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DYNAMICS OF POLYNOMIAL MAPS ON C 2 WHOSE ALL

UNBOUNDED ORBITS CONVERGE TO ONE POINT

Tomoko Shinohara

Abstract

In this paper, we study a family of iteration of polynomial map on the 2-

dimensional complex Euclidean space C 2 whose all unbounded orbits converge to one

point of the line at infinity in the 2-dimensional complex projective space P 2. In

particular, we show some su‰cient condition for the Lebesgue measure of its Julia set to

be equal to 0.

1. Introduction

Recently, several authors have researched Hénon maps Fa; c which have
the form Fa; cðz;wÞ ¼ ðw;w2 � azþ cÞ for ða; cÞ A C � � C . From the works of
Bedford and Smillie, for instance [1], one can see that Hénon maps are the most
fundamental and essential among all polynomial automorphisms of C 2. One of
the reasons why Hénon maps are studied so well may be that:

ð�Þ All unbounded orbits of them converge to one point of the line ly
at infinity in P2.

Therefore, their dynamics are very similar to those of polynomial maps in C .
On the other hand, it goes without saying that there are many other classes of
holomorphic or meromorphic dynamics of several complex variables to be under-
stood. In this paper, we focus our study on a family of polynomial maps F on
C 2 with the property ð�Þ above.

We assume that F has only one super attracting fixed point py on ly, and F
sends all non-indeterminate points on ly to py.

In section 2, we first prove that F is conjugate to the map in Theorem 2.1.
Let Aþ be the attracting basin of py for F and Kþ the set of points whose for-
ward orbits are bounded in C 2. Then, under some conditions, we can show that
Kþ is the complement of Aþ in C 2; in particular, F has the property ð�Þ.

Now, we define the iteration fF �ng of F as usual, and denote by gn
z0
ðwÞ the

second component of F �nðz0;wÞ. Let Jz0 be the set of points in the extended
complex plane ĈC where fgn

z0
g is not normal as a family of polynomials in one
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variable w. Then, in section 3, we verify that Jz0 is a non-empty compact subset
of C H ĈC , and also we obtain some results on its connectivity.

In order to state our main results, we need a few preparations. Let
Jþ be the set of points where fF �ng is not normal, and set JþðR1Þ ¼
Jþ V fðz;wÞ A C 2

�� jzjaR1g for a given R1 > 0. We write the complex Jacobian

matrix of F �n for n ¼ 1; 2; . . . ; as

DF �nðz;wÞ ¼ anðz;wÞ bnðz;wÞ
cnðz;wÞ dnðz;wÞ

� �
:

Then, we can prove the following: (For the definitions of terminology and no-
tation, see sections 3 and 4.)

Main result 1 (Theorem 4.6). If F satisfies the condition ðFÞ, then
JþðR1Þ ¼ 6jz0jaR

fz0g � Jz0 .

Main result 2 (Theorem 4.10). Let z0 be an arbitrary point of C with
jz0j < R1. We assume that the following three conditions are satisfied:

(1) There exist a constant d > 0 such that

inf
w A Jz0

inf
w 0 A ~CCnðz0Þ

jwn � w 0
nj > d for all n;

where we have set wn ¼ gn
z0
ðwÞ;w 0

n ¼ gn
z0
ðw 0Þ for w A Jz0 ;w

0 A ~CCnðz0Þ, respectively.

(2) F satisfies the condition ðFÞ.
(3) Let l

nj
wy ¼ fðz;wÞ A C 2

��w ¼ cnj
wy

ðzÞ; z A DðR1Þg be the leaf of Snj which

converges to the leaf lwy ¼ fðz;wÞ A C 2
��w ¼ cwy

ðzÞ; z A DðR1Þg of JþðR1Þ contain-
ing ðzy;wyÞ. Then there exist real numbers a, b with 0 < a < 1 < b such that

(i) jdnþ1ðz0;w0Þj > bjdnðz0;w0Þj,
(ii) jcnj ðzy;cnj

wy
ðzyÞÞbnj ðz0;w0Þj=jdnj

ðzy;cnj
wy

ðzyÞÞdnj ðz0;w0Þj < a

for all su‰ciently large integers n, j and for any w0 A Jz0 .
Then the 2-dimensional Lebesgue measure of Jz0 is equal to 0. In particular,

the 4-dimensional Lebesgue measure of JþðR1Þ is equal to 0.

Here, we would like to remark that the conditions in Main results (except
for (ii) of Main result 2) correspond to the expandingness in dynamical theory of
polynomial maps in C . In [4; Corollary 3.29] Fornæss and Sibony obtained the
same result as in our Main result 2 for some Hénon map Fa; c whose parameter jaj
is su‰ciently small and c belongs to the set M :¼ fc A C

��PðzÞ :¼ z2 þ c has an
attracting periodic pointg. The main tool in their proof is the perturbation of
dynamical systems of P. The perturbation is useful to discussion of a dynamical
structure under small change of parameters of maps; however, it is not suitable
for general maps. Therefore we prove Main result 2 without using the perturba-
tion. In section 5, we give some concrete example of maps Fa which satisfy the
assumption of Main result 2; and, their Fa; c appears as a special one of our Fa.
Therefore, our proof of Main result 2 provides an alternative proof of [4; Corollary
3.29].
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2. Normal form of a map whose all unbounded orbits converge to
one point

Let us fix an a‰ne coordinate system ðz;wÞ of C 2 and a homogeneous co-
ordinate system ½z : w : t� of P2. Sometimes we identify C 2 with f½z : w : t� A P2

��
t0 0g.

We consider a polynomial map F ðz;wÞ ¼ ð f0; f1Þ on C 2 with degree d, where
f0; f1 are polynomials of z;w and d :¼ maxfdeg f0; deg f1g. As usual, the itera-
tion F �n of F is defined by setting F �1 ¼ F and F �n ¼ F �F �ðn�1Þ for nb2. Also,
we put F �0 ¼ id, the identity map. We extend F to a self-map of P2 by setting

F ½z : w : t� ¼ ½td f0ðz=t;w=tÞ : td f1ðz=t;w=tÞ : td �:
Clearly, F is a rational map of P2. Set ~ff0 ¼ td f0ðz=t;w=tÞ; ~ff1 ¼ td f1ðz=t;w=tÞ and
ly ¼ f½z : w : t� A P2

�� t ¼ 0g. A point p is called a super attracting fixed point
of F if F ðpÞ ¼ p and the eigenvalues of the di¤erential dFp of F at p are 0 and
a with jaj < 1. Define the map ~FF : C 3 ! C 3 by ðz;w; tÞ 7! ð ~ff0; ~ff1; tdÞ. Then we
have p � ~FF ¼ F � p on C 3 except some analytic sets, where p : C 3 � f0g ! P2

denotes the canonical projection. A point p A P2 is said to be an indeterminate
point of F if ~FFð ~ppÞ ¼ 0 for some point ~pp A p�1ðpÞ. In general, if p is an in-
determinate point of F, then 7

Np
F ðNpÞ is not a singleton, where the intersection

is taken over all open neighbourhoods Np of p. Hence, F is not continuous at
such a point p.

Theorem 2.1. Assume that F has only one fixed point py of the line ly
at infinity and that all non-indeterminate points on ly are mapped to py by
F. Then, up to a suitable conjugation of projective linear transformation of P2, F
can be written in the form F ½z : w : t� ¼ ½tf0 : f1 : td �, where f0 is a homogeneous
polynomial of degree d � 1 and f1 has the form f1 ¼ wd þOðwd�1Þ with no term
of zd . In particular, ½0 : 1 : 0� is a super attracting fixed point of F and ½1 : 0 : 0�
is an indeterminate point of F.

Proof. By a suitable change of the coordinates, we can assume that py ¼
½0 : 1 : 0�. As a result, ~ff0 does not have the term of wd and ~ff1ð0;w; 0Þ ¼ wd . By
the assumption that all points of ly except indeterminate points are mapped to

py by F, we have ~ff0 ¼ tf0, where f0 is a homogeneous polynomial with degree
d � 1. On the other hand, there exist roots ai of the equation ~ff1ð1;w; 0Þ ¼ 0.
Then, ½1 : ai : 0�, i ¼ 1; . . . ; d, are indeterminate points of F. By a change of the
coordinates which fixes ½0 : 1 : 0�, we can further assume that ½1 : a1 : 0� ¼ ½1 : 0 : 0�.
Then we see that ~ff1 does not have the term of zd , as required. By a direct cal-
culation, one can check that eigenvalues of the di¤erential of F at ½0 : 1 : 0� are 0
and 0. Therefore, ½0 : 1 : 0� is a super attracting fixed point of F. r

Notice that Hénon maps Fa; c belong to the category of maps in Theorem
2.1. In general, one knows that, for any non-indeterminate point p of ly, there
is an open neighbourhood Np of p with F �nðNpÞ ! py as n ! y. (See [7; §6.2].)
Hence, to see the dynamical structure near ly, it su‰ces to consider the behaviour
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of fF �ng near each indeterminate point on ly. In case of Hénon maps Fa; c, it is
known [1] that any unbounded orbits converge to py. However, some F in The-
orem 2.1 has an unbounded orbit which converges to an indeterminate point on ly.
For an example of such a map, we have Fðz;wÞ ¼ ðw;w2 � azwþ cÞ with jaj > 1.
(For further detail, see [11].) These illustrate that the kinds of dynamical struc-
ture of F given by Theorem 2.1 are not unique. We would like to choose a map
F in Theorem 2.1 whose all unbounded orbits converge to py.

Throughout this paper, we always assume that F has the form

Fðz;wÞ ¼ ðwm;wd þ Smn1þn2ad;n2<dan1n2z
n1wn2Þ; an1n2 A C ;ð2:1Þ

where m is a fixed integer with 1am < d and n1; n2 are non-negative integers.
Under some additional conditions, it will be shown that all unbounded orbits of
F converge to py. (See the remark at the end of this section.)

Before proceeding, we need to introduce some notation and terminology.
For positive constants R1;R2 > 0 and e0 > 0 with Rm

2 ¼ R1 � e0, we define the
sets V�, D and Vþ by

V� ¼ fðz;wÞ A C 2
�� jzj > R1; jzj > jwjm þ e0g;

D ¼ fðz;wÞ A C 2
�� jzj < R1; jwj < R2g;

Vþ ¼ fðz;wÞ A C 2
�� jwj > R2; jwjm > jzj � e0g:

ð2:2Þ

Let S be a subset of a given set X. Then we denote by Sc; qS; intðSÞ and S the
complement, the boundary, the interior and the closure of the set S in X, respec-
tively. Finally, for a given point ðz;wÞ A C 2, we put

ðzn;wnÞ ¼ F �nðz;wÞ for n ¼ 0; 1; 2; . . . :

Then, by our assumption on F, we see that zn ¼ ðwn�1Þm for nb 1.

Proposition 2.2. Assume that Smn1þn2¼d jan1n2 j < 1. Then, for su‰ciently
large (resp. small ) positive constants R1 and R2 (resp. e0), we have the following:

(1) There exists r > 1 such that ðz1;w1Þ A Vþ; jw1j > rjwj for any ðz;wÞ A Vþ.
(2) For each ðz;wÞ A V�, we have that jz1j < jzj � e0; and hence ðzn0

;wn0
Þ A

Vþ UD for some n0.
(3) For every ðz;wÞ A D and for every nb 1, we have that F �nðz;wÞ A Vþ UD.

Proof. (1) For a given point ðz;wÞ A Vþ,

jw1j ¼ jwd þ San1n2z
n1wn2 j

b jwjd � Sjan1n2zn1wn2 j

b jwjd � Sjan1n2 jðjwj
m þ e0Þn1 jwjn2

¼ jwjd � Smn1þn2¼d jan1n2wmn1þn2 j � Smn1þn2<d j~aan1n2wmn1þn2 j

¼ jwjdð1� Smn1þn2¼d jan1n2 j � Smn1þn2<d j~aan1n2
wmn1þn2�d jÞ:
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Set b ¼ 1� Smn1þn2¼d jan1n2
j > 0 and r ¼ Rd�1

2 b=2. By rechoosing a large R2 and
a small e0, if necessary, we can assume that r > 1 and Smn1þn2<d j~aan1n2wmn1þn2�d j <
b=2. Hence, jw1jb jwjdb=2b jwjRd�1

2 b=2b rjwj. Moreover, since jw1jm >
rmjwjm ¼ rmjz1j,

jw1jm � jz1j þ e0 b rmjz1j � jz1j þ e0 ¼ ðrm � 1Þjz1j þ e0 > 0;

and so jw1jm > jz1j � e0. Combining this with jw1j > rjwj > rR2 > R2, we have
that ðz1;w1Þ A Vþ.

(2) For a given point ðz;wÞ A V�, we have jz1j ¼ jwjm and jz1j < jzj � e0.
Similarly, if ðzl ;wlÞ A V� for each l ¼ 1; . . . ; k � 1, then jzkj < jzj � ke0. As a
result, for an arbitrary point ðz;wÞ A V�, there exists a positive integer n0 such
that ðzn0

;wn0Þ A Vþ UD.
(3) For a given point ðz;wÞ A D; jz1j ¼ jwjm aRm

2 ¼ R1 � e0 and so
ðz1;w1Þ A Vþ UD. Hence, (3) follows immediately from (1). r

In the reminder of this paper, we always assume that Smn1þn2¼d jan1n2 j < 1 and
the constants R1;R2; e0 and r are chosen as in Proposition 2.2.

Here we recall quickly the definition of a normal family of maps. Let M
be a complex manifold. A sequence of maps fn : M ! M, n ¼ 1; 2; . . . ; diverges
locally uniformly to infinity in M if for any compact subsets K and ~KK of M there
is an integer n0 such that fnðKÞV ~KK ¼ j for nb n0. A collection G of self-maps
of M is said to be normal if every infinite sequence of maps chosen from G contains
either a subsequence which converges locally uniformly or a subsequence which
diverges locally uniformly to infinity in M. Now we can define the Fatou set Nþ
and the Julia set Jþ of F as follows:

Nþ ¼ fx A C 2
�� fF �ng is a normal family in a neighbourhood of xg;

Jþ ¼ C 2nNþ:

As an immediate consequence of the definition, we have the following:

Proposition 2.3. We have that F�1ðNþÞHNþ and F ðJþÞH Jþ.

Remark. Since not all holomorphic maps in C 2 are open, the reverse in-
clusions do not hold in Proposition 2.3, in general.

In order to characterise Nþ and Jþ we define some sets. Denoting by k � k
the Euclidean norm on C 2, we define

Aþ ¼ fðz;wÞ A C 2
�� kF �nðz;wÞk ! y as n ! yg;

Kþ ¼ fðz;wÞ A C 2
�� fF �nðz;wÞgnb0 is boundedg:

We call Aþ the set of escaping points of F and Kþ the set of non-escaping points
of F.
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Theorem 2.4. We have the following:
(1) Aþ ¼ 6y

n¼0
F�nðVþÞ and Aþ is an open subset of C 2.

(2) Kþ ¼ 7y
n¼0

F�nðC 2nVþÞ.
(3) C 2 ¼ Aþ UKþ and Kþ is a closed subset of C 2.
(4) qKþ ¼ Jþ.

Proof. By Proposition 2.2, for an arbitrary point ðz;wÞ A C 2, there exists a
positive integer n0 such that F �nðz;wÞ A Vþ UD for nb n0. Together with (1) of
Proposition 2.2, this implies that either kF �nðz;wÞk ! y as n ! y or fF �nðz;wÞg
is bounded. From these facts we have (1), (2) and (3).

(4) For an arbitrary point x0 A intðKþÞ, one can choose a small open ball
Beðx0Þ :¼ fx A C 2

�� kx� x0k < eg in such a way that Beðx0ÞH intðKþÞ. By (2)
of Proposition 2.2, there exists some integer n0 such that F �nðBeðx0ÞÞHD for
all nb n0. Consequently, fF �ng is a normal family in intðKþÞ. On the other
hand, it is clear that fF �ng diverges to infinity on Aþ and Aþ HNþ. As a result,
qKþ I Jþ. The reverse inclusion is clear. r

Remark. By the proof of Proposition 2.2, for ðz;wÞ A Aþ, we see that
jwnþ1jbjwnjdb=2 for all su‰ciently large n. Hence, jwnþ1j=jznþ1j ¼ jwnþ1j=jwnjmb
jwnjd�mb=2 ! y as n ! y, by d > m. As a result,

Aþ ¼ fðz;wÞ A C 2
��F �nðz;wÞ ¼ F �nð½z : w : 1�Þ ! py ¼ ½0 : 1 : 0� as n ! yg:

In particular, it is reasonable that one calls Aþ the attracting basin of py of F.
Moreover, we see that Nþ ¼ ~NNþ V f½z : w : t� A P2

�� t0 0g, where we have set

~NNþ ¼ f p A P2
�� fF �ng is a normal family in a neighbourhood of pg:

3. The slice of Julia set for F

We define the functions fnðz;wÞ; gnðz;wÞ and gn
z0
ðwÞ for fixed z0 A C , by

setting

ð fnðz;wÞ; gnðz;wÞÞ ¼ F �nðz;wÞ; gn
z0
ðwÞ ¼ gnðz0;wÞ for n ¼ 0; 1; 2; . . . :

Since F has the form as in (2.1), it follows that fnðz;wÞ ¼ ðgn�1ðz;wÞÞm for nb 1,
and gn

z0
ðwÞ is a polynomial in w of degree d n. The proof of the following prop-

osition is similar to that of Proposition 2.2 and hence is left to the reader:

Proposition 3.1. Let z0 A C be an arbitrary point with jz0jaR1. Assume
that there exist some point w and a non-negative integer n0 such that jgn

z0
ðwÞj < R2

for every n, 0an< n0, and jgn0
z0
ðwÞjbR2. Then jglþ1

z0
ðwÞj> rjgl

z0
ðwÞj for all lbn0.

Now let us set

Az0 ¼ fw A ĈC
�� jgn

z0
ðwÞj ! y as n ! yg; Kz0 ¼ fw A ĈC

�� fgn
z0
ðwÞg is boundedg;

Nz0 ¼ fw A ĈC
�� fgn

z0
ðwÞg is a normal family in a neighbourhood of wg;

Jz0 ¼ ĈC nNz0 :
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We call Nz0 and Jz0 the Fatou set and the Julia set of fgn
z0
g, respectively. Note

that Nz0 is open and Jz0 is closed in ĈC , respectively. In the proofs of Proposition
3.2, Theorems 3.4 and 3.5, we will set E ¼ fw A ĈC

�� jwj > R2g.

Proposition 3.2. Assume that jz0jaR1. Then we have the following:
(1) Az0 UKz0 ¼ ĈC and Az0 VKz0 ¼ j.
(2) Az0 is an open connected subset of ĈC and Kz0 is a non-empty compact

subset of C H ĈC .
(3) qKz0 ¼ Jz0 .
(4) The connected components of the Fatou set Nz0 except Az0 are simply

connected.

Proof. Using Proposition 3.1, we can check the assertion (1).
(2) We have now Az0 ¼ 6y

n¼1
ðgn

z0
Þ�1ðEÞ, Az0 is open and Kz0 is a compact

subset of ĈC contained in DðR2Þ. Here we assert that ðgn
z0
Þ�1ðEÞ is connected.

Indeed, we assume that ðgn
z0
Þ�1ðEÞ have a connected component which does not

contain E. Notice that this component is a bounded set. On the other hand,
gn
z0

is a holomorphic map from each connected component of ðgn
z0
Þ�1ðEÞ onto E.

Then, by the maximum modulus principle we obtain a contradiction, proving our
assertion. Together with the fact that fðgn

z0
Þ�1ðEÞg is an increasing sequence, Az0

is connected. Next, we assume that Kz0 is empty. Then ĈC ¼ Az0 ; and hence,
there exists n such that gn

z0
ðEcÞHE and gn

z0
ðEÞHE, which means that jgn

z0
ðwÞjb

R2 on C . This contradicts the fact that gn
z0
ðwÞ is a polynomial with degree d n

(and so it has a zero in C ).
The proof of (3) is the same as that of (4) of Theorem 2.4.
(4) Since Az0 is connected by (2), so is Az0 U Jz0 . Therefore, each connected

component of ðAz0 U Jz0Þ
c is simply connected. r

As an immediate consequence of Proposition 3.2, we have the following:

Corollary 3.3. For an arbitrarily given point z0 A C , it follows that

Kþ V fðz;wÞ A C 2
�� z ¼ z0g ¼ fz0g � Kz0 and Kz0 0j:

Using the notation g 0ðwÞ ¼ dgðwÞ=dw for a given holomorphic function gðwÞ, we
set

~CCnðz0Þ ¼ fw A C
�� ðgn

z0
Þ0ðwÞ ¼ 0g; ~CCðz0Þ ¼ 6

y

n¼1

~CCnðz0Þ; ~CC ¼ 6
jz0jaR1

~CCðz0Þ:

Next, we discuss the connectivity of Jz0 in Theorems 3.4 and 3.5. Espe-
cially, one can see that Jz0 is just like Julia set of a polynomial maps in C .

Theorem 3.4. If ~CCðz0ÞHKz0 , then Az0 is simply connected and Jz0 is con-
nected.
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Proof. Since ~CCðz0ÞHKz0 , we see that fðgn
z0
Þ�1ðEÞg is an increasing sequence

of simply connected sets; and hence, Az0 ¼ 6y
n¼1

ðgn
z0
Þ�1ðEÞ is simply connected.

Moreover, since qAz0 ¼ Jz0 , Jz0 is connected. r

From now on, we set Dðw0; rÞ ¼ fw A C
�� jw� w0j < rg and DðrÞ ¼ Dð0; rÞ.

Theorem 3.5. If ~CCðz0ÞHAz0 , then Jz0 is a totally disconnected set.

Proof. Set ~EEn ¼ ðgn
z0
Þ�1ðEÞ and Un ¼ ðgn

z0
Þ�1ðDðR2ÞÞ. Since f ~EEng is an in-

creasing open covering of Az0 and since ~CCðz0Þ is a compact subset of ĈC contained
in Az0 , there is an integer n0 such that, for any nb n0,

~EEn I ~CCðz0Þ and Un has d n connected components which are all simply
connected.

We denote the connected components of Un by U in
n , in ¼ 1; 2; . . . ; d n. By

gn
z0
ð ~CCðz0ÞÞHE, there are holomorphic maps hin

n : DðR2Þ ! U in
n , in ¼ 1; . . . ; d n,

that invert gn
z0

and hin
n ðDðR2ÞÞ ¼ U in

n . Using the assertion of Proposition 3.1, we

see that hinþ1

nþ1ðDðR2ÞÞ ¼ U
inþ1

nþ1 HUn. Here, let us consider the set G consisting of
all sequences fing ¼ fi1; i2; . . .g with in A f1; . . . ; d ng, n ¼ 1; 2; . . . : Then

Kz0 ¼ 7
y

n¼n0

ðgn
z0
Þ�1ðDðR2ÞÞH 6

fing AG
7
y

n¼n0

hin
n ðDðR2ÞÞ ¼ 6

fing AG
7
y

n¼n0

Uin
n :

Observe that, for each sequence fing A G, there are two possibilities as follows:

U in
n IU

inþ1

nþ1 for all nb n0; or(3.1)

U ik
k VU

ikþ1

kþ1 ¼ j for some integer kb n0 and so 7
y

n¼n0

U in
n ¼ j:

Thus, in order to prove the theorem, it is enough to show that diamðU in
n Þ, the

diameter of U in
n , converges to 0 as n ! y. To this end, we first assert that for

nb n0

(3.2) there is a positive constant R 0
2 such that R 0

2 < R2 and
gn
z0
ðU inþ1

nþ1 ÞHDðR 0
2Þ:

Indeed, assume the contrary. Then, passing to a subsequence if necessary, one
can find a sequence fyng of points yn A U

inþ1

nþ1 and a sequence fRyng of positive
constants such that Ryn " R2 and jgn

z0
ðynÞjbRyn . On the other hand, choose a

positive constants R 0
2 (resp. r 0Þ su‰ciently close to the constants R2 (resp. r) such

that R 0
2 < R2 and R2 < r 0R 0

2. Then, in exactly the same way as in the proof of
Proposition 2.2 (1), it can be shown that, if jgn

z0
ðwÞjbR 0

2 for some point w, then

jgnþ1
z0

ðwÞjb r 0jgn
z0
ðwÞj. Since Ryn converges to R2, we have now some yn and Ryn

with R 0
2 < Ryn < R2, jgn

z0
ðynÞjbRyn . Then jgnþ1

z0
ðynÞjb r 0jgn

z0
ðynÞjb r 0R 0

2 > R2.

This contradicts the fact that yn A U
inþ1

nþ1 , proving (3.2). Here, we fix arbitrary
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sequences fing; fU in
n g and fhin

n g satisfying (3.1). Then, by (3.2), it follows that

U
inþ1

nþ1 H hin
n ðDðR 0

2ÞÞ for all nb n0. We are now in position to apply the follow-

ing lemma, by setting Kn ¼ U in
n , Fn ¼ hin

n , V ¼ DðR2Þ and L ¼ DðR 0
2Þ:

Lemma 3.6 ([7; Lemma 6.3.7]). Let fKng be a decreasing sequence of
compact subsets of C . Suppose that there exist a domain V HC , a compact set
LHV and a sequence of holomorphic maps Fn : V ! C such that Kn IFnðVÞ
and FnðLÞIKnþ1 for all n. Then diamðKnÞ ! 0 as n ! y and 7y

n¼1
Kn consists

of a single point.

Therefore, we conclude that diamðU in
n Þ ! 0 as n ! y, and hence the proof

of the theorem is completed. r

We set JþðR1Þ ¼ Jþ V fðz;wÞ A C 2
�� jzjaR1g. Then it is easy to see the fol-

lowing theorem, which states the relation between Jþ and Jz0 .

Theorem 3.7. JþðR1ÞI6jz0jaR1
fz0g � Jz0 .

4. The Lebesgue measure of Julia set

We start with the following:

Definition 4.1. The set X is foliated by the leaves flcgc AC if
(1) X ¼ 6

c AC lc; and

(2) lc V lc 0 ¼ j for any c; c 0 A C with c0 c 0.

In the following, we wish to show that JþðR1Þ can be foliated by the graphs
of holomorphic functions. To this end, we need the following:

Definition 4.2. We say that F satisfies the condition ðFÞ if the following
holds:

ðFÞ
There exist a constant ~RR2 > R2 and a sequence fnjg of positive
integers such that jgnj

z0 ðwÞj0 ~RR2 on ~CCðz0Þ for each nj and jz0jaR 0
1,

where R 0
1 is an arbitrary constant with R1 < R 0

1 <
~RR1 :¼ ~RRm

2 þ e0.

In the following part of this paper, we always denote by R 0
1;

~RR1; ~RR2 and fnjg
the same objects as in Definition 4.2.

Now, in the paper [4], Fornæss and Sibony proved that if a Hénon map Fa; c

satisfies some conditions as well as the condition ðFÞ, then its Julia set is foliated
by complex submanifolds described as the graphs of holomorphic functions. By
improving their method, one can obtain more general results. In fact, just under
the condition ðFÞ, we can show that JþðR1Þ can be foliated by the graphs of
holomorphic functions:
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Theorem 4.3. Let z0 be an arbitrary point of C with jz0jaR1. Assume
that F satisfies the condition ðFÞ. Then we have the following:

(1) JþðR1Þ is foliated by the leaves flw0
gw0 A Jz0

, where each leaf lw0
can be

expressed as lw0
¼ fðz;wÞ A C 2

��w ¼ cw0
ðzÞ; jzjaR1g by a holomorphic function

cw0
on DðR1Þ with w0 ¼ cw0

ðz0Þ. In particular, the leaf which contains ðz0;w0Þ is
uniquely determined.

(2) fcw0
gw0 A Jz0

is equicontinuous on DðR1Þ and, for every e > 0, a point
w0 A Jz0 , there is an open neighbourhood Uw0

of w0 such that jcw0
ðzÞ � c~wwðzÞj < e

for all ~ww A Uw0
V Jz0 and for all z A DðR1Þ.

The proof of this theorem will be preceded by several lemmas. First, for a
given c with jcj ¼ ~RR2 we set

Sn ¼ fðz;wÞ A C 2
�� jgnðz;wÞj ¼ ~RR2; jzjaR1g;

~SSn ¼ fðz;wÞ A C 2
�� jgnðz;wÞj ¼ ~RR2; jzj < R 0

1g;
l nc ¼ fðz;wÞ A C 2

�� gnðz;wÞ ¼ c; jzjaR1g;
~ll nc ¼ fðz;wÞ A C 2

�� gnðz;wÞ ¼ c; jzj < R 0
1g:

Lemma 4.4. Snj
and ~SSnj have the structure of foliation.

Proof. From the condition ðFÞ we see that jðgnj
z0 Þ0ðw0Þj0 0 for every

ðz0;w0Þ A ~SSnj
. Hence, by the implicit function theorem it follows that there are

holomorphic functions cnj
ck
, k ¼ 1; . . . ; d nj , defined on DðR 0

1Þ for every c with
jcj ¼ ~RR2 such that

l njc ¼ 6
d
nj

k¼1

fðz;wÞ A C 2
��w ¼ cnj

ck
ðzÞ; z A DðR1Þg;

~ll njc ¼ 6
d
nj

k¼1

fðz;wÞ A C 2
��w ¼ cnj

ck
ðzÞ; z A DðR 0

1Þg:

Moreover, for k ¼ 1; . . . ; d nj setting

l njck
¼ fðz;wÞ A C 2

��w ¼ cnj
ck
ðzÞ; z A DðR1Þg;

~ll njck
¼ fðz;wÞ A C 2

��w ¼ cnj
ck
ðzÞ; z A DðR 0

1Þg;
we see that l

nj
c (resp. ~ll nj

c ) has the structure of foliation with leaves fl nj
ck g

d nj

k¼1 (resp.

f~ll nj

ck
gd

nj

k¼1). Therefore, Snj ¼ 6jcj¼ ~RR2
l
nj
c (resp. ~SSnj ¼ 6jcj¼ ~RR2

~ll nj

c ) can be foliated by

the leaves l
nj
ck (resp. ~ll nj

ck
). r

Next, let us recall the Hausdor¤ metric. Let X be a complete metric space
and HðXÞ the space of non-empty compact subsets of X. Then HðX Þ is a com-
plete metric space with respect to the Hausdor¤ metric dH defined as follows:

dHðA;BÞ ¼ max sup
x AA

inf
y AB

dðx; yÞ; sup
y AB

inf
x AA

dðx; yÞ
( )

for A;B A HðXÞ;
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where dð�; �Þ denotes the metric on X. Considering the special case of X ¼ C 2

with the Euclidean distance, we have now the following:

Lemma 4.5. JþðR1Þ ¼ limj!y Snj .

Proof. For the given constants ~RR1 and ~RR2 as in Definition 4.2, we define

the sets ~VV�; ~DD and ~VVþ by replacing R1;R2 by ~RR1; ~RR2 in (2.2). Then, all the re-

sults obtained in section 2 hold for ~VV�; ~DD and ~VVþ. In particular, we have that

l nc HSn H ~SSn HDð ~RR1Þ � Dð ~RR2Þ for all n

by the proof of Proposition 2.2 and

Aþ ¼ 6
y

n¼0

F�nð ~VVþÞ and fF�nð ~VVþÞg is an increasing open covering of Aþ:ð4:1Þ

First, we assert that: For any small e > 0, there exists an integer n0 such that

sup
y ASn

inf
x A JþðR1Þ

kx� yk < e for nb n0:ð4:2Þ

Indeed, consider the open covering fBe=2ðxÞgx A JþðR1Þ of JþðR1Þ and set
U ¼ 6

x A JþðR1Þ Be=2ðxÞ, where Be=2ðxÞ stands for the open e=2-ball with cen-

tered at x. Then U is an open neighbourhood of JþðR1Þ and, without loss of

generality, we may assume that U H fðz;wÞ A C 2
�� jwja ~RR2g, because JþðR1ÞH

fðz;wÞ A C 2
�� jwjaR2g and R2 < ~RR2. Since Jþ ¼ qAþ by Theorem 2.4, there are

compact subsets V1;V2 of C 2 such that fðz;wÞ A C 2
�� jzjaR1; jwja ~RR2gVU c

¼ V1 UV2, V1 HAþ and V2 H intðKþÞ. Therefore, Aþ V fðz;wÞ A C 2
�� jzjaR1,

jwja ~RR2gVU c ¼ V1 is a compact subset of Aþ. Thus, it follows from (4.1) that
there is an integer n0 such that

F�nð ~VVþÞIAþ V fðz;wÞ A C 2
�� jzjaR1; jwja ~RR2gVU c for nb n0:

Moreover, by (4.1) we see that

fðz;wÞ A C 2
�� jzjaR1; jwjb ~RR2gH ~VVþ HF�nð ~VVþÞ:

Thus

q½F�nð ~VVþÞ�V fðz;wÞ A C 2
�� jzjaR1gH ½Aþ V fðz;wÞ A C 2

�� jzjaR1gVU c�c;
which implies that

q½F�nð ~VVþÞ�V fðz;wÞ A C 2
�� jzjaR1gHU for every nb n0:

Here, we assert that

q½F�nð ~VVþÞ�V fðz;wÞ A C 2
�� jzj < ~RR1gð4:3Þ

¼ fðz;wÞ A C 2
�� jwnj ¼ ~RR2; jznj < ~RR1; jzj < ~RR1g:

Indeed, it is clear from the continuity of F �n that qF�nð ~VVþÞHF�nðq ~VVþÞ. By (3)
of Proposition 2.2, we know that for ðz0;w0Þ A ~DD, if there exists some integer n0

dynamics of polynomial maps on C2 25



such that ðzn;wnÞ A ~DD ð1a n < n0Þ and ðzn0 ;wn0Þ A ~VVþ, then jzn0
j < ~RR1; jwn0

j ¼ ~RR2

and ðzl ;wlÞ A Vþ for all l > n0. Therefore,

F�nðq ~VVþÞV fðz;wÞ A C 2
�� jzj < ~RR1gH fðz;wÞ A C 2

�� jwnj ¼ ~RR2; jznj < ~RR1; jzj < ~RR1g;

q½F�nð ~VVþÞ�V fðz;wÞ A C 2
�� jzj < ~RR1gH fðz;wÞ A C 2

�� jwnj ¼ ~RR2; jznj < ~RR1; jzj < ~RR1g:

To show the reverse inclusion we assume that there is a point ðz0;w0Þ B
fq½F�nð ~VVþÞ�V fðz;wÞ A C 2

�� jzj < ~RR1gg such that jwnj ¼ ~RR2, jznj < ~RR1, jz0j < ~RR1.

Then, it follows that ðz0;w0Þ A fF�nð ~VVþÞgc V fðz;wÞ A C 2
�� jzj < ~RR1g; and hence,

there exists some open neighbourhood U0 of ðz0;w0Þ such that U0 H ~DD,
F �nðU0ÞV ~VVþ ¼ j. Moreover, for every ðz;wÞ A U0 we have that j fnðz;wÞj < ~RR1,

jgnðz;wÞja ~RR2. Choose here a disk Dðw0; dÞ in C in such a way that fz0g�
Dðw0; dÞHU0 and we have that jgn

z0
ðwÞja ~RR2 on Dðw0; dÞ and jgn

z0
ðw0Þj ¼ ~RR2.

By the maximum modulus principle, we obtain a contradiction, proving (4.3).
Hence, we obtain that

Sn ¼ fðz;wÞ A C 2
�� jgnðz;wÞj ¼ jwnj ¼ ~RR2; jzjaR1g

¼ fðz;wÞ A C 2
�� jwnj ¼ ~RR2; jznj < ~RR1; jzjaR1g

¼ q½F�nð ~VVþÞ�V fðz;wÞ A C 2
�� jzjaR1gHU :

This completes the proof of (4.2).
Next, we show the following: For any small e > 0, there is an integer j0

such that

sup
x A JþðR1Þ

inf
y ASnj

kx� yk < e for jb j0:ð4:4Þ

Assume the assertion were false. Then, there would be a positive constant e 0,

subsequences fxnjg; fynjg with xnj A JþðR1Þ, ynj
ASnj and points xy A JþðR1Þ,

yy AC 2 such that

xnj
! xy; ynj

! yy ð j ! yÞ and

inf
y ASnj

kxnj
� yk ¼ kxnj � ynj

k > e 0 for every j;

ð4:5Þ

since JþðR1Þ is compact and fynj
g is bounded. On the other hand, since

xy A JþðR1ÞH qAþ, we see that Bðxy; e 0=kÞVAþ 0j whenever k is a positive
constant. It follows then from (4.1) that

Bðxy; e 0=kÞVF�nð ~VVþÞ0j;

Bðxy; e 0=kÞV q½F�nð ~VVþÞ�V fðz;wÞ A C 2
�� jzjaR 0

1g0j;

Bðxy; e 0=kÞV ~SSnj0j for all su‰ciently large n and j:

In particular, for an arbitrarily given sequence fknjgHN with R1 þ e 0=knj < R 0
1

and knj
" y, there exist points ~yynj A Bðxy; e 0=knj ÞV ~SSnj

for all su‰ciently large j.

tomoko shinohara26



Let us denote by ~llnj
¼ fðz;wÞ A C 2

��w ¼ cnj
ðzÞ; z A DðR 0

1Þg the leaf of ~SSnj passing
through the point ~yynj as defined in the proof of Lemma 4.4, and write ~yynj

¼
ð ~yy1nj ; ~yy

2
nj
Þ, xy ¼ ðx1

y; x2
yÞ with coordinates. Then fcnj

g is uniformly bounded

and equicontinuous on DðR 0
1Þ, because ~SSnj HDðR 0

1Þ � Dð ~RR2Þ. Now we assert the
following:

Snj VBðxy; e 0=2Þ0j for all su‰ciently large j:ð4:6Þ

Indeed, if jx1
yj < R1, then j~yy1nj

j < R1 for large j. Thus ~yynj A Snj
VBðxy; e 0=2Þ.

So we have only to consider the case of jx1
yj ¼ R1. Assume the contrary that

(4.6) were false. Then we have

ðx1
y;cnj

ðx1
yÞÞ B Bðxy; e 0=2Þ and ð~yy1nj

;cnj
ð~yy1nj

ÞÞ ¼ ~yynj A Bðxy; e 0=knj
Þ

for all large j with R1 < j~yy1nj
j < R 0

1. This contradicts the equicontinuity of fcnj
g

at z ¼ x1
y, proving (4.6). On the other hand, it is clear that (4.6) contradicts

(4.5). Therefore, we have shown the assertion (4.4); and hence the proof of
Lemma 4.5 is completed. r

Proof of (1) of Theorem 4.3. By Lemma 4.5, for an arbitrarily given
point ðz0;w0Þ A JþðR1Þ, there is a sequence fðxnj

; ynj Þg such that ðxnj
; ynj Þ A Snj

and

ðxnj
; ynj Þ ! ðz0;w0Þ as j ! y. We denote the leaf of Snj

containing the point

ðxnj
; ynj Þ by lnj ¼ fðz;wÞ A C 2

��w ¼ cnj
ðzÞ; z A DðR1Þg, where cnj

is a holomorphic
function on DðR 0

1Þ with ynj
¼ cnj

ðxnj Þ as in the proof of Lemma 4.5. Then fcnj
g

is normal on DðR 0
1Þ, since it is bounded uniformly on it. Hence, we may assume

that some subsequence fcnjk
g of fcnj

g converges to a holomorphic function cw0

on DðR 0
1Þ uniformly on DðR1Þ. Setting

lw0
¼ fðz;wÞ A C 2

��w ¼ cw0
ðzÞ; z A DðR1Þg;

we see that ðz0;w0Þ A lw0
H JþðR1Þ by Lemma 4.5. Here, we claim that the leaf

lw0
containing the point ðz0;w0Þ is unique. Consider another sequence of points

ð~xxnj ; ~yynj Þ A Snj
with ð~xxnj ; ~yynj Þ ! ðz0;w0Þ as j ! y and denote the leaf of Snj con-

taining ð~xxnj
; ~yynj Þ by ~llnj ¼ fðz;wÞ A C 2

��w ¼ ~ccnj
ðzÞ; z A DðR1Þg. By the same rea-

soning as above, one can assume that there is a subsequence f ~ccnjk
g of f ~ccnj

g
which converges to some holomorphic function ~ccw0

on DðR 0
1Þ uniformly on DðR1Þ.

Once it is shown that ~ccw0
¼ cw0

on DðR1Þ, then the function cw0
is independent

of the choice of a sequence fðxnj ; ynj
Þg converging to ðz0;w0Þ; and hence the leaf

lw0
is unique. Therefore, we have only to prove that ~ccw0

¼ cw0
. To this end,

let us set ck ¼ ~ccnjk
� cnjk

. Then fckg converges to the function c :¼ ~ccw0
� cw0

uniformly on DðR1Þ. If there are infinitely many integers k such that ck 1 0,

then cðzÞ1 0. So we may assume that all ck are nowhere vanishing on DðR1Þ
by Lemma 4.4. Since cðz0Þ ¼ ~ccw0

ðz0Þ � cw0
ðz0Þ ¼ w0 � w0 ¼ 0, Hurwitz’s theo-

rem implies that cðzÞ1 0, as desired.
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Proof of (2) of Theorem 4.3. For given the point z0 with jz0j < R1, we con-
sider the family of holomorphic functions fcw0

gw0 A Jz0
on DðR 0

1Þ which define the
leaves flw0

gw0 A Jz0
of JþðR1Þ. Since fcw0

gw0 A Jz0
is bounded uniformly on DðR 0

1Þ,
we know that fcw0

gw0 A Jz0
is normal and equicontinuous on DðR 0

1Þ. In particular,

there exists a subsequence fc~wwk
g ~wwk A Jz0

of fcw0
gw0 A Jz0

such that c~wwk
converges lo-

cally uniformly on DðR 0
1Þ to some holomorphic function c as ~wwk ! w0. More-

over, by the definition of foliation we know that every c~wwk
� cw0

is nowhere van-

ishing on DðR1Þ, and limk!yðc~wwk
ðz0Þ � cw0

ðz0ÞÞ ¼ limk!yð~wwk � w0Þ ¼ 0. Hence,
Hurwitz’s theorem implies that c ¼ cw0

on DðR 0
1Þ and so c~ww converges to cw0

uniformly on DðR1Þ as ~ww!w0 within Jz0 . Therefore, for every e> 0 and w0 A Jz0
there exists an open neighbourhood Uw0

of w0 such that jcw0
ðzÞ � c~wwðzÞj < e for

all ~ww A Uw0
VJz0 and for all z A DðR1Þ. We have completed the proof of (2). r

Theorem 4.6. If F satisfies the condition ðFÞ, then JþðR1Þ ¼6jzjaR1
fzg�Jz.

Proof. To prove the theorem, we assume the contrary. Then there exists
a point ðz0;w0Þ A JþðR1Þ with w0 B Jz0 . Since Jz0 ¼ qAz0 ¼ qKz0 by Proposition
3.2, it follows that w0 A intðKz0Þ. According to Lemma 4.5, this means that there
exists a constant e 0 > 0 such that

distððz0;w0Þ;Snj
V ðfz0g � CÞÞb e 0 for all j;

where distð�; �Þ stands for the Euclidean distance on C 2. On the other hand,
Lemma 4.5 also guarantees the existence of points ðznj

;wnj Þ A Snj
converging to

ðz0;w0Þ. Then, just with the same argument as in the proof of (4.6), one may
obtain a contradiction, proving the theorem. r

From now on, we study quasi-conformal geometry of slices Jz0 ; jz0j < R1.
Recall that a homeomorphism f of C onto itself is quasi-conformal if and only if f
has derivatives in L2

locðCÞ and qf =qz ¼ mðqf =qzÞ, where m A LyðCÞ and kmky < 1.
Let X be a subset of C and let T HC be an open disc containing 0.

Definition 4.7. A map f : T � X ! C is said to be a holomorphic motion
of X in C , if

(1) for any fixed x A X , fxð�Þ :¼ f ð�; xÞ is a holomorphic map on T;

(2) for any fixed t A T , ftð�Þ :¼ f ðt; �Þ is injective on X; and
(3) f0ðxÞ ¼ x on X.

The following result is proved in [12] and it is appeared in [4; Theorem 3.27].

Theorem 4.8. A holomorphic motion f : T � X ! C of a set X HC can be
extended to a holomorphic motion f : T � C ! C of C , and for each fixed t A T
the map ft is a quasi-conformal homeomorphism of C onto C . Moreover, the map
f : T � C ! C is continuous.

The proof of the following result is similar to that of [4; Theorem 3.28,
Corollary 3.29]:
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Theorem 4.9. Assume that F satisfies the condition ðFÞ. Then all Jz0 ,
jz0j < R1, are mutually quasi-conformally equivalent. In particular, if some Jz0 is
of Lebesgue measure 0, so is Jz1 for every jz1j < R1.

Proof. By Theorem 4.3, we know that JþðR1Þ has the structure of foliation
whose leaves l ~ww ð~ww A J0Þ, are given by the graphs of holomorphic functions c~ww on
DðR 0

1Þ with c~wwð0Þ ¼ ~ww. It is now an easy matter to check that the map

C : DðR1Þ � J0 ! C defined by Cðz; ~wwÞ ¼ c~wwðzÞ
is a holomorphic motion of J0. Consequently, C extends to a holomorphic
motion C : DðR1Þ � C ! C of C as in Theorem 4.8. Then, we have the first
statement of the theorem. Since the image of a set of Lebesgue measure 0 under
a quasi-conformal homeomorphism is of measure 0 (cf. [6; p150]), we have the
latter half. r

In the rest of this paper, we wish to give some su‰cient condition for the
Lebesgue measure of JþðR1Þ to be equal to 0. To this end, we use a similar
argument as in [7; Theorem 1.4.6] for polynomial maps with expandingness on its
Julia set. Assume that F satisfies the condition ðFÞ. From Theorems 4.6 and
4.9, it is enough to show that for some z0 with jz0j < R1 the Lebesgue measure of
Jz0 is 0. For a given point z0 A C with jz0j < R1 and a point w0 A Jz0 , we have
ðzn;wnÞ A JþðR1Þ for n ¼ 0; 1; 2; . . . ; by (3) of Proposition 2.2, Proposition 2.3 and
Theorem 4.6. Since JþðR1Þ is compact in C 2, we may assume that some sub-
sequence fðznj ;wnj

Þg of fðzn;wnÞg converges to a point ðzy;wyÞ A JþðR1Þ. In this
situation, we can prove the following:

Theorem 4.10. Let z0 be an arbitrary point of C with jz0j < R1. We as-
sume that the following three conditions are satisfied:

(1) There exists a constant d > 0 such that

inf
w A Jz0

inf
w 0 A ~CCnðz0Þ

jwn � w 0
nj > d for all n;

where we set wn ¼ gn
z0
ðwÞ, w 0

n ¼ gn
z0
ðw 0Þ for w A Jz0 , w 0 A ~CCnðz0Þ, respectively.

(2) F satisfies the condition ðFÞ.
(3) Let l

nj
wy ¼ fðz;wÞ A C 2

��w ¼ cnj
wy

ðzÞ; z A DðR1Þg be the leaf of Snj which

converges to the leaf lwy ¼ fðz;wÞ A C 2
��w ¼ cwy

ðzÞ; z A DðR1Þg of JþðR1Þ con-
taining ðzy;wyÞ. Then there exist real numbers a; b with 0 < a < 1 < b such that

(i) jdnþ1ðz0;w0Þj > bjdnðz0;w0Þj,
(ii) jcnj ðzy;cnj

wy
ðzyÞÞbnj ðz0;w0Þj=jdnj

ðzy;cnj

wy
ðzyÞÞdnj ðz0;w0Þj < a

for all su‰ciently large integers n, j and for any w0 A Jz0 .
Then the 2-dimensional Lebesgue measure of Jz0 is equal to 0. In particular,

the 4-dimensional Lebesgue measure of JþðR1Þ is equal to 0.

Proof. We divide the proof into several steps. We fix an arbitrary point
ðz0;w0Þ A JþðR1Þ with w0 A Jz0 . By the assumption (1), one can obtain holo-

morphic functions h
nj
z0 on Dðwnj ; dÞ such that h

nj
z0 ðwnj

Þ ¼ w0 and g
nj
z0 � h

nj
z0 ¼ id on
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Dðwnj ; dÞ for all j. By the proof of (3) of Proposition 2.2, we see that jzyja
R1 � e0. We may now assume that there are positive constants d 0; d 00 with d 00 <
d 0 < d such that

Dðwnj
; dÞIDðwy; d 0ÞIDðwnj

; d 00Þ for all nj:ð4:7Þ
It should be remarked here the following: Since we always consider sub-
sequences of the given fnjg in our argument below, these constants d 0; d 00 and d
may be chosen as small as we wish, without worrying about various subsequences
taken from fnjg.

First, we want to define a new graph associated with F . For this purpose,
setting ln ¼ ðgn

z0
Þ0ðw0Þ, we consider the holomorphic functions ~hhn : Dð1Þ ! C de-

fined by

~hhnðwÞ ¼ ln½hn
z0
ðdwþ wnÞ � w0�=d; w A Dð1Þ; for n ¼ 1; 2; . . . :

Then, each ~hhn is injective on Dð1Þ, ~hhnð0Þ ¼ 0 and ~hh 0
nð0Þ ¼ 1. Here, by the Koebe

distortion theorem we have

dr

ð1þ rÞ2jlnj
a j~hhnðdwþ wnÞ � w0ja

dr

ð1� rÞ2jlnj
for all w with jwj ¼ r< 1. Now, fix a point r0 A ð0; 1Þ satisfying ð1þr0Þ2=ð1�r0Þ2<
b, and recall that

jlnj=jln�1j ¼ jdnðz0;w0Þj=jdn�1ðz0;w0Þj > b for all large n

by our assumption (i) of (3). Then

dr0

ð1� r0Þ2jlnj
<

dr0

ð1þ r0Þ2jln�1j
for all large n;

which implies that

hn
z0
ðDðwn; dr0ÞÞH hn�1

z0
ðDðwn�1; dr0ÞÞ for all large n:

Therefore, replacing dr0 by d again, we have

hn
z0
ðDðwn; dÞÞH hn�1

z0
ðDðwn�1; dÞÞ and so jgn�1

z0
ðwÞ � wn�1j < d on hn

z0
ðDðwn; dÞÞ

for all large n. Here, as stated above, the constant d may be rechoosen so small
that

jðgn�1
z0

ðwÞÞm � znj ¼ jðgn�1
z0

ðwÞÞm � ðwn�1Þmj < e0=4 on hn
z0
ðDðwn; dÞÞ

for all large n. Thus, together with the fact znj
! zy, we can assume that

jðgnj�1
z0

ðwÞÞm � zyja jðgnj�1
z0

ðwÞÞm � znj
j þ jznj � zyj < e0=2ð4:8Þ

on h
nj
z0 ðDðwnj ; dÞÞ

for all large j. This, combined with the fact jzyjaR1 � e0, guarantees that

jðgnj�1
z0

ðwÞÞmjaR1 on hnj
z0
ðDðwnj ; dÞÞ for all large j:ð4:9Þ
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Recall that g
nj
z0 � h

nj
z0 ¼ id on Dðwy; d 0Þ. Then, setting fnj

z0
ðwÞ ¼ fnj

ðz0; hnj
z0 ðwÞÞ, we

have that

F �nj ðz0; hnj
z0
ðDðwy; d 0ÞÞÞ ¼ fðz;wÞ A C 2

�� z ¼ fnj

z0
ðwÞ; w A Dðwy; d 0Þg:ð4:10Þ

By (4.7) and (4.9), it follows that

jfnj
z0
ðwÞj ¼ j fnj ðz0; hnj

z0
ðwÞÞj ¼ jfgnj�1

z0
ðhnj

z0
ðwÞÞgmjaR1 on Dðwy; d 0Þ:

Thus, ffnj
z0
g is normal on Dðwy; d 0Þ; so that one can assume that ffnj

z0
g converges

locally uniformly to a holomorphic function fz0 on Dðwy; d 0Þ. Since znj
¼ fnj

z0
ðwnj Þ

and ðznj ;wnj Þ ! ðzy;wyÞ, we see that zy ¼ fz0ðwyÞ. Let us set

l ¼ fðz;wÞ A C 2
�� z ¼ fz0ðwÞ; w A Dðwy; d 0Þg; and

l ~ww ¼ fðz;wÞ A C 2
��w ¼ c~wwðzÞ; z A DðR1Þg; ~ww ¼ c~wwðzyÞ;

where fc~wwg are holomorphic functions on DðR 0
1Þ defining the leaves of foliation

fl ~wwg ~ww A Jzy of JþðR1Þ. We have now two cases to consider.

Case 1. fz0 is a non-constant map on Dðwy; d 0Þ.

For some small e1 > 0 and each ~ww A Jzy , we define new holomorphic maps

~ffz0 : Dð1þ e1Þ � Dðwy; d 0Þ ! C by ðt;wÞ 7! z ¼ tfz0ðwÞ þ ð1� tÞzy; and

~FF ~ww : Dð1þ e1Þ � Dðwy; d 0Þ ! C by ðt;wÞ 7! w ¼ c~ww � ~ffz0ðt;wÞ:

For each fixed t A Dð1þ e1Þ, the maps ~ffz0ðt;wÞ and ~FF ~wwðt;wÞ of one variable w

will be denoted by f t
z0
ðwÞ and Ft

~wwðwÞ, respectively. Then fz0ðwÞ ¼ f1
z0
ðwÞ and by

(4.8)

jf t
z0
ðwÞ � zyj ¼ jtj jfz0ðwÞ � zyja ð1þ e1Þe0=2 on Dðwy; d 0Þ

for all t A Dð1þ e1Þ. Combining this with jzyjaR1 � e0, we see that jf t
z0
ðwÞja

R1 on Dðwy; d 0Þ and the composition c~ww � f t
z0

can be defined for each ~ww A Jzy , by
replacing e1 small. Setting

lt ¼ fðz;wÞ A C 2
�� z ¼ f t

z0
ðwÞ;w A Dðwy; d 0Þg;

we next study the slice of JþðR1Þ by lt. To this end, since JþðR1Þ is
foliated as JþðR1Þ ¼ 6 ~ww A Jzy

l ~ww, it is enough to consider the intersection lt V l ~ww ¼
fðf t

z0
ðwÞ;wÞ A C 2

��Ft
~wwðwÞ ¼ w; w A Dðwy; d 0Þg for each ~ww A Jzy .

Lemma 4.11. There exist an open neighbourhood Uwy of wy, positive con-
stants e1 with að1þ e1Þ < 1 and d 0 satisfying (4.7) such that the intersection lt V l ~ww
consists of a unique point for each ~ww A Uwy V Jzy and for each t A Dð1þ e1Þ.

Proof. Without loss of generality, we may assume that the positive con-
stant e1 satisfies the inequality að1þ e1Þ < 1. To prove the lemma it is enough
to show that the map Ft

~ww has a unique fixed point in Dðwy; d 0Þ for any given

dynamics of polynomial maps on C2 31



points ~ww and t contained in some open neighbourhoods of wy and Dð1Þ, respec-
tively. Since cwy

ðzyÞ ¼ wy, it is easy to see that Ft
wy

ðwyÞ ¼ wy for all t. First,
we assert that:

(4.11) For arbitrarily given t A Dð1þ e1Þ, there is a constant dt, 0 < dt < d 0,
such that Ft

wy
has a unique fixed point in Dðwy; dtÞ.

To see this, we have only to show that the set of the roots of Ft
wy

ðwÞ ¼ w does
not accumulate at w ¼ wy for every t A Dð1þ e1Þ. Assume the contrary. Then,
since F0

wy
ðwÞ ¼ wy, there exists some non-zero t A Dð1þ e1Þ such that Ft

wy
ðwÞ ¼

cwy
� f t

z0
ðwÞ1w by the identity theorem. Therefore,

ðcwy
Þ0ðf t

z0
ðwÞÞðtfz0 þ ð1� tÞzyÞ0ðwÞ ¼ ðcwy

Þ0ðf t
z0
ðwÞÞðfz0Þ

0ðwÞt1 1:ð4:12Þ
Here, since wnj ! wy and fnj

z0
converges to fz0 locally uniformly on Dðwy; d 0Þ,

we see limj!yðfnj

z0
Þ0ðwyÞ ¼ limj!yðfnj

z0
Þ0ðwnj Þ. Taking this into account, we set

w ¼ wy in (4.12). Then, using the sequence fcnj
wy

g converging to cwy
as in the

proof of Theorem 4.3, we have that

lim
j!y

ðcnj
wy

Þ0ðzyÞðfnj
z0
Þ0ðwnj Þt ¼ 1:

Here, recall that gnj
ðz;cnj

wy
ðzÞÞ ¼ c, fnj

z0
ðwÞ ¼ fnj ðz0; h

nj
z0 ðwÞÞ and g

nj
z0 � h

nj
z0 ¼ id.

Then

ðcnj
wy

Þ0ðzÞ ¼ �
qgnj

ðz;cnj

wy
ðzÞÞ

qz

�
qgnj ðz;cnj

wy
ðzÞÞ

qw
¼ �cnj

ðz;cnj
wy

ðzÞÞ=dnj
ðz;cnj

wy
ðzÞÞ

and

ðfnj

z0
Þ0ðwÞ ¼ ½ fnj ðz0; hnj

z0
ðwÞÞ�0 ¼ ½ðgnj�1ðz0; hnj

z0
ðwÞÞm� 0

¼ m½gnj�1ðz0; hnj
z0
ðwÞÞ�m�1½qgnj�1ðz0; hnj

z0
ðwÞÞ=qw�=ðgnj

z0
Þ0ðhnj

z0
ðwÞÞ:

On the other hand, since F �nj ðz0;wÞ ¼ ððgnj�1
z0 ðwÞÞm; gnj

z0 ðwÞÞ, we have

bnj ðz;wÞ ¼ q½ðgnj�1ðz;wÞÞm�=qw; ðfnj
z0
Þ0ðwÞ ¼ bnj ðz0; hnj

z0
ðwÞÞ=dnj ðz0; hnj

z0
ðwÞÞ:

Consequently, since 0 < jtj < 1þ e1 and að1þ e1Þ < 1, we have

lim
j!y

cnj ðzy;cnj
wy

ðzyÞÞbnj ðz0;w0Þ
dnj ðzy;cnj

wy
ðzyÞÞdnj

ðz0;w0Þ

�����
����� ¼ lim

j!y
jðcnj

wy
Þ0ðzyÞðfnj

z0
Þ0ðwnj

Þj ¼ 1

jtj > a:ð4:13Þ

Thus, (4.13) contradicts the assumption (ii) of (3) of the theorem, proving (4.11).
Next, we claim that

There are positive constants ~dd, ~ee1 with 0 < ~dd < d 0, 1 < ~ee1 < e1, such

(4.14) that Ft
wy

ðwÞ � w ¼ 0 has a unique solution wy in Dðwy; ~ddÞ for all
t A Dð1þ ~ee1Þ.

To prove our claim, we set mt ¼ minfjFt
wy

ðwÞ � wj
�� jw� wyj ¼ dtg > 0 by

using the constant dt in (4.11). For t and ~tt A Dð1þ e1Þ, it is easy to see that
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fF~tt
wy

ðwÞ � wg converges locally uniformly to Ft
wy

ðwÞ � w as ~tt ! t and there is
a positive constant gt such that

jðF~tt
wy

ðwÞ � wÞ � ðFt
wy

ðwÞ � wÞj < mt=2 for all ~tt A Dðt; gtÞ; w A Dðwy; dtÞ:
Then, Hurwitz’s theorem guarantees that the equations F

~tt
wy

ðwÞ � w ¼ 0 and
Ft

wy
ðwÞ � w ¼ 0 have the same number of zeros in Dðwy; dtÞ; and consequently,

wy is a unique solution of F
~tt
wy

ðwÞ � w ¼ 0 in Dðwy; dtÞ. On the other hand, one
can choose some numbers ~ee1 and a finite sequence ftkglk¼1 such that 0 < ~ee1 < e1,

tk A Dð1þ ~ee1Þ and Dð1þ ~ee1ÞH6 l

k¼1
Dðtk; gtk Þ. Set ~dd ¼ min1aka l dtk=2. Then, it

is easily seen that these ~ee1 and ~dd satisfy the requirements of (4.14).
Now, we set ~mmt ¼ minfjFt

wy
ðwÞ�wj

�� jw�wyj ¼ ~ddg > 0 for each t A Dð1þ~ee1Þ.
Then, by (2) of Theorem 4.3 and by the uniformly continuity of cwy

, there exist a
constant ~ggt and an open neighbourhood U t

wy
of wy such that

jF~tt
~wwðwÞ �Ft

wy
ðwÞja jc~ww � f~tt

z0
ðwÞ � cwy

� f~tt
z0
ðwÞj

þ jcwy
� f~tt

z0
ðwÞ � cwy

� f t
z0
ðwÞj < ~mmt=2

for ~tt A Dðt; ~ggtÞ, ~ww A U t
wy

V Jzy and w A Dðwy; ~ddÞ. Just as in the proof of (4.14),

taking some e2 with 0 < e2 < ~ee1, we consider a finite covering fDð~ttk; ~gg~ttk Þg
~ll
k¼1

of Dð1þ e2Þ and set Uwy ¼ 7
~ll

k¼1
U ~ttk

wy
. Then, for arbitrarily given points

~ww A Uwy V Jzy and t A Dð1þ e2Þ, there is a point ~ttk A Dð1þ e2Þ such that for

w A Dðwy; ~ddÞ
jðFt

~wwðwÞ � wÞ � ðF~ttk
wy

ðwÞ � wÞj ¼ jFt
~wwðwÞ �F

~ttk
wy

ðwÞj < ~mm~ttk=2:

Thus, applying again Hurwitz’s theorem, we can see by (4.14) that Ft
~wwðwÞ � w ¼ 0

has a unique solution in Dðwy; ~ddÞ. Therefore, for convenience, denoting such ~dd,
e2 by d 0, e1 again, we complete the proof of Lemma 4.11. r

Thanks to Lemma 4.11, one can now define a map

C~ww : Dð1þ e1Þ ! C ; t 7! C~wwðtÞ for each ~ww A Uwy V Jzy

by requiring the condition

lt V l ~ww ¼ fðf t
z0
�C~wwðtÞ;C~wwðtÞÞg for all t A Dð1þ e1Þ:

So we obtain a map C : Dð1þ e1Þ � ðUwy V JzyÞ ! C given by Cðt; ~wwÞ ¼ C~wwðtÞ.

Lemma 4.12. C : Dð1þ e1Þ � ðUwy V JzyÞ ! C is a holomorphic motion of
Uwy V Jzy in C .

Proof. From the proof of Lemma 4.11, one knows that

fðt;wÞ A Dð1þ e1Þ � Dðwy; d 0Þ j ~FF ~wwðt;wÞ ¼ wg ¼ fðt;wÞ j t A Dð1þ e1Þ;w ¼ C~wwðtÞg:
Hence, C~ww is a holomorphic function on Dð1þ e1Þ (cf. [9; Theorem 4.4.1]).
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To show that Ct : Uwy V Jzy ! C is injective for each fixed t A Dð1þ e1Þ, we
assume that there are two distinct points w 0, w 00 A Uwy V Jzy such that Ctðw 0Þ ¼
Ctðw 00Þ, or equivalently, the two equations cw 0 � f t

z0
ðwÞ ¼ w and cw 00 � f t

z0
ðwÞ ¼ w

have the same solution, say w�, in Dðwy; d 0Þ. Then, setting z� ¼ f t
z0
ðw�Þ, we have

cw 0 ðz�Þ ¼ w� ¼ cw 00 ðz�Þ, and hence w 0 ¼ w 00 by our construction of the foliation
of JþðR1Þ. This is a contradiction, as desired. Moreover, since ~FF ~wwð0; ~wwÞ ¼
c~wwðzyÞ ¼ ~ww for all ~ww A Uwy V Jzy , it is easily checked that Cð0; �Þ ¼ id on
UwyV Jzy . Therefore, all the conditions of Definition 4.7 are fulfilled for C. r

By a direct application of Theorem 4.8, C extends to a map from
Dð1þ e1Þ � C to C , and C1 : C ! C , ~ww 7! C1ð~wwÞ, is a quasi-conformal homeo-
morphism.

Before proceeding, we need to introduce some notation and terminology
from the measure theory. We refer the reader to books [2] or [13; §6]. Let V
be a bounded measurable set in the n-dimensional Euclidean space W and set

rðVÞ ¼ sup
VHL

mðVÞ=mðLÞ;

where the supremum is taken over all cubes L whose boundaries are parallel to
the coordinates of W, and mð�Þ is the n-dimensional Lebesgue measure. Let fVkg
be a sequence of measurable sets in W. Then, fVkg is called regular at a point
p A W if p A Vk for all k, Vk ! f pg as k ! y and there is a constant c such that
rðVkÞb c > 0 for all k. Moreover, for a given regular sequence fVkg of closed
measurable sets at p, we define the constant

lfVkg ¼ lim
k!y

mðVk VVÞ=mðVkÞ if the limit on the right exists;

and set nðpÞ ¼ inf lfVkg and nðpÞ ¼ sup lfVkg;

where the infimum and the supremum are taking over all regular sequences fVkg
of closed measurable sets at a point p. If nðpÞ ¼ nð pÞ, we denote this number
by nð pÞ and call it the density of V at p A W. For later use, we shall recall the
following:

Theorem 4.13 (Lebesgue density theorem). Let E be a measurable set.
Then nðpÞ ¼ 1 for almost every p A E. In particular, if nðpÞ < 1 for all p A V ,
then V has the Lebesgue measure 0.

Now, in order to prove Theorem 4.10, it su‰ces to show that nðw0Þ < 1
for every w0 A Jz0 . To this end, we introduce a regular sequence fVnj

g of closed
measurable sets as follows:

Vnj
¼ fw 0 A C

��w 0 ¼ hnj
z0
ðwÞ; w A Dðwnj

; hÞg for some h with 0 < h < d 00:

Note that w0 A Vnj for all j, since w0 ¼ h
nj
z0 ðwnj Þ for all j. To see that fVnj

g is, in
fact, a regular sequence of measurable sets at w0, we need the following estimate.
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Lemma 4.14. For all su‰ciently large j, there are constants M > 0, 0 <
k < 1 and d 00 satisfying (4.7) such that: For each w, ~ww A Dðwnj ; d

00Þ, we have
(1) jðhnj

z0 Þ0ðwÞ=ðh
nj
z0 Þ0ð~wwÞ � 1jaMjw� ~wwj;

(2) ð1� kÞjðhnj
z0 Þ0ð~wwÞðw� ~wwÞja jhnj

z0 ðwÞ � h
nj
z0 ð~wwÞja ð1þ kÞjðhnj

z0 Þ0ð~wwÞðw� ~wwÞj.

Proof. Put D2ðwy; d 0Þ ¼ Dðwy; d 0Þ � Dðwy; d 0Þ and consider the functions

Hnj
ðw; ~wwÞ ¼ ðhnj

z0
Þ0ðwÞ=ðhnj

z0
Þ0ð~wwÞ; ðw; ~wwÞ A D2ðwy; d 0Þ; for j ¼ 1; 2; . . . :

Then, applying the Koebe distortion theorem to the maps ~hhnj
: Dð1Þ ! C defined

by w 7! lnj
½hnj

z0 ðdwþ wnj Þ � w0�=d, one can check that fHnj
g is bounded uniformly

on D2ðwy; d 0Þ and so it is a normal family on it. Therefore, we can assume that
fHnj

g converges locally uniformly to some holomorphic function H on D2ðwy; d 0Þ.
Moreover, since Hnj ðw;wÞ ¼ Hðw;wÞ ¼ 1 for all w A Dðwy; d 0Þ,

Gnj
ðw; ~wwÞ ¼ ðHnj

ðw; ~wwÞ � 1Þ=ðw� ~wwÞ and Gðw; ~wwÞ ¼ ðHðw; ~wwÞ � 1Þ=ðw� ~wwÞ

are well-defined holomorphic functions on the whole space D2ðwy; d 0Þ. (See, for
instance, [10; Corollary 6.26].) Here, we assert that there are positive constants
M, d 00 with d 00 < d 0 such that

jGnj ðw; ~wwÞjaM on D2ðwnj ; d
00Þ for all su‰ciently large j;ð4:15Þ

which shows the inequality (1) of the lemma. Indeed, since G is a holomorphic

function on D2ðwy; d 0Þ, there are positive constants ~MM and d0, d1 with 0 < d0 <
d1 < d 0 such that

jGðw; ~wwÞj < ~MM on Dðwy; d1Þ � Dðwy; d0Þ:ð4:16Þ

On the other hand, considering the Silov boundary of Dðwy; d1Þ � Dðwy; d0Þ, we
have

jGnj ðw; ~wwÞja supfjGnj
ðw; ~wwÞj

�� jwj ¼ d1; j~wwj ¼ d0g onð4:17Þ

Dðwy; d1Þ � Dðwy; d0Þ

for every j. Since Gnj ! G locally uniformly on ½Dðwy; d1Þ � Dðwy; d0Þ�n
fðw; ~wwÞ A C 2

��w ¼ ~wwg, it follows then from (4.16), (4.17) that there is a constant
M > 0 such that

jGnj ðw; ~wwÞjaM on Dðwy; d1Þ � Dðwy; d0Þ for all j:

As a result, by choosing a positive constant d 00, 0 < d 00 < d0, as in (4.7), we obtain
(4.15), as desired.

In order to prove the second inequality of the lemma, we first claim that:

(4.18) h
nj
z0 ðDðwnj ; d

00ÞÞ is a geometrically convex subset of C 2 for all
su‰ciently large j.
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To this end, we set ~hhnj

z0
ðwÞ :¼ lnj ½h

nj
z0 ðd 00wþ wnj

Þ � w0�=d 00 and denote by ð~hhnj

z0
Þ00 the

second derivative of ~hhnj

z0
and Reð�Þ the real part. Once it is shown that

1þReðwð~hhnj

z0
Þ00ðwÞ=ð~hhnj

z0
Þ0ðwÞÞ > 0 on Dð1Þ;

then it is well-known that ~hhnj

z0
ðDð1ÞÞ is convex and, so is h

nj
z0 ðDðwnj ; d

00ÞÞ. By (1)
of Lemma 4.14, we have now

ð~hhnj

z0
Þ0ðwÞ � ð~hhnj

z0
Þ0ð~wwÞ

w� ~ww

�����
�����aMd 00jð~hhnj

z0
Þ0ð~wwÞj; jð~hhnj

z0
Þ00ð~wwÞjaMd 00jð~hhnj

z0
Þ0ð~wwÞj on Dð1Þ:

Therefore, by rechoosing d 00 with Md 00 < 1, if necessary, we can assume that
jwð~hhnj

z0
Þ00ðwÞ=ð~hhnj

z0
Þ0ðwÞjaMd 00 < 1 on Dð1Þ, proving (4.18).

By (4.15), for each j and for each w; ~ww A Dðwnj
; d 00Þ, there is a constant

Mnj ðw; ~wwÞ A C depending on ðw; ~wwÞ such that jMnj ðw; ~wwÞjaM and

ðhnj
z0
Þ0ðwÞ ¼ ðhnj

z0
Þ0ð~wwÞ þMnj

ðw; ~wwÞðw� ~wwÞðhnj
z0
Þ0ð~wwÞ:ð4:19Þ

On the other hand, integrating ðhnj
z0 Þ0ðwÞ along the line segment wðsÞ¼ ~wwþ sðw� ~wwÞ,

s A ½0; 1�, we have

hnj
z0
ðwÞ � hnj

z0
ð~wwÞ ¼

ð1
0

ðhnj
z0
Þ0ð~wwþ sðw� ~wwÞÞðw� ~wwÞ ds:

This combined with (4.19) yields that

jhnj
z0
ðwÞ � hnj

z0
ð~wwÞja jðhnj

z0
Þ0ð~wwÞðw� ~wwÞjð1þ jw� ~wwjMÞ:

Since M depends neither on w, ~ww nor on j, there are constants 0 < k < 1 and
d 00 > 0 satisfying (4.7) and (4.15) such that

jw� ~wwjM < 2d 00M < k and jhnj
z0
ðwÞ � hnj

z0
ð~wwÞja ð1þ kÞjðhnj

z0
Þ0ð~wwÞðw� ~wwÞj

for all su‰ciently large j and for all w; ~ww A Dðwnj ; d
00Þ.

To complete the proof of the lemma, let us fix j and w, ~ww A Dðwnj
; d 00Þ arbi-

trarily, and consider the curves ~LL, L with parameter s A ½0; 1�:
~LL : s 7! ~uuðsÞ ¼ shnj

z0
ð~wwÞ þ ð1� sÞhnj

z0
ðwÞ; L : s 7! uðsÞ ¼ ðhnj

z0
Þ�1 � ~uuðsÞ:

Since h
nj
z0 ðDðwnj ; d

00ÞÞ is convex by (4.18) and since ðhnj
z0 Þ�1 is a well-defined hol-

omorphic function on h
nj
z0 ðDðwnj

; d 00ÞÞ, ~LL is a line segment in h
nj
z0 ðDðwnj ; d

00ÞÞ and L
is a curve in Dðwnj ; d

00Þ. Then, we see

jhnj
z0
ðwÞ � hnj

z0
ð~wwÞj ¼

ð
~LL

jdwj ¼
ð
h
nj
z0
ðLÞ

jdwj ¼
ð1
0

jðhnj
z0
Þ0ðuðsÞÞu 0ðsÞj ds

b jðhnj
z0
Þ0ðuðs0ÞÞj

ð1
0

ju 0ðsÞj dsb jðhnj
z0
Þ0ðuðs0ÞÞðw� ~wwÞj;
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where s0 A ½0; 1� is a point at which the continuous function jðhnj
z0 Þ0ðuðsÞÞj on ½0; 1�

attains its minimum. Since ðhnj
z0 Þ0ðuðs0ÞÞ ¼ ðhnj

z0 Þ0ð~wwÞ þMnj
ðuðs0Þ; ~wwÞðuðs0Þ � ~wwÞ �

ðhnj
z0 Þ0ð~wwÞ by (4.19),

jhnj
z0
ðwÞ � hnj

z0
ð~wwÞjb jðhnj

z0
Þ0ð~wwÞðw� ~wwÞjf1� jMnj ðuðs0Þ; ~wwÞðuðs0Þ � ~wwÞjg

b jðhnj
z0
Þ0ð~wwÞðw� ~wwÞjð1� 2Md 00Þb jðhnj

z0
Þ0ð~wwÞðw� ~wwÞjð1� kÞ;

which implies (2) of the lemma. We have completed the proof of the lemma. r

By (2) of Lemma 4.14, we have

Dðw0; ð1� kÞhjðhnj
z0 Þ0ðwnj ÞjÞHVnj HDðw0; ð1þ kÞhjðhnj

z0 Þ0ðwnj ÞjÞ
for all su‰ciently large j. Moreover, by our assumption (i) of (3), it follows that

jðhnj
z0
Þ0ðwnj

Þj ¼ 1=jðgnj
z0
Þ0ðw0Þj ¼ 1=jdnj

ðz0;w0Þj ! 0 as j ! y:

Therefore, we see that fVnjg is a regular sequence of closed measurable sets at w0.
Let us set, for a given small constant 0 < h < d 00,

~BB ¼ fw A Dðwy; hÞ
�� ðfz0ðwÞ;wÞ A JþðR1Þg; and

~BBnj
¼ fw A Dðwnj ; hÞ

�� ðfnj
z0
ðwÞ;wÞ A JþðR1Þg for j ¼ 1; 2; . . . :

Here, we assert that

C1ðUwy V JzyÞI ~BB ¼ fw A Dðwy; hÞ
�� ðfz0ðwÞ;wÞ A JþðR1Þg;ð4:20Þ

after rechoosing h small enough, if necessary. To show this assertion, we have
only to check the following: If l ¼ l1 intersects l ~ww at ðfz0ðwÞ;wÞ for ~ww A Jzy , w A
Dðwy; hÞ, then ~ww A Uwy V Jzy . Assume the contrary. Then we may choose se-
quences fhnkgHR, fw 0

nk
gHDðwy; hnk Þ and f~wwnkgHJzy such that hnk # 0 as k !y,

ðz 0nk ;w
0
nk
Þ :¼ ðfz0ðw 0

nk
Þ;w 0

nk
Þ A l V l ~wwnk

and ~wwnk B Jzy VUwy for all k. We take some

disk Dðwy; e 0ÞHUwy with ~wwnk B Dðwy; e 0Þ for every k. Then, for large k we have
that

jc~wwnk
ðzyÞ � c~wwnk

ðz 0nk Þj ¼ j~wwnk � c~wwnk
ðz 0nk Þjb jwy � ~wwnk j � jwy � c~wwnk

ðz 0nk Þj

¼ jwy � ~wwnk j � jwy � w 0
nk
jb e 0 � hnk > e 0=2:

Moreover, by the continuity of fz0 , z 0nk ¼ fz0ðw
0
nk
Þ ! fz0ðwyÞ ¼ zy as k ! y.

This contradicts the fact that fc~wwnk
g ~wwnk

A Jzy
is equicontinuous at z ¼ zy by (2) of

Theorem 4.3, proving (4.20).
In the reminder of the proof, we fix a constant h > 0 as in (4.20). Since

wy A Jzy ¼ qAzy , Uwy VNzy contains a non-empty open set. In particular, by the
fact that C1 is a homeomorphism on C , one can find a non-empty open set W
with W HUwy VNzy and C1ðWÞHDðwy; hÞ. Then it follows from (4.20) that
ðfz0ðwÞ;wÞ A Nþ for every w A C1ðWÞ. Hence, there exists a positive constant ~gg

with mð ~BBÞa ph2 � ~gg. Moreover, since fnj
z0

! fz0 locally uniformly on Dðwy; d 0Þ
and Nþ is open in C 2, there are a sequence fw 0

nj
gHDðwnj

; hÞ and a positive
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constant m < h, which does not depend on nj , such that ðfnj

z0
ðwÞ;wÞ A Nþ for all

w A Dðw 0
nj
; mÞ and for all nj. So, without loss of generality, we can assume that

mð ~BBnj
Þa ph2 � g for all j and some positive constant g.
Here, recall that ðz0; hnj

z0 ðwÞÞ A ðF �nj Þ�1ðfnj
z0
ðwÞ;wÞ for w A Dðwy; d 0Þ by (4.10),

ðF �nj Þ�1ðNþÞHNþ by Proposition 2.3 and fz0g�Nz0 ¼ Nþ V fðz;wÞ A C 2
�� z ¼ z0g

for jz0j < R1 by Theorem 4.6. Then, if ðfnj
z0
ðwÞ;wÞ A Nþ for some w A Dðwnj

; hÞ,
we have ðz0; hnj

z0 ðwÞÞ A fz0g �Nz0 HNþ. Therefore, ðz0; hnj
z0 ðwÞÞ A Nþ for all w A

Dðw 0
nj
; mÞ; and

hnj
z0
ðDðw 0

nj
; mÞÞHVnj V J c

z0
for all j:ð4:21Þ

Lemma 4.15. For all su‰ciently large j, there is a positive constant ~gg such
that

mðVnj
V Jz0Þ=mðVnj

Þa 1� ~gg:

Proof. From the estimate (2) in Lemma 4.14, it follows that

mðhnj
z0
ðDðw 0

nj
; mÞÞÞbpfmjðhnj

z0
Þ0ðw 0

nj
Þjð1� kÞg2; mðVnj Þapfhjðhnj

z0
Þ0ðwnj

Þjð1þ kÞg2:
On the other hand, by (1) of Lemma 4.14 and Mh < Md 00 < 1 as in the proof of
(4.18) we have that

jðhnj
z0
Þ0ðw 0

nj
Þ=ðhnj

z0
Þ0ðwnj

Þ � 1jaMjw 0
nj
� wnj

jaMh;

1�Mha jðhnj
z0
Þ0ðw 0

nj
Þ=ðhnj

z0
Þ0ðwnj Þj

for all su‰ciently large j. These combined with (4.21) yield that

mðVnj
V Jz0Þ

mðVnj Þ
a

mðVnj Þ �mðhnj
z0 ðDðw 0

nj
; mÞÞÞ

mðVnj
Þ

a 1�
m2jðhnj

z0 Þ0ðw 0
nj
Þj2ð1� kÞ2

h2jðhnj
z0 Þ0ðwnj Þj

2ð1þ kÞ2
a 1� m2ð1�MhÞ2ð1� kÞ2

h2ð1þ kÞ2
< 1

for all su‰ciently large j. r

By the lemma above, we conclude that nðw0Þ < 1 for every w0 A Jz0 .
Therefore, we have shown that 2-dimensional Lebesgue measure of Jz0 is equal to
0 in Case 1.

Case 2. fz0 is a constant map on Dðwy; d 0Þ.

Since fz0ðwyÞ ¼ zy, we have fz0ðwÞ ¼ zy on Dðwy; d 0Þ in this case; and con-
sequently, l ¼ fzyg � Dðwy; dÞ and JþðR1ÞV l ¼ fzyg � Jzy . Therefore, without
using the notion of holomorphic motion, one can find a positive constant ~gg with

mð ~BBÞa ph2 � ~gg. Then, repeating exactly the same argument as in Case 1, we can
show that Lemma 4.15 also holds in Case 2; so that nðw0Þ < 1. Hence, the 2-
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dimensional Lebesgue measure of Jz0 equals to 0, completing the proof of The-
orem 4.10 in Case 2. r

Remark. We used the condition (ii) of (3) of Theorem 4.10 only to show
the assertion (4.11). Clearly this is a very artificial condition, and so we would
like to remove it. However, we do not know at this moment whether it is really
needed or not.

By (2) of Proposition 2.2 and Theorem 4.10, we have the following:

Corollary 4.16. Assume that F satisfies all the conditions in Theorem 4.10
and further assume that the critical values of F are not contained in Jþ. Then the
Lebesgue measure of Jþ is equal to 0. In particular, the Lebesgue measure of Jþ
of Hénon maps are equal to 0.

5. An example

For an arbitrary constant a A C �, we consider a polynomial map

~FFaðz;wÞ ¼ ðawm;PðwÞ þ aQðz;wÞÞ for ðz;wÞ A C 2;

of degree db 2 and P, Q are polynomials of the form

PðwÞ ¼ wd þOðwd�1Þ; Qðz;wÞ ¼ Smn1þn2ad;n2<dan1n2z
n1wn2 ; an1n2

A C ; m < d

Let us denote by c1; . . . ; cd�1 the critical points of P and JP, KP the Julia set, the
filled-in Julia set of P, respectively. Throughout this section, we always assume
that:

(5.1) Each ci belongs to the immediate basin of some attracting periodic
point pi of P with period ki.

Notice that the Hénon map Fa; c ¼ ðaw;w2 � azþ cÞ considered in [4; Theorem
3.9, Corollary 3.29] is a typical example of such a map Fa with d ¼ 2. Also,
consider a polynomial PðwÞ ¼ wd þ c with db 3 and assume that PðwÞ has one
attracting fixed point. Then

~FFaðz;wÞ ¼ ðawm;wd þ c� aSmn1þn2ad;n2<dz
n1wn2Þ

is an example of maps that satisfy all the conditions required above. Indeed, it
is a result due to Fatou that in this case the only one critical point 0 of P is in
the immediate basin of attrating fixed point.

Let fðz;wÞ ¼ ðaz;wÞ and define the map Fa by

Faðz;wÞ ¼ f�1 � ~FFa � fðz;wÞ ¼ ðwm;PðwÞ þ aQðaz;wÞÞ:
The main purpose of this section is to prove that all the conditions of Main
result 2 are satisfied for our Fa if jaj is su‰ciently small. For such a Fa, there
exist constants R2 < R 00

2 which are chosen as in Proposition 2.2. Set R1 ¼
Rm

2 þ e0 and R 00
1 ¼ ðR 00

2Þ
m þ e0. In particular, since P is a polynomial of degree
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db 2, we can assume that P�nðwÞ ! y for w B DðR2Þ. Since each ci belongs
to some attractive immediate basin, P is expanding on JP and there are a Rie-
mannian metric on C , an open neighbourhood U of JP and a constant g such

that jP 0ðwÞj > g> 1 on U . Let fpk
i g

ki

k¼1 ¼ fP�ðk�1ÞðpiÞgki

k¼1 be the orbit of pi and

fUk
i g

ki

k¼1 the immediate basin of fpk
i g

ki

k¼1 with pk
i A Uk

i for 1a ia d � 1. Then,

from the results due to Fatou and Sullivan, P has no other non-repelling cycles
and any other component V of KPnJP is preperiodic to fUk

i g
ki

k¼1 for 1a ia d � 1;
this means that there are some integer lb 1 and Uk

i such that P�l : V ! Uk
i is

surjective. On the other hand, we know that

(5.2) the number of components of KPnJP is 0; 1; 2 or y [7; Theorem
4.2.16];

(5.3) JP is connected and locally connected [7; Theorem 4.4.5].

Thus it follows from [7; Proposition 4.4.6] that for any constant e > 0 the number
of components of KPnJP whose diameters exceed e is finite. Together with the
fact that any boundary of Fatou components are contained in JP, one can see
that only finitely many components of KPnJP are not contained in U ; except Uk

i ,
we say them Uj for 1a ja j1. We can now choose domains ~VV k

i for 1aiad�1

and ~VVj for 1a ja j1 with the following properties:

(i) pk
i A ~VV k

i HUk
i ,

~VVj HUj;

(ii) P�kið ~VV k
i ÞH ~VV k

i and P�lj ð ~VVjÞH ~VV k
i for some integers lj, i and k;

(iii) ĈC nfð6d�1

i¼1
6ki

k¼1
~VV k
i ÞU ð6 j1

j¼1
~VVjÞUAPgHU ,

where AP ¼ 6y
nb1

ðP�nÞ�1ðDðR 00
2Þ

cÞ is the set of escaping points of P.

Let ~FF �n
a ðz;wÞ ¼ ð ~ffnðz;wÞ; ~ggnðz;wÞÞ; ~ggn

z0
ðwÞ ¼ ~ggnðz0;wÞ; ~FF n

a ðz0;w0Þ ¼ ð~zzn; ~wwnÞ.
From a direct calculation, we can see that ~ggnðz;wÞ ¼ P�nðwÞ þQnðz;wÞ and all
the coe‰cients of ~ffn and Qn contain positive power of a. Under this situation,
we can prove the following lemmas.

Lemma 5.1. There exists a constant a0 > 0 such that, for 0 < jaj < a0,
(1) ~FFa has attractive cycles f ~ppk

i g
ki

k¼1 of order ki;
(2) fz A C

�� jzj < jajR 00
1 g � ~VV k

i is contained in the immediate basin of ~ppk
i for

1a ia d � 1;
(3) fz A C

�� jzj < jajR 00
1 g � ~VVj is mapped into some

�
z A C

�� jzj < jajR 00
1 g � ~VV k

i

by ~FF
�lj
a for 1a ja j1.

Proof. Since the proofs of (1) and (2) are similar to those of [4; Lemma

3.10], we omit it. Since P�lj ð ~VVjÞH ~VV k
i , we can see that if jaj is small enough,

then

~FF lj
a

�
fz A C

�� jzj < jajR 00
1 g � ~VVj

�
H
�
z A C

�� jzj < jajR 00
1 g � ~VV k

i ;

for j ¼ 1; . . . ; j1, proving (3). r
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Since U is an open neighbourhood of JP, there is an integer N with

qðP�NÞ�1ðDðR 00
2ÞÞHU . Put ~SSa

n ¼ fð ~SSnÞ, where ~SSn is the subset of C 2 defined as
in the proof of Theorem 4.3 for Fa. Then we have the following:

Lemma 5.2. There exists a constant a0 > 0 such that, for 0 < jaj < a0 and
for ðz0;w0Þ A ~SSa

n , if ~ww1; . . . ; ~wwl A U and ~wwlþ1; . . . ; ~wwn A DðR 00
2Þ, then n� laN.

Proof. For any constant e > 0 and jz0j < jajR 00
1 , we can assume that

j~ggNþ1
z0

ðwÞ � P�ðNþ1ÞðwÞj < e on DðR 00
2Þ by rechoosing a0 small, if necessary.

Therefore, we can assume that ð~ggNþ1
z0

Þ�1ðDðR 00
2ÞÞH ðP�NÞ�1ðDðR 00

2ÞÞ, proving our
assertion. r

We set

~UU ¼
�
z A C

�� jzj < jajR 00
1 g � Dð ~RR2Þ

�
6
d�1

i¼1

6
ki

k¼1

~VV k
i U 6

j1

j¼1

~VVj

 !( )
;

ðxl ; ylÞ ¼ D ~FF �l
a ðz0;w0Þða; 1Þ for a A C with jaj < R 00

2 and 1a la n:

Lemma 5.3. Assume that ðz0;w0Þ, ð~zzl ; ~wwlÞ A ~UU for 1a la n. Then there
exist constants a0 > 0, C > 0 not depending on n such that, if 0 < jaj < a0, then

(i) jxl jaCjaj jyl j < jyl j,
(ii) jyl j > Cl l , where we set l ¼ ðgþ 1Þ=2 > 1.

Proof. The lemma is proved by Lemma 5.2 and similar discussion in [4;
Lemma 3.5], and hence we omit it. r

The proof of the following lemma is similar to that of [4; Proposition 3.4],
and hence is left to the reader:

Lemma 5.4. There exist positive constants a0 > 0, C > 1, l > 1 such that if

ðz0;w0Þ, ð~zzl ; ~wwlÞ A ~UU for 1a la n and D ~FF �n
a ðz0;w0Þ ¼

an bn

cn dn

� �
, then jdnjbCln,

jcnja jdnj= ~RR2, janjaCjdnj, jbnjaCjaj jdnj.

Finally, we show that Fa satisfies all the conditions of Main result 2, if jaj
is su‰ciently small. By Lemmas 5.1 and 5.4, the set ~CCnðz0Þ of critical values of

~ggn
z0
is not contained DðR 00

2Þnfð6
d�1

i¼1
6ki

k¼1
~VV k
i ÞU ð6 j1

j¼1
~VVjÞg for all jz0j < jajR 00

1 . By

taking suitable domains V k
i , Vj with Uk

i IV k
i I ~VV k

i , Uj IVj I ~VVj and repeating

the same discussion as in Lemma 5.1 to V k
i and Vj, we can see that

~JJþðjajR 00
1 ÞH

�
z A C

�� jzj < jajR 00
1 g � DðR2Þ

�
6
d�1

i¼1

6
ki

k¼1

V k
i

 !
U 6

j1

j¼1

Vj

 !( )" #
;
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~CCnðz0Þ B DðR 00
2Þ
�

6
d�1

i¼1

6
ki

k¼1

~VV k
i

 !
U 6

j1

j¼1

~VVj

 !( )
for jz0j < jajR 00

1 ;

after rechoosing a0 small enough, if necessary, where we set ~JJþðjaj ~RR1Þ ¼ fðJþð ~RR1ÞÞ.
It shows that ~FFa satisfies the condition (1). For ~RR2 with R2 < ~RR2 < R 00

2 and R 0
1 ¼

~RRm
2 þ e0 we can see that ~FFa satisfies the condition ðFÞ. By Lemma 5.4 and the

proof of Lemma 5.3, ~FFa also satisfies the condition (3). Therefore we have shown
that all the conditions of Main result 2 are fulfilled for Fa.
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