty compact
subset of C C.

(3) 0K., = J-,.

(4) The connected components of the Fatou set N., except A, are simply
connected.

Proof. Using Proposition 3.1, we can check the assertion (1).
(2) We have now A., =~ (gfo)_l(E), A, is open and K, is a compact

20 n=1

subset of € contained in A(R,). Here we assert that (géf’o)fl(E) is connected.
Indeed, we assume that (gfo)fl(E) have a connected component which does not

contain E. Notice that this component is a bounded set. On the other hand,
g% is a holomorphic map from each connected component of (gfo)fl(E) onto E.
Then, by the maximum modulus principle we obtain a contradiction, proving our
assertion. Together with the fact that { (gfo)_l( )} is an 1ncreas1ng sequence, A,
is connected. Next, we assume that K., is empty. Then C= A:,; and hence,
there exists n such that g (E¢) < E and ¢! (E) < E, which means that [g” (w)| >
R, on C. This contradicts the fact that g7 (w) is a polynomial with degree d”
(and so it has a zero in C).

The proof of (3) is the same as that of (4) of Theorem 2.4.

(4) Since A, is connected by (2), so is 4., UJ-,. Therefore, each connected
component of (4., UJ.)¢ is simply connected. O

As an immediate consequence of Proposition 3.2, we have the following:

CoRrROLLARY 3.3. For an arbitrarily given point zy € C, it follows that

K. N{(z,w)eC? |z=z0} ={z0} x K:, and K., #0.

Using the notation g’(w) = dg(w)/dw for a given holomorphic function g(w), we
set

Colzo) = {we C|(g") (w) =0}, Clz0) = @l Colz0), é: U ézo

Next, we discuss the connectivity of J., in Theorems 3.4 and 3.5. Espe-
cially, one can see that J., is just like Julia set of a polynomial maps in C.

TurorReM 3.4. If C(z) < K.,, then A., is simply connected and J., is con-
nected.
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Proof. Since C(z) < K.

20

we see that {(gfo)fl(E)} is an increasing sequence

of simply connected sets; and hence, 4., = U;’C:l(gfo)_l(E) is simply connected.

Moreover, since 04., = J-,, J-, is connected. O

From now on, we set A(wo,r) = {we C||w—wo| <r} and A(r) = A(0,r).

TurorREM 3.5. If C(zy) < A.,, then J., is a totally disconnected set.

Proof. Set E, = (g!)"'(E) and U, = (¢)"'(A(Rz)). Since {E,} is an in-

creasing open covering of 4., and since C(z) is a compact subset of C contained
in A.,, there is an integer ny such that, for any n > n,,

E, > é(zo) and U, has d" connected components which are all simply
connected.

We denote the connected components of U, by U/, i,=1,2,...,d". By
gfo(é(zo)) c E, there are holomorphic maps # : A(Ry) — U, in=1,...,d",
that invert g7 and &,;"(A(Rz)) = U,". Using the assertion of Proposition 3.1, we

see that 21 (A(Ry)) = U™ = U,. Here, let us consider the set I' consisting of

n+1 n+1
all sequences {i,} = {i1,i,...} with i, e{l,...,d"}, n=1,2,.... Then
K,=N(@) " AR)) = U Nhr@aR)= U () U
n=ng {i,} el n=ng {i,} el n=ng

Observe that, for each sequence {i,} € I', there are two possibilities as follows:

(3.1) U > Un’f:ll for all n > ng; or

ukn U,é’jll = 0 for some integer k > ny and so ﬂ Ui =0.
n=ngo
Thus, in order to prove the theorem, it is enough to show that diam(U/"), the
diameter of U,", converges to 0 as n — oo. To this end, we first assert that for
n=ng

(3.2) there is a positive constant R} such that R} < R, and
9:,(U,11) = A(R)).

n+1

Indeed, assume the contrary. Then, passing to a subsequence if necessary, one
can find a sequence {y,} of points y, € U, and a sequence {R,,} of positive
constants such that R,, T Ry and g7 (v,)| = Ry,. On the other hand, choose a
positive constants R} (resp. p’) sufficiently close to the constants R (resp. p) such
that R, < R, and R, < p’R)}. Then, in exactly the same way as in the proof of
Proposition 2.2 (1), it can be shown that, if |g (w)| = R} for some point w, then
g_?oﬂ(w)\ > p'|lgZ (w)]. Since R,, converges to R, we have now some y, and R,
with Ry < R,, < Ra, |92 (yu)| = Ry,. Then |92 (y,)| = p'lgZ (va)l = p'R) > Ro.

This contradicts the fact that y, € U,", proving (3.2). Here, we fix arbitrary
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sequences {i,},{U/} and {h!r} satisfying (3.1). Then, by (3.2), it follows that
U”’J:I‘ < hir(A(R})) for all n > nyg. We are now in position to apply the follow-

ing lemma, by setting K, = U/», ®, =hl», V =A(R;) and L = A(R)):

Lemma 3.6 ([7; Lemma 6.3.7])). Let {K,} be a decreasing sequence of
compact subsets of C. Suppose that there exist a domain V < C, a compact set
L cV and a sequence of holomorphic maps ®, : V — C such that K, > ®,(V)
and @, (L) > K11 for all n. Then diam(K,) — 0 as n — oo and (,_, K, consists
of a single point.

Therefore, we conclude that diam(U/") — 0 as n — oo, and hence the proof
of the theorem is completed. O

We set J,(Ry) = J, N{(z,w) e C* ||zl < Ri}. Then it is easy to see the fol-
lowing theorem, which states the relation between J, and J,.

TeOREM 3.7. Jo(R1) 2 (< p {20} x T

4. The Lebesgue measure of Julia set

We start with the following:

DerINITION 4.1. The set X is foliated by the leaves {I.}.cc if
(1) X=U,.c I and
(2) I.Nl. =0 for any ¢,c’ € C with ¢ # ¢'.

In the following, we wish to show that J,(R;) can be foliated by the graphs
of holomorphic functions. To this end, we need the following:

DeriNITION 4.2 We say that F satisfies the condition () if the following
holds:

There exist a constant Ry > R, and a sequence {n;} of positive
2(w)| # Ry on C(z) for each n; and |z| < R},
where R{ is an arbltrary constant with R; < R{ < R; := R2 + &o.

()

In the following part of this paper, we always denote by R], Ry, Ry and {n;}
the same objects as in Definition 4.2.

Now, in the paper [4], Fornass and Sibony proved that if a Hénon map F, .
satisfies some conditions as well as the condition (%), then its Julia set is foliated
by complex submanifolds described as the graphs of holomorphic functions. By
improving their method, one can obtain more general results. In fact, just under
the condition (), we can show that J,(R;) can be foliated by the graphs of
holomorphic functions:
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THEOREM 4.3. Let zy be an arbitrary point of C with |zo| < Ry. Assume
that F satisfies the condition (). Then we have the following:

(1) J.(Ry) is foliated by the leaves {IW}MEJ , where each leaf l,,, can be
expressed_as 1, = {(z,w) e C* |w=1,,(2),|z] < Ri} by a holomorphic function
W, on A(Ry) with wy =, (z0). In particular, the leaf which contains (zo,wo) is
uniquely determined.

(2) {xpwo},mej is equicontinuous on A(Ry) and, for every &>0, a point
wo € J-,, there is an open neighbourhood U, of wy such that [, (2) = ¥(2)] <e
Jor all we U, NJ,, and for all z € A(Ry).

The proof of this theorem will be preceded by several lemmas. First, for a
given ¢ with |¢| = R, we set
Sy = {(z.w) € C*[|ga(z, )| = Ra, |2] < Ri}:;
Sy ={(z,w) € C*||gu(z,w)| = Ra, |z| < R{};
1= {2 e C|gulzw) = ¢, 2l < R}
ic" ={(z,w) e C? | gn(z,w) = ¢, |z| < R{}.

Lemma 4.4. S, and Sn/ have the structure of foliation.

Proof. From the condition (%) we see that |(g=) (wo)| #0 for every
(z0,w0) € Sy, Hence, by the implicit function theorem it follows that there are
holomorphic functions Yo/, k=1,...,d"%, defined on A(Rj) for every ¢ with
lc| = R, such that

d"i
I = kU {zw) e C*{w =y (2), ze A(R1)};
=1

~ d”j
= J{(z,w) e c? | w =y (z), ze A(R))}.
k=1

Moreover, for k=1,...,d" setting
I = {(z w) e C? |w=yli(z), zeA(R)},
l”/ ={(z,w) e C? |w=yl(z), ze A(R})},
we see that 17 (resp. I") has the structure of foliation w1th leaves {1y }k | (resp.

{ln,}k ') Therefore, S, = U e, " (resp. Sy, = U=z, Ic") can be foliated by
the leaves I (resp. l") ]

Next, let us recall the Hausdorff metric. Let X be a complete metric space
and H(X) the space of non-empty compact subsets of X. Then H(X) is a com-
plete metric space with respect to the Hausdorff metric dy defined as follows:

xeAd VE yeB X€4

du (A, B) :max{sup inil; d(x,y), sup 1nf d(x, y)} for 4,Be H(X),
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where d(-,-) denotes the metric on X. Considering the special case of X = C?
with the Euclidean distance, we have now the following:

LemmA 4.5. J(R;) = lim; .o, Sy,

Proof. For the given constants R; and R, as in Definition 4.2, we define
the sets _, D and V. by replacing R;, R, by Rl ,R, in (2.2). Then, all the re-

sults obtained in section 2 hold for ¥_,D and V.. In particular, we have that

I" =S, <8, < A(R) x A(Ry) for all n
by the proof of Proposition 2.2 and

0 ~ ~
(41) Ay =|JF"(Vy) and {F"(Vy)} is an increasing open covering of A..
n=0

First, we assert that: For any small ¢ > 0, there exists an integer ny such that

(4.2) sup inf |x—y| <e for n=>ny.
yeS, XeJi(R)

Indeed, consider the open covering {B.a(xX)}.cs (r) ©of J4+(Ri) and set
U=J.. TR B,)>(x), where B, (x) stands for the open ¢/2-ball with cen-
tered at x. Then U is an open neighbourhood of J.(R;) and, without loss of
generality, we may assume that U = {(z,w) € C? [|w] < R»}, because J. (R))
{(z,w) e C? ||w| < R>} and Ry < R,. Since J, = 04, by Theorem 2.4, there are
compact subsets Vi, V> of C? such that {(z,w)e C*||z| < Ry, |w| < R} NU®
=ViUVy, VicA, and V, cint(K,). Therefore, A, N{(z,w)e C? ||zl < Ry,
lw| < Ry} N U = ¥y is a compact subset of 4,. Thus, it follows from (4.1) that
there is an integer n( such that

F7"(Vi) 2 A, N{(z,w) e C*||z] <Ry, w| < R}NU* for n > ny.

Moreover, by (4.1) we see that

{(z,w) e C*||z]| < Ry, |w| = Ry} = V. <« F (V).
Thus

AF "(V)IN{(z,w) e C*||z] < Ri} <[44 N{(z,w) e C*||z| < R} N U,
which implies that
AF"(V)IN{(z,w) e C? ||zl < Ri} = U for every n> no.
Here, we assert that
(4.3) AF (V)] N{(z,w) e C*||z| < Ri}
={(z,w) € C*||wa| = Ro, |z4| < Ry, |2] < R }.

Indeed, it is clear from the continuity of F°" that OF (V)< F™(0V,). By (3)
of Proposition 2.2, we know that for (zg,wy) € D, if there exists some integer ng
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such that (z,,w,) € D (1 <n < ng) and (2,y, Wn,) € IZ, then |z,,| < Ri, |wu,| = Ra
and (z;,w;) € V. for all / > ny. Therefore,

F’”(o“IZr) N{(z,w) e C? | |z < f{]} < {(z,w) e C? | [wn| = R>, |zn] < R, |z| < Rl};
5[F’"(I7+)] N{(z,w) e C? | |z|] < Rl} c{(z,w) e C? | [wy| = Ry, |zn| < Ry, |z] <R1}.

To show the reverse inclusion we assume that there is a point (zg,wp) ¢
{O[F (V)] N{(z,w) e C* ||z| < Ri}} such that |w,| = Ra, |z,| < Ry, |20 < Ry.
Then, it follows that (zo,wo) € {F(V.)}N{(z,w) e C*||z| < Ri}; and hence,
there exists some open neighbourhood Up of (zo,wp) such that Uy c D,
F°"(Up) NV, =0. Moreover, for every (z,w) € Uy we have that |f,(z,w)| < Ry,
|gn(z,w)| < Ry. Choose here a disk A(wy,d) in C in such a way that {z} x
A(wo,0) = Up and we have that |g2 (w)| < Ry on A(wp,d) and lgZ (wo) =R,.
By the maximum modulus principle, we obtain a contradiction, proving (4.3).
Hence, we obtain that

Su={(z,w) € C*||ga(z,w)| = || = Ra, |z| < Ri}

= {(va) € C2 | |Wn| = RZ: |Zn| < Rh |Z| < Rl}
O ()N {(zw) € C 1l < Ri} < U.

This completes the proof of (4.2).
Next, we show the following: For any small ¢ > 0, there is an integer jj
such that

(4.4) sup inf |lx—y| <& for j=jo.
xeJ, (Ry) V€S

Assume the assertion were false. Then, there would be a positive constant &',

subsquences {xn,}, {yw} with x, €J(Ry), yu, €S, and points x. € J,(Ry),
Yoo € C* such that

(4.5) Xy, = Xoo, Yn; — Voo (J — 0) and
lensi; [[xn, = Il =[]0, =y, || > & for every j,
7
since Jy (R;) is compact and {y,} is bounded. On the other hand, since

Xo €J1(R)) = 04, we see that B(x.,&'/k)N A, # 0 whenever k is a positive
constant. It follows then from (4.1) that

B, /) F () 0,
B(xo,&'/k)NO[F" (V)| N{(z,w) € C* | |z| < R{} # 0,
B(xo,é'/k) ﬂS’ni #( for all sufficiently large n and ;.

In particular, for an arbitrarily given sequence {k, } = N with R, +¢&'/k,, < R]
and k,, 1 co, there exist points y, € B(xy,&[ky;) NS, for all sufficiently large ;.
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Let us denote by l~n ={(z,w) e C? ]w =,,(z), z€ A(R})} the leaf of 5,1 passing

through the point Y, as defined in the proof of Lemma 4.4, and write Vn, =

(ynj, ynj_) X = (xlﬁ,xgo) with coordinates. Then {i, } is uniformly bounded

and equicontinuous on A(R]), because S,, = A(R]) x A(R,). Now we assert the
following:

(4.6) Sy, NB(xy,6'/2) #0  for all sufficiently large ;.

Indeed, i |x) | < Ry, then [y, | < R for large j. Thus 3, € Sy N B(xx,&'/2).
So we have only to consider the case of |x! | = R;. Assume the contrary that
(4.6) were false. Then we have

( oovlllnj( @))¢B(x00’8/2) and ()7,:_7l//n/_()7r1l_))=)~/’n,EB(XOO,S///C,,.)

for all large j with Ry < |p yn | < Rj. This contradicts the equicontinuity of {y, }
at z=x., proving (4.6). On the other hand, it is clear that (4.6) contradicts
(4.5). Therefore, we have shown the assertion (4.4); and hence the proof of

Lemma 4.5 is completed. O

Proof of (1) of Theorem 4.3. By Lemma 4.5, for an arbitrarily given
point (zo, wo) € J1 (Ry), there is a sequence {(x,,,Vs,)} such that (x,,;,y,,) € Sy, and
(Xn;5¥n;) — (20, w0) as j — 0. We denote the leaf of S, containing the point
(Xn;s Vn;) bY b, = {(z,w) € C? |w =, (z ) ze A(R;)}, where ¥, is a holomorphic
function on A(R’) with yu, = W, (X, ) ‘as in the proof of Lemma 4.5. Then {v,}
is normal on A(R{), since it is bounded uniformly on it. Hence, we may assume
that some subsequence {x//jk} of {i,,} converges to a holomorphic function

on A(R{) uniformly on A(R;). Setting
Ly, = {(z,w) € C? |w=1,,(2), ze A(R))},

we see that (zo,wo) € Iy, = J1(R;) by Lemma 4.5. Here, we claim that the leaf
Iy, containing the point (zp,wy) is unique. Consider another sequence of points
(X Vn,) € Sn; with (X, 9,,,) — (20, o) as j — oo and denote the leaf of S, con-
talmng (X, Vu;) bY bny = {(z w) e C? ] w=1, [(2), z€ A(R))}. By the same rea-
soning as above, one can assume that there is a subsequence {wn '} of {wn}
which converges to some holomorphic function l//w0 on A(R}) umformly on A(R)).
Once it is shown that 1//,“) =1, on A(Ry), then the function v, is independent
of the choice of a sequence {(xy;,ys,)} converging to (zo,wo); and hence the leaf

Ly, is unique. Therefore, we have only to prove that ¥, =, . To this end,
let us set Y, = "b"fk —,, - Then {¥y} converges to the function ¥ := ¥, — ¥,

uniformly on A(R;). If there are infinitely many integers k such that y, =0,
then Y(z) =0. So we may assume that all {, are nowhere vanishing on A(R;)

by Lemma 4.4. Since Y(zp) = tﬁwl) (z0) = ¥, (20) = wo — wo = 0, Hurwitz’s theo-
rem implies that ¥(z) =0, as desired.

Wo
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Proof of (2) of Theorem 4.3. For given the point zy with |zg| < R;, we con-
sider the family of holomorphic functions {wm)}we 1, on A(R]) which define the
leaves {lm}woej of J.(Ry). Since {lﬁuo}nod is bounded umformly on A(R]),
we know that {lpw}on I is normal and equlcontmuous on A(R{). In particular,
there exists a subsequence Wi b e 7, of {¥, bye I, such that y; converges lo-
cally uniformly on A(R]) to some holomorphic function Y as wr — wy. More-
over, by the definition of foliation we know that every y,;, — ,, is nowhere van-
ishing on A(R;), and limy o (Y5, (20) — ¥, (20)) = hmk_,oc(wk —wp) = 0. Hence,
Hurwitz’s theorem implies that y =, on A(R]) and so ; converges to V¥,
uniformly on A(R;) as w— wo within J.,. Therefore, for every ¢ >0 and wg € J;,
there exists an open neighbourhood U, of wy such that |y, (z) — ¥y (z)| < e for
all we Uy, NJ, and for all ze A(R;). We have completed the proof of (2). [J

THEOREM 4.6. If F satisfies the condition (F), then J,(R)) = U‘ <Ry {z} x J..

Proof. To prove the theorem, we assume the contrary. Then there exists
a point (zo,wo) € J4(Ry) with wo ¢ J.,. Since J., = 04, = 0K., by Proposition
3.2, it follows that wy € int(K;,). According to Lemma 4.5, this means that there
exists a constant ¢ > 0 such that

dist((zo, wo), Su, N ({z0} x C)) >¢" for all j,

where dist(-,-) stands for the Euclidean distance on C?. On the other hand,
Lemma 4.5 also guarantees the existence of points (z,,,w,,) € S, converging to
(zo,wo). Then, just with the same argument as in the proof of (4.6), one may
obtain a contradiction, proving the theorem. O

From now on, we study quasi-conformal geometry of slices J.,,|zo| < R;.
Recall that a homeomorphism f of C onto itself is quasi-conformal if and only if f
has derivatives in L} (C) and df /0z = u(df /0z), where e L*(C) and ||u|,, <1

Let X be a subset of C and let T = C be an open disc containing 0.

DEerINITION 4.7. A map f: T x X — C is said to be a holomorphic motion
of X in C, if

(1) for any fixed x e X, fi(-) :=f(-,x) is a holomorphic map on T;

(2) for any fixed te T, f;(-) :=f(z,-) is injective on X; and

(3) fo(x) =x on X.

The following result is proved in [12] and it is appeared in [4; Theorem 3.27].

THEOREM 4.8. A holomorphic motion f : T x X — C of a set X = C can be
extended to a holomorphic motion f: T x C — C of C, and for each fixed te T
the map f, is a quasi-conformal homeomorphism of C onto C. Moreover, the map
f:T x C— C is continuous.

The proof of the following result is similar to that of [4; Theorem 3.28,
Corollary 3.29]:
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THEOREM 4.9. Assume that F satisfies the condition (F). Then all J.,,
|zo| < Ry, are mutually quasi-conformally equivalent. In particular, if some J., is
of Lebesgue measure 0, so is J., for every |zi| < R;.

Proof. By Theorem 4.3, we know that J, (R;) has the structure of foliation
whose leaves /; (W € Jy), are given by the graphs of holomorphic functions ; on
A(R{) with ;(0) =w. It is now an easy matter to check that the map

Y :A(R)) xJy — C defined by ¥(z,w) = y;(2)

w
is a holomorphic motion of Jy. Consequently, ¥ extends to a holomorphic
motion ¥ : A(R;) x C — C of C as in Theorem 4.8. Then, we have the first
statement of the theorem. Since the image of a set of Lebesgue measure 0 under
a quasi-conformal homeomorphism is of measure 0 (cf. [6; p150]), we have the
latter half. O

In the rest of this paper, we wish to give some sufficient condition for the
Lebesgue measure of J;(R;) to be equal to 0. To this end, we use a similar
argument as in [7; Theorem 1.4.6] for polynomial maps with expandingness on its
Julia set. Assume that F satisfies the condition (#). From Theorems 4.6 and
4.9, it is enough to show that for some zy with |zg| < R| the Lebesgue measure of
J., 18 0. For a given point zy € C with |zo| < R; and a point w, € J,, we have
(zn,wn) € J4(Ry) for n=10,1,2,..., by (3) of Proposition 2.2, Proposition 2.3 and
Theorem 4.6. Since J(R;) is compact in C 2, we may assume that some sub-
sequence {(z,,, Wy, )} of {(z4, ws)} converges to a point (z,,,w,) € J1(R1). In this
situation, we can prove the following:

THEOREM 4.10. Let zy be an arbitrary point of C with |z9| < Ry. We as-
sume that the following three conditions are satisfied:

(1) There exists a constant 0 >0 such that

inf inf |w,—w)| >0 for all n,
welt:, w’eC:,,(zo)
where we set w, = g (w), w, = gZ (w') for we J,, w'e C,(z0), respectively.

(2) F satisfies the condition (F).

(3) Let I, ={(z,w) e C*|w =y (z), ze A(R\)} be the leaf of S, which
converges to the leaf 1, = {(z,w)e C? lw=1, (2),z€ A(R))} of Ji(Ry) con-
taining (o, We ). Then there exist real numbers o, § with 0 < o < 1 < f such that

() Ide1 (z0w0)| > Blda(z0, wo), |

(ii) |Cn/(2307l//:5; (Zw))bn/(207W0>|/|dn,~(zao> »"2 (Zm))dn/<ZO7WO)| <o
for all sufficiently large integers n, j and for any wy € J,.

Then the 2-dimensional Lebesgue measure of J-, is equal to 0. In particular,
the 4-dimensional Lebesgue measure of J.(R)) is equal to 0.

Proof.  We divide the proof into several steps. We fix an arbitrary point
(zo,wo) € J£(Ry) with wg € J,,. By the assumption (1), one can obtain holo-
morphic functions A% on A(w,,,d) such that % (w,) = wo and g%] o hZ =1id on
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A(wy,;,0) for all j. By the proof of (3) of Proposition 2.2, we see that |z, | <
R; —&9. We may now assume that there are positive constants 6’,6” with 6" <

0" <6 such that
(4.7) A(Wn,,0) > A(wy,0") > A(wy,,6")  for all n;.

It should be remarked here the following: Since we always consider sub-
sequences of the given {n;} in our argument below, these constants 6',6” and &
may be chosen as small as we wish, without worrying about various subsequences
taken from {n;}.

First, we want to define a new graph associated with F. For this purpose,
setting A, = (gfo)'(wo), we consider the holomorphic functions 4, : A(1) — C de-
fined by

hu(w) = Znlhl (6w +wy) —wol/o, weA(l), forn=1,2,....
Then, each A, is injective on A(1), 4,(0) =0 and #/(0) = 1. Here, by the Koebe
distortion theorem we have

4&2 < |l (0w + wy) — wo| < 4&2
(1+7)" |2 (1 =7)7| ]

for all w with |w|=r< 1. Now, fix a point roe (0, 1) satisfying (1+r9)*/(1—r)* <
p, and recall that

[2al/|Au=1] = |du(z0, wo)|/|du-1(z0, wo)| > p for all large n
by our assumption (i) of (3). Then
0 0
}"()2 < V(; :
(L =r0)"|Znl (1 +10)"|An]
which implies that
hit (A(wy,dr9)) = Y (A(w,_1,0r0))  for all large n.

20

for all large n,

Therefore, replacing Jry by 0 again, we have
h2 (A(wn,0)) = h2 7 (A(wa-1,6)) and so g2 (w) — wy_1| <3 on hZ (A(wy,0))

for all large n. Here, as stated above, the constant 6 may be rechoosen so small
that

(g2 w)™ = zal = (g2 (W)™ = (W) ™| < 0/4  on A2 (A(wn,6))

20

for all large n. Thus, together with the fact z,, — z,,, we can assume that
(48) g )" = 2l < I(g2 )" = 20| + |y — 20| < 02

on hz (A(wy,,0))
for all large j. This, combined with the fact |z,| < R; — &), guarantees that

(4.9) (g%~ '(w))"| <Ry on hZ (A(wy,,0)) for all large j.

20
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Recall that g% o h% =id on A(wy,,6"). Then, setting ¢ (w) = f,,(z0, % (w)), we
have that

(4.10)  F°"i(zo, h2 (A(we,0"))) = {(z,w) € C? |z = Pl (w), we A(we,d')}.
By (4.7) and (4.9), it follows that
9% (0)] = | foy (20, 5 W) = [{gZ~ (RE (W)} < Ry on A(ws,8).
Thus, {4/} is normal on A(w,,,d"); so that one can assume that {¢/} converges

locally uniformly to a holomorphic function ¢, on A(w..,0"). Since z, = @/ (wy,)
and (z,,, Wn;) — (20, Wi ), We see that z,, = ¢, (w,). Let us set
I={(z,w) e C*|z=¢., (W), we A(ws,6")}; and
Iy ={(z,w) € C? ’ w=1yy(2), ze AR}, Ww=1y(ze),

where {y;} are holomorphic functions on A(R]) defining the leaves of foliation
{li}wes, of J.(Ri). We have now two cases to consider.

Case 1. ¢, is a non-constant map on A(w.,d").

For some small ¢ >0 and each weJ. , we define new holomorphic maps
o AL+ e1) X A(wy,0') — C by (1,w) = z=1¢_(w)+ (1 —1)z.; and
@y Al +61) X A(we,0') — C by (t,w) — w =1, 0 JZO(I, w).

For each fixed 7€ A(1 +¢;), the maps ¢fz()(t7 w) and ®;(z,w) of one variable w
will be denoted by ¢! (w) and @} (w), respectively. Then ¢, (w) = ¢Zlo(w) and by
(4.8)

|62, (w) = zeo| = [t] [, (W) — zoc| < (1 +21)e0/2 on A(weg,d)

for all € A(l1 +¢;). Combining this with |z,,| < R; — o, we see that [¢] ()| <
R; on A(w,,d") and the composition 1 o ¢§0 can be defined for each w e J. , by
replacing ¢; small. Setting

i ={(z,w) € C* |z = ¢! (W), w e Awy,0')},

t
20

we next study the slice of Ji(R;) by /. To this end, since J(R;) is
foliated as J(R;) = vaeJ_.‘ [, 1t is enough to consider the intersection /,N/; =

{(gL,(w), w) € C*| Djs(w) =w, we A(w,,d")} for each Wwe .. .

LemmA 4.11.  There exist an open neighbourhood U, of w,, positive con-
stants & with o(1 + &) < 1 and &' satisfying (4.7) such that the intersection I, N1
consists of a unique point for each we Uy, NJ., and for each te A(l+¢).

Proof. Without loss of generality, we may assume that the positive con-
stant ¢ satisfies the inequality o(1 +¢;) < 1. To prove the lemma it is enough
to show that the map @} has a unique fixed point in A(w.,d") for any given
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points W and ¢ contained in some open neighbourhoods of w,, and A(1), respec-
tively. Since ¥, (z.) = we, it is easy to see that @] (w..) = w., for all 7. First,
we assert that:

(4.11) For arbitrarily given e A(l +¢), there is a constant J,, 0 <J, < ',
such that @] has a unique fixed point in A(wy,d;).

To see this, we have only to show that the set of the roots of ®; (w)=w does
not accumulate at w = w,, for every € A(1 +¢;). Assume the contrary. Then,
since ®° (w) = w,,, there exists some non-zero 7€ A(1 + ¢;) such that @), (w) =

Wy

W, © ¢fo(w) = w by the identity theorem. Therefore,
(412) (lpr) (¢’0( ))(l¢zo (1 - I)ZOC) ( ) (l//w ) (¢AO( ))(¢Z())/(M})Z =1

Here, since w,, — Woo and ¢/ converges to ¢, locally uniformly on Alwy,,0"),
we see hmﬁoﬁ(géif) (We) = hmjﬁoo(qﬁ"é) (wn,). Taking this into account, we set
W = Wy in (4.12). Then, using the sequence {,’ } converging to \,, ~as in the

proof of Theorem 4.3, we have that
Jim (i, 1) () (85]) (w1 = 1.

Here, recall that g, (z,¥)/ (2)) =c, $2(w)=f(z0,h%(w)) and g% ohZ =id.
Then '

W

) = - L) JIE LD oy e e v )
and
(@2 (w) = [fa, (20, B (W] = [(gn,—1 (0, 2 () "]’
= mgu, 1 (20, W22 (W)]"" " [0gn,—1 (20, B2 (w)) /W] / (g22) (25 (w)).
On the other hand, since F°"(zg,w) = ((gf({fl(w))m,g?({(w)), we have

buy (2, w) = 0l(gu,—1(z,w)) "1 /0w, (45])'(w) = bu, (20, B2 (W) /i, (20, B (w)).

Consequently, since 0 < [f| <1+¢ and a(l +¢) < 1, we have

. cn,(zofvlpn/( ))bnj(Zo,Wo) 7 N/ nj\! _ 1
(4.13) Jim | U (2 ) oo 0) = lim |y, )(zw)(¢z(;)(wnj)l—m>a.

Thus, (4.13) contradicts the assumption (ii) of (3) of the theorem, proving (4.11).
Next, we claim that

There are positive constants 5, & with 0<d <6, 1 <& <e, such
(4.14) that @], (w) —w =0 has a unique solution w,, in A(w,,8) for all

te A(l + 81)
To prove our claim, we set m, =min{|®} (w)—w|||lw—wy|=06,}>0 by
using the constant J, in (4.11). For ¢ and teA( +¢;), it is easy to see that
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{(D";,I (w) —w} converges locally uniformly to @, (w)—w as f— ¢ and there is
a positive constant y, such that

(D (w) —w) — (D (w) —w)| <my/2 for all T A(,7,), weA(Wwy,0).

Wop Wop

Then, Hurwitz’s theorem guarantees that the equations ®} (w)—w =0 and
(0l ( v) —w = 0 have the same number of zeros in A(w,d;); and consequently,
Wy, is a unique solution of @/, (w) —w=0in A(w.,,6,). On the other hand, one
can choose some numbers 31 “and a finite sequence {tk}k , such that 0 < & <e,
e € A(1+8) and A(1 + &) Uk Aty y,,). Set 0 =minj <4 <; 0, /2. Then, it
is easily seen that these & and 6 satlsfy the requirements of (4.14).

Now, we set i, = min{|®], (w) —w]| | [w—ws|=0} > 0 for each 1 € A(1+4).
Then, by (2) of Theorem 4.3 and by the uniformly continuity of v, , there exist a
constant y, and an open neighbourhood U‘f,x of we such that

DL (w) — @, (w)| < [ 0 ¢ (w) — W, 0 gL ()]
+ [, 0 BL (W) =, © B (w)] < 1iy/2

for te A(t,7,), we Uf NJ., and we A(w.,,d). Just as in the proof of (4.14),
taking some & with 0 <é& <&, we consider a finite covering {A(fk,)?fk)};czl
of A(l+e&) and set U, = ﬂi 1U”C. Then, for arbitrarily given points

W,

weU,, NJ., and reA(l +¢), there is a point # € A(l +¢&) such that for
we Alwy, )
(@L(w) — w) — (D (w) — w)| = |®L(w) — DL (w)| < ritg, /2.

Weo

Wos >

Thus, applying again Hurwitz’s theorem, we can see by (4.14) that @} (w) —w =0

has a unique solution in A(wao,g). Therefore, for convenience, denoting such S,
& by &', ¢ again, we complete the proof of Lemma 4.11. O

Thanks to Lemma 4.11, one can now define a map
Wi :A(l+e)— C, t— Wu(r) for each we U, NJ.,
by requiring the condition
LNy = {(¢l, o Pa(2), Wi(1))} for all 1€ A(l +&).
So we obtain a map ¥ : A(1 +¢) x (U,,, NJ:_ ) — C given by ¥(t,w) = ¥y (7).

Lemma 4.12. WY :A(l+¢) x (U, NJ., ) — C is a holomorphic motion of
U,, NJ., in C.

Proof. From the proof of Lemma 4.11, one knows that
{(t,w) e A(1 +&1) X A(we,8") | Dy(t,w) = w} = {(t,w) [ re A(1 +&1),w = P (1)}
Hence, ¥y is a holomorphic function on A(1 +¢;) (cf. [9; Theorem 4.4.1)).
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To show that ¥; : U,,, NJ., — C is injective for each fixed 1 € A(1 + ¢;), we
assume that there are two distinct points w’, w” € U, NJ._ such that ¥,(w’) =
W¥,(w"), or equivalently, the two equations v, o ¢! (w) =w and ¥, o ¢] (W) =w
have the same solution, say w,, in A(w,,,d'). Then, setting z, = ¢ (w.), we have
Y, (24) = ws = ¥,,0(z,), and hence w’ = w” by our construction of the foliation
of J.(Ry). This is a contradiction, as desired. Moreover, since ®;(0,w) =
Up(z) =w for all we U, NJ, , it is easily checked that W(0,-) =id on
U,, NJ. . Therefore, all the conditions of Definition 4.7 are fulfilled for ¥. [

By a direct application of Theorem 4.8, ¥ extends to a map from
A(l4+&)xCto C, and ¥, : C — C, w— ¥|(W), is a quasi-conformal homeo-
morphism.

Before proceeding, we need to introduce some notation and terminology
from the measure theory. We refer the reader to books [2] or [13; §6]. Let V'
be a bounded measurable set in the n-dimensional Euclidean space Q and set

r(V) = sup m(V)/m(L),
Vel
where the supremum is taken over all cubes L whose boundaries are parallel to
the coordinates of Q, and m(-) is the n-dimensional Lebesgue measure. Let {V}}
be a sequence of measurable sets in Q. Then, {V}} is called regular at a point
peQifpeV forall k, Vi, — {p} as k — oo and there is a constant ¢ such that
r(Vx) = ¢ >0 for all k. Moreover, for a given regular sequence {V%} of closed
measurable sets at p, we define the constant

Livy = kh_r)l\}o m(ViNV)/m(Vy) if the limit on the right exists;

and set v(p) = inf Ity and V(p) = sup lyy,3,

where the infimum and the supremum are taking over all regular sequences {V}
of closed measurable sets at a point p. If y(p) =v(p), we denote this number
by v(p) and call it the density of V at pe Q. For later use, we shall recall the
following:

THEOREM 4.13 (Lebesgue density theorem). Let E be a measurable set.
Then v(p) =1 for almost every p e E. In particular, if v(p) <1 for all peV,
then V has the Lebesgue measure 0.

Now, in order to prove Theorem 4.10, it suffices to show that v(wj) < 1
for every wo € J;,. To this end, we introduce a regular sequence {V},} of closed
measurable sets as follows:

Va, ={w' e C|w' =hl(w), weA(w,,n)} for some n with 0 <z <4".

Note that wy € V;, for all j, since wy = hg{)(wnj) for all j. To see that {V, } is, in
fact, a regular sequence of measurable sets at wy, we need the following estimate.
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Lemma 4.14. For all sufficiently large j, there are constants M >0, 0 <
k<1 and 6" satisfying (4.7) such that: For each w, we A(w,,,d"), we have

(1) [(hz))" (w)/(hz)) (%) — 1] < M|w —Wl;

(2) (1 =w)|(hz) () (w — W)| < [hz) (w) — hz ()] < (1 + x)[(hz;)" (¥) (w — Ww)].

Proof. Put A*(w,,0') = A(w..,0') x A(wy,d") and consider the functions
H, (w,w) = (h;’g)’(w)/(hfg)’(ﬂ/), (w, W) € A*(w,,0"), for j=1,2,....

Then, applying the Koebe distortion theorem to the maps l;n/ : A(1) — C defined
by w— 4, [hZ (ow + Wp;) — Wo]/d, one can check that {H,,} is bounded uniformly
on A*(w.,d’) and so it is a normal family on it. Therefore, we can assume that
{H,,} converges locally uniformly to some holomorphic function H on A*(w.,0").
Moreover, since H, (w,w) = H(w,w) =1 for all we A(w.,d"),

G, (w, W) = (H,,(w,w) = 1)/(w—=w) and G(w,w) = (H(w,w)—1)/(w—w)

are well-defined holomorphic functions on the whole space A*(w.,,d’). (See, for
instance, [10; Corollary 6.26].) Here, we assert that there are positive constants
M, 8" with 6" < ¢’ such that

(4.15) |Gy, (w,W)| < M on A*(w,,,6") for all sufficiently large j,

which shows the inequality (1) of the lemma. Indeed, since G is a holomorphic

function on A? (we,d'), there are positive constants M and 6y, 5, with 0 < Jy <
01 < ¢’ such that

(4.16) |G(w, w)| < M on A(wy,d1) x A(we,,dp).

On the other hand, considering the Silov boundary of A(we,01) X A(w,d0), We
have

(4.17) (G, (w, )] < sup{|G,, (w, )| | w| = b1, [#] =0} on
AW ,01) X A(we,d0)

for every j. Since G, — G locally uniformly on [A(wy,d1) X A(we,d0)]\

{(w, W) e C? |w=w}, it follows then from (4.16), (4.17) that there is a constant
M >0 such that

|G, (W, W) <M on A(wy,01) X A(wy,,00) for all j.

J

As a result, by choosing a positive constant 6", 0 < §” < Jy, as in (4.7), we obtain
(4.15), as desired.
In order to prove the second inequality of the lemma, we first claim that:

(4.18)  hZ(A(w,,,6")) is a geometrically convex subset of C? for all
sufficiently large j.
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To this end, we set 42/ (w) := Ay [h% (0" W + wy,) — wo] /0" and denote by (h2)" the
second derivative of I;"é and Re(-) the real part. Once it is shown that

1+ Re(w(h2)"(w)/(h2)'(w)) >0 on A(l),
then it is well-known that A2/(A(1)) is convex and, so is 4% (A(w,;,0")). By (1)
of Lemma 4.14, we have now
(%) (w) = (%) (W)

w—w

< MS"|(h)' W)],  (R2)" (W) < MS"|(hZ) ()| on A(1).

20

Therefore, by rechoosing 6" with Md” < 1, if necessary, we can assume that
lw(h2)"(w)/(h2)) (w)| < M8" <1 on A(1), proving (4.18).

By (4.15), for each j and for each w,w e A(w,,,d"), there is a constant
M, (w,w) € C depending on (w,w) such that |M,, (w,w)| < M and

(4.19) (h2) (w) = (R2) (W) + My, (w, W) (w — W) (h2)' (W).
On the other hand, integrating (/2%))'(w) along the line segment w(s) =W -+s(w—Ww),

s € [0, 1], we have
1

5 () — 5 () = L (Y (3 + s(w — %)) (w — W) ds.

This combined with (4.19) yields that
% (w) = R ()] < [(h2)" (W) (w = W)|(1 + |w — W] M).

20
Since M depends neither on w, w nor on j, there are constants 0 < x < 1 and
0" > 0 satisfying (4.7) and (4.15) such that
lw— WM <20"M <k and |h2(w)—hZ(W)| < (1 +K)|(h§’(§)'(ﬂz)(w — W)

for all sufficiently large j and for all w,w e A(w,, ,0").
To complete the proof of the lemmd let us fix j and w, we A(w,,,0") arbi-
trarily, and consider the curves L, L with parameter s e [0, 1]:

L:s—is) = shZ/(w) + (1 —s)hZ(w), L:sw— u(s) = (h;’g)f1 o u(s).

Since A% (A(wy;,6")) is convex by (4.18) and since (h2)7" is a well-defined hol-
omorphic function on A% (A(wy;,6")), L is a line segment in A% (A(wy;,6")) and L
is a curve in A(w,,6"). Then, we see

1
0 )] = [ i = [l = [0 o 9 s

1
> |(h%)' (u(s0))] JO ju' ()] ds > | (h2))"(u(s0)) (w — W)l
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where s € [0, 1] is a point at which the continuous function |(A%)’ (u(s))| on [0,1]
attains its minimum. Since (/%)) (u(so)) = (hz) (W )+ My, (u ( 0), W) (u(so) — vT/)

(h2)' (W) by (4.19),
2(w) = B2 (W) = |(h2) () (w — w) {1 — [ My, (u(s0), W) (u(so) — )|}
> |(h2) (W) (w — w)|(1 = 2M8") = |(h2)' (W) (w — w)|(1 — x),

which implies (2) of the lemma. We have completed the proof of the lemma. [

By (2) of Lemma 4.14, we have
A(wo, (1= 1)n|(hz)) (wa))]) = Vi, = Alwo, (1+ 1)n|(hz)) (wn))])
for all sufficiently large j. Moreover, by our assumption (i) of (3), it follows that
(B2 (wa )l = 1/1(9%) (wo)| = 1/ldn,(z0,w0)| — 0 as j — oo.

Therefore, we see that { V), } is a regular sequence of closed measurable sets at wy.
Let us set, for a given small constant 0 < 5 < 5",

B={weA(ws,,n)| (¢, (w),w)eJ.(R)}, and
B, = {weA(wy,n) | (¢2(w),w) e J.(R)} for j=1,2,.
Here, we assert that
(420)  Wi(Uy, NJ.,) = B={we AQne.) | (6, (0), w) € L (R},

after rechoosing # small enough, if necessary. To show this assertion, we have
only to check the following: If / =/, intersects /; at (¢, (w),w) for we J. , we
A(We,7), then we U, NJ._ . Assume the contrary. Then we may choose se-
quences {7, } = R, {w, } = A(we,n,,) and {w, } = J., such thatn, |0 as k — oo,
(Zoes W) 7= (B, (W, ), Wy, ) € LN, and Wy, ¢ J-, N U, for all k. We take some
disk A(weo,&") = U, with w,, ¢ A(w,¢’) for every k. Then, for large k we have
that

s, () = )| = D, — i ()] = e — | — o — g, (2
=|wy — Wnk| — W —w, [ =& —n, >e/2.

Moreover, by the continuity of ¢, z, = qﬁéo( Wy ) = @ (W) = 20 as k — oo.
This contradicts the fact that {l//w b, es. 1S equicontinuous at z =z, by (2) of
Theorem 4.3, proving (4.20). e

In the remmder of the proof, we fix a constant # > 0 as in (4.20). Since
Wy €J., =04, , U, NN contains a non-empty open set. In particular, by the
fact that Y is a homeomorphlsm on C, one can find a non-empty open set W
with W< U, NN, and V(W) < A(woc,r]) Then it follows from (4.20) that
(¢, (w),w) € N+ for every w e W (W). Hence, there exists a positive constant
with m(B) < ny> —j. Moreover, since ¢ — ¢, locally uniformly on A(w..,0")
and N, is open in C?, there are a sequence {w }c A(wy,,n) and a positive
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constant u < 7, which does not depend on #;, such that (¢2/(w),w) e N for all

w e~A(w,§j7,u) and for all n;. So, without loss of generality, we can assume that

m(B,,) < mn* —y for all j and some positive constant 7.

Here, recall that (zo, Az (w)) € (F"”/)_l(qﬁf({(w), w) for we A(w.,,d") by (4.10),
(F°)~'(Ny) = N, by Proposition 2.3 and {z9} x Nz, = N N{(z,w) € C*|z = z}
for |zo| < Ry by Theorem 4.6. Then, if (¢2/(w),w) € Ny for some w e A(wy,;, 1),
we have (zg,hz(w)) € {z0} x N, = N,. Therefore, (zo,hz (w)) € Ny for all we

A(w,,, 1); and
(4.21) hZ(A(w, . 1) = VN JS - for all j.
Lemma 4.15.  For all sufficiently large j, there is a positive constant y such
that
m(V,, NJ,)/m(V,,) <1 -7

Proof. From the estimate (2) in Lemma 4.14, it follows that
m(h2(A(wy 1)) = 7 fl (0 ()L = )2, m(Vy) < m{gl(h2) (v, )| (1 + 1)}

On the other hand, by (1) of Lemma 4.14 and My < MJ"” < 1 as in the proof of
(4.18) we have that
(Y (w3 ) (2 (w,y) = 1] < M), = w,| < Moy

L= My < [(h%) (w,)/(h2)" (wn,) )]
for all sufficiently large j. These combined with (4.21) yield that

(V010 _ (V) = mEy(AGrs, . 9))

1_u2|(h?é)'(wn’j)|2(1 —x)? o wa — Mp)*(1 —x)* |
T ) )P+ ) T P>(1+1)?
for all sufficiently large j. O

By the lemma above, we conclude that v(wp) <1 for every wyeJs,.
Therefore, we have shown that 2-dimensional Lebesgue measure of J,, is equal to
0 in Case 1.

CASE 2. ¢ is a constant map on A(w.,d").

Since . (W) = 2o, We have ¢ (w) =z, on A(w,,d’) in this case; and con-
sequently, / = {z5} X A(Ws,0) and JL(R;) NI = {z,} x J-,. Therefore, without
using the notion of holomorphic motion, one can find a positive constant y with
m(B) < mnp? — 5. Then, repeating exactly the same argument as in Case 1, we can
show that Lemma 4.15 also holds in Case 2; so that v(wy) < 1. Hence, the 2-
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dimensional Lebesgue measure of J,, equals to 0, completing the proof of The-
orem 4.10 in Case 2. O

Remark. We used the condition (ii) of (3) of Theorem 4.10 only to show
the assertion (4.11). Clearly this is a very artificial condition, and so we would
like to remove it. However, we do not know at this moment whether it is really
needed or not.

By (2) of Proposition 2.2 and Theorem 4.10, we have the following:

COROLLARY 4.16.  Assume that F satisfies all the conditions in Theorem 4.10
and further assume that the critical values of F are not contained in J.. Then the
Lebesgue measure of Jy is equal to 0. In particular, the Lebesgue measure of J,
of Hénon maps are equal to 0.

5. An example
For an arbitrary constant a € C*, we consider a polynomial map
Fy(z,w) = (aw™, P(w) + aQ(z,w)) for (z,w)e C?,
of degree d >2 and P, Q are polynomials of the form
Pw) =w? + 0w, 0z, W) = Zomysmr <domy<dlmmz™ W™, apn, € C, m<d

Let us denote by cy,...,cs_1 the critical points of P and Jp, Kp the Julia set, the
filled-in Julia set of P, respectively. Throughout this section, we always assume
that:

(5.1) Each ¢; belongs to the immediate basin of some attracting periodic
point p; of P with period k;.

Notice that the Hénon map F, . = (aw,w? —az + ¢) considered in [4; Theorem
3.9, Corollary 3.29] is a typical example of such a map F, with d =2. Also,
consider a polynomial P(w) = w? + ¢ with d >3 and assume that P(w) has one
attracting fixed point. Then

L m d ny,,n
Fy(z,w) = (aw™, w® + ¢ — aZp, 1ny <d.my<az” W)

is an example of maps that satisfy all the conditions required above. Indeed, it
is a result due to Fatou that in this case the only one critical point 0 of P is in
the immediate basin of attrating fixed point.

Let ¢(z,w) = (az,w) and define the map F, by

Fy(z,w) = ¢ o F, 0 d(z,w) = (W™, P(W) + aQ(az, w)).

The main purpose of this section is to prove that all the conditions of Main
result 2 are satisfied for our F, if |a| is sufficiently small. For such a F,, there
exist constants R, < R) which are chosen as in Proposition 2.2. Set R; =
R} +¢p and R{ = (Rj)™ +¢&. In particular, since P is a polynomial of degree
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d > 2, we can assume that P°"(w) — oo for w¢ A(Ry). Since each ¢; belongs
to some attractive immediate basin, P is expanding on Jp and there are a Rie-
mannian metric on C, an open neighbourhood U of Jp and a constant y such
that [P'(w)| >y >1on U. Let {pF}f, = {P°*k=D(p,)}K, be the orbit of p; and
{UFF | the immediate basin of {p¥}~ | with pk € UK for 1<i<d-1. Then,
from the results due to Fatou and Sullivan, P has no other non-repelling cycles
and any other component V" of Kp\Jp is preperiodic to {U, k},C forl<i<d-1,;
this means that there are some integer / > 1 and U such that Pl v — UF is
surjective. On the other hand, we know that

(5.2) the number of components of Kp\Jp is 0,1,2 or oo [7; Theorem
4.2.16];

(5.3) Jp is connected and locally connected [7; Theorem 4.4.5].

Thus it follows from [7; Proposition 4.4.6] that for any constant & > 0 the number
of components of Kp\Jp whose diameters exceed ¢ is finite. Together with the
fact that any boundary of Fatou components are contained in Jp, one can see
that only finitely many components of Kp\Jp are not contained in U; except UL,
we say them U; for 1 <j<j;. We can now choose domains V" for 1 <i <d—1
and ¥; for 1 <j <ji with the following properties:

(i) pf eV < UL V= U

(ii) Poki (17") < vk and Pol( ~<) < VF for some integers /;, i and k;

(iii) C\{( U k’ UJ‘ /YU Ap} < U,
where Ap = Un>1(P°”) (A(R”) ) is the set of escaping points of P.

Let B2(zw) = (f,(2ow),Gu(2w), 2 00) = Gu(z000), B (20, w0) = (B, ).

From a direct calculation, we can see that g,(z,w) = P°"(w) + Q,(z,w) and all
the coefficients of f and Q, contain positive power of a. Under this situation,
we can prove the following lemmas.

LemMA 5.1.  There exists a constant daq > 0 such that, for 0 < |a| < ay,

(1) E, has attractive cycles {pl }k , of order ki;

( ) {ze C|lz| < |a|R}} x VK is contained in the immediate basin of p* for
l<i<d-1; B .

(3) {ze€ C| |z| < |a|R{'} x V; is mapped into some {z € C||z| <|a|R]'} x vk

1
by E' for 1 <j<ji.

Proof. Since the proofs of (1) and (2) are similar to those of [4; Lemma

3.10], we omit it. Since P°i(V;) = V¥, we can see that if |a| is small enough,
then
Falf({ze C’ |z| < |a|R]} x 17]) c{ze C| |z| < |a|R]} x VF,

1

for j=1,..., i, proving (3). O
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Since U is an open neighbourhood of Jp, there is an integer N with

aP M) N (A(R RY)) = U. Put §¢ = ¢(S,), where S, is the subset of C? defined as
in the proof of Theorem 4.3 for F,. Then we have the following:

Lemma 5.2.  There exists a constant ag > 0 such that, for 0 < |a| < ag and
Jor (zo,wo) € Sy, if wi,...,w e U and Wii1,..., W, € A(RY), then n—1 < N.

Proof. For any constant ¢ >0 and |zo| < |a|R], we can assume that
gVt (w) — PPNV (w)| <& on A(RY) by rechoosing ao small, if necessary.

Therefore, we can assume that (§3*')~ YA(RY)) = (PN) ' (A(RY)), proving our
assertion. 0

We set

U={zeC|ls < |a|R{’}><{ \(QQ QV)}
<

(x1,1) = DE*'(z9,wp)(2,1) for a € C with || < R} and 1

LEMMA 5.3. Assume that (zo,wy), (£;,w)) e U for 1 <1<n. Then there
exist constants ay >0, C > 0 not depending on n such that, if 0 < |a| < ay, then

() [x| < Cla |y < [yil;

(i) |yi| > CA', where we set \=(y+1)/2> 1.

Proof. The lemma is proved by Lemma 5.2 and similar discussion in [4;
Lemma 3.5], and hence we omit it. O

The proof of the following lemma is similar to that of [4; Proposition 3.4,
and hence is left to the reader:

LemMaA 5.4. There exist positive constants ag >0, C > 1, A > 1 such that if

- . b

zo,Wo), (z1,w;) € U for 1 <1 <nand DF’"(zy,wg) = n O , then |d,| > CA",
“ w d

leal < |dul/Ra, |an| < Cldy], |bal < Cla] |d,]. n

Finally, we show that F, satisfies all the conditions of Main result 2, if |q]
is sufficiently small. By Lemmas 5.1 and 5.4, the set Cn (zo) of critical Values of

g2 is not contained A(R%)\{( U Uk | Vk YU ( / ' V;)} for all |zo| < |a|R{. By
taking suitable domains V5, V; with U] ks pks Vk U>V;o V and repeating

1 1 1

the same discussion as in Lemma 5.1 to VK and Vi, we can see that

SN0 7)«(07)))

Ji(lalR)) = {z e C||z| <|alR]} x
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d-1 ki

~ — Ji—
Gz ¢ ARD\S (U U7F)u( 0 7) b for fal < iR,

i=1 k=1 j=1

after rechoosing a, small enough, if necessary, where we set J, (|a|R;) = ¢(J; (R)).
It shows that F, satisfies the condition (1). For R, with R, < R, < RY and R| =
R + &9 we can see that F, satisfies the condition (#). By Lemma 5.4 and the
proof of Lemma 5.3, F, also satisfies the condition (3). Therefore we have shown
that all the conditions of Main result 2 are fulfilled for F,.
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