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SUBMANIFOLDS AND APPLICATIONS
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Abstract

In this paper we obtain an estimate for the Ricci curvature and a criterion for the
vanishing of the homology groups of compact submanifolds of spheres and Euclidean
spaces. This criterion depends on the results of Lawson and Simons [LS], Leung [Le2]
and Xin [X] on stable currents. As consequences we obtain a topological version of
theorems of Cheng and Nakagawa [CK], Alencar and do Carmo [AC]|, and Xu [Xu], on
hypersurfaces in spheres with constant mean curvature.

1. Introduction

In [LS], Lawson and Simons obtained a criterion for the vanishing of the
homology groups of compact submanifolds of spheres. Latter on and using
similar techniques, Leung [Le2] and Xin [X] were able to extend the results in [LS]
to compact submanifolds of Euclidean spaces. Leung also obtained, in [Lel], an
estimate for the Ricci curvature of minimal submanifolds of spheres and com-
bined this with the results in [LS] to obtain information on the topology of such
submanifolds.

In this paper we follow closely the approach in [Lel]. Firstly we obtain an
estimate for the Ricci curvature of submanifolds of a space form which improves
Leung’s estimates in [Lel] and [Le3]. Next we obtain a criterion, based in the
results of [LS], [Le2] and [X], for the vanishing of the homology groups of
compact submanifolds of Euclidean spheres or spaces. Then we combine these
results to study the geometry and the topology of such submanifolds.

To state our results, let us fix some notation. We will denote by f: M" —
QI+ an isometric immersion of a connected n-dimensional Riemannian manifold
M" into a complete, simply connected (n + m)-dimensional manifold o+ with
constant sectional curvature ¢, where n > 2 and m > 1. Let H, H and S denote
the mean curvature vector of the immersion, its norm and the square of the length
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of the second fundamental form, respectively. As usual we will denote by 7. M
the tangent space of M" and by N;(x) the first normal space of the immersion
at xe M". We will make use of the following convention: if x € M" is such that
H(x) #0, then 4; < A, < --- < 4, will denote the eigenvalues of the Weingarten
operator Ae,, in the direction & = (1/H)H(x); if H(x) =0, just take 4; =0,
1 <i <n, and &; any unit vector normal to M" at x. Recall that the immersion
is quasi-umbilical at x if there exists an orthonormal frame &;,...,¢&,, in the
normal space T, M*, such that each Weingarten operator Ag, 1 < B <m, has an
eigenvalue of multiplicity at least n — 1; the immersion is quasi-umbilical if it is
quasi-umbilical at every x in M".

With this convention, we can state the mentioned estimate for the Ricci
curvature of submanifolds and also a sufficient condition for a submanifold
M" of Q"™ to be a conformally flat submanifold with normal curvature tensor
Rt =0.

THEOREM 1.1. Let f: M" — Q""" be an isometric immersion. For every
xeM" and ve T.M, with ||v|| =1, we have:

(1) Ric(v) > (”

(@) If n =3 and (1) is an equality for some unit ve T.M, then:
. (al) f is quasi-umbilical at x, R*(x) =0 and dim Ny(x) <2. Moreover, if
H(x) =0 then dim N;(x) < I;

(a2) For any unit vector & € T,M* we have Azv = Jv, where J. has multiplicity
1 or n as an eigenvalue of Ag.

(b) Let n>3. If for each x in M" there exits an unit vector v in T.M
such that (1) is an equality, then M" is conformally flat.

- >(nc—S) +nH?* + (n — 2)H{A¢ v, 0).

Simons [S], Lawson [L] and Chern, do Carmo and Kobayashi [CCK], con-
tributed for the classification of the compact minimal submanifolds M” of the
unit sphere S"*!, with S <n. A still open problem is the complete classification
of these submanifolds when the ambient space is the unit sphere S, m > 2.
The following corollary is a partial answer to this question.

COROLLARY 1.2. Let M™, n>3, be a compact minimal submanifold of S™™.
If S <non M" and the fundamental group of M" is infinite, then M" is a Clifford
torus Sj] X Sc”z’1 in a totally geodesic submanifold S"*' = S"™" where ¢; = \/1/n

and ¢; =+/(n—1)/n.

We state now a criterion for the vanishing of the homology groups of com-
pact submanifolds and also other topological results.

THEOREM 1.3. Let f: M" — Q'™ be an isometric immersion, where M" is
compact and ¢ > 0.
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(@) If for some integer p satisfying 2 <p <n/2

2H? —2p)H
n +n(n D) l—i—nc
n—p n—p

holds on M™, then the k-th homology group Hy(M,Z) =0, for p <k <n-—p.
(b) If

(2) S <

2p72 _
3) s<” H Jrn(n 2)HA e
n—1 n—1

holds on M", then the fundamental group mi(M) of M" is finite and the universal
covering M" of M" is compact. Moreover,

(bl) If n =2, then M" is diffeomorphic either to the sphere S* or to the real
projective space RP?, according to M? is orientable or not;

(b2) If n=23 and 7 (M) = {0}, then M? is diffeomorphic to the sphere S;

(b3) If n >4 and M" is orientable when n is even, then M" is homeomorphic
to the sphere S".

When M" is complete, we have the following version of 1.3(b). We observe
that the main theorem in [SX] is a consequence of the following result.

COROLLARY 1.4. Let M" be a complete submanifold of Q'*", ¢ >0, such
that M" is orientable when n is even. If sup(S — T) < 0, where T is the right side
of (3), then M" is compact and the same conclusions of 1.3(b) are valid.

In [CN], [AC] and [Xu], the authors studied hypersurfaces M" of S"*! with
constant mean curvature H. In [CN] it was proved that if M" is complete and
sup S < C(H), then M™" is totally umbilical; in [AC] and [Xu] it was proved that
if M" is compact and S < C(H), then M" is umbilical or isometric to a torus
S x S*1. In our next theorem, we remove the condition H = constant and
obtain a topological-geometrical version of this statement, in any codimension.

THEOREM 1.5. Let f: M" — S™™ be an isometric immersion, where M" is
compact. Let S < C(H) on M", where

4) C(H)=n+ 2?;721) - ”é’zn__zif n2H? + 4(n — 1),

Then the Ricci curvature of M" is nonnegative and we have only two possibilities,
(a) and (b):

(@) m1 (M) is finite. In this case we have:

(al) If n =2, then M?* is diffeomorphic to S* or to RP?;

(a2) If n=23 and n;(M) = {0}, then M?* is diffeomorphic to S?;

(a3) Let n >4 and assume that H # 0 when S = C(H). If M" is orientable
when n is even, then M" is homeomorphic to S".
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(b) 71 (M) is infinite. In this case, S = C(H) on M" and.

(bl) If n =2, then M? is flat,

(b2) If n>3, and M" is orientable, then the codimension m of f can be
reduced to 1, the mean curvature H is constant and [ has two constant principal
curvatures, W, and p,, with multiplicities 1 and n— 1, respectivelly, such that
Uy - 1y = —1.  Consequentely, M" is isometric to a torus Scl,1 X S(,"Z_1 in S"1 where
c[:1+u,2, i=1,2.

Note that the pinching constant C(H) for S in Theorem 1.5 depends on H
(and n) and then depends of a specific immersion. A pinching constant depending
only on n was firstly obtained by Lawson and Simons in [LS]. There it is proved
that if M" is a compact submanifold of S"™ such that n > 5 and S < 2vn — 1
on M" then M" is homeomorphic to S”. Related to this, recently Hou [Ho]
proved the following rigidity result: let M" be a compact submanifold of S"*™
with non-zero parallel mean curvature vector. If n>8 or m<2 and S<2vn—1
on M", then the codimension can be reduced to 1 and M" is either umbilical or
isometric to S} x S”7!, where ¢, =1++vn—1and ¢ =1+41/vn—1. The next
corollary is an extension of the theorem in [LS] and a topological-geometrical
version of the result in [Ho].

CorROLLARY 1.6. Let M" be a compact submanifold of S"™™ such that
S<2vn—1on M". Then the Ricci curvature of M" is nonnegative and we have
only two possibilities (a) and (b):

(a) There exists a point x in M" such that Ric(v) > 0, for all unit vector v in
T.M. In this case M" admits a metric of positive Ricci curvature and

(al) If n=2, then M" is diffeomorphic to S* or to RP?;

(a2) If n=3, then M* is orientable with Hy(M,Z)={0} and, if n(M)={0},
then M? is diffeomorphic to S3;

(@3) If n >4 and M" is orientable when n is even, then M" is homeomorphic
to S".

(b) For each point x in M", there exists an unit vector v in T.M such that
Ric(v) = 0. In this case S =2vn—1 and n*H*> =nvn—1—-2(n—1) on M" and

(bl) If n =2, then M? is flat and minimal. In particular, if m =1, M? is
isometric to a torus S} x S};

(b2) If n =3, then the codimension m can be reduced to 1 and, if M" is
orientable, M" is isometric to the torus Sg] X SL’?Z’I, where c; =1++vn—1, ¢; =

1+1/vn—1.

We observe that the result in (al) was obtained by Wei [W].

2. Notations and preliminary lemmas

Let M = M", n>2, be a connected n-dimensional Riemannian manifold.
We denote by {,» and by || || the metric and norm, respectively. Let R denote
the curvature tensor of M. Then the Ricci tensor is defined by
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Ric(v, w) Z(R (vi, v)w, ),

where v, w are in the tangent space T.M of M at x, and {v;};., is any or-
thonormal basis of 7M. The Ricci curvature Ric(v) in the unit direction
ve T,M and the scalar curvature v of M at x are given, respectively, by

(5) Ric(v) = {Qv,v), t=1rQ,
where Q: Th'M — T, M 1is defined by
(6) {Qv,w) = Ric(v,w).

Let f: M" — Q' m>1, be an isometric immersion, where Q”"*" is a
complete, simply connected (n + m)-dimensional manifold with constant sectional
curvature ¢. For each x € M", let (T.M)" denote the normal space of f at x,
and o: M x TTM — (T.M )L denote the second fundamental form of f at x.

If {fﬁ};":l is any orthonormal basis of (7,M)", then the Weingarten opera-
tor Ag,, in the normal direction g, is defined by

(Ago,wy = (v, w), &p>, v,we TM.

The mean curvature vector H = H(x) at x and its norm are defined by

1 & -
™) H=03 (e de)ép H= A
=1
The square of the length of the second fundamental form of f at x is defined by
(8) S = Z tr A?,,-
p=1

We then have the following relations:
(9) ZAZ Z (tr Ag)Az, = =0+ (n— 1)l
=1 B=1

where [ : T\M — T, M is the identity map, and
(10) S=—t4+n’H*+nn-1ec.

We now present three lemmas which will be used in the next sections.

LeEMMA 2.1. Let V be a real vector space of dimension n > 2 with an inner
product {,» and norm || ||. Let A:V — V be a symmetric linear map and let H
be such that tr A=nH. If 1y <l < -+ <, are the eigenvalues of A, then for
any unit vector ve V we have

(a) <(A%v,0) < ((n—1)/n)[tr A> —nH?) +2H{Av,vy — H*. Ifn>3 and the
equality occurs in (a), for some unit vector v, then Av = Jjv where j satisfies
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|4 —H|=max{|A;,—H|,i=1,...,n}. Also =2 for all k,I1#j, and Aw= Aw,
k #j, for any w orthogonal to v.

(b) <Av,v) =1 = H —/((n—1)/n)[tr A2 —nH?. Moreover, if Jy = H—
V((n=1)/n)[tr A2 —nH?|, then A = Jo for i > 2.

Proof. Let {v;};_, be an orthonormal basis of ¥ such that they are eigen-
vectors of A, where Av; = A;v;, for all i. Assume first that tr A = nH = 0 and
let Z; be such that ijz =max{/},i=1,...,n}. Since J; = —D izj % then

(11) ;= (Zﬂj (n=1)> "4

i#j i#]

)72 < (n — 1>tr A
n

If v is a unit vector, it is clear that
n—1
(A%, 0) < ljz < (—)tr A2,
n

and then the first part of (a) follows for H =0. Now assume that » > 3 and
let v=>3"1" 1 it be a unit vector such that {4%v,v) = ((n —1)/n)tr A>2. Then
(A*v,v) = A = ((n—1)/n)tr A*> and (11) is an equality. Since

2
(Zif): (=132 = 3 e i)’
i#] i#] kl,cl;?/'

<

we have by (11) that A = A, for all k,/ #j. Also for any k #j we have

and

;sz — (A% = Zal?giz =21 —a)* + ajz,{jz,
i=1

that is, ) (1-a )7/12(1—012) If a? =1, then @; =0 for i #j and v = +uv;.
If a # 1, it follows that 22 = /12 for all i=1,...,n and by the equality in
(1 ) this implies that /1 (n—l)ﬂj. Since n>3 ;=0 for all i=1,...,n.
In any case, we have Av = Jjv. Now let w be orthogonal tov. If v=tu,

then w = Z biv; and so Aw = 4w, Yk # j; otherwise every Z; =0 and then
Aw = 0. For the part (b), note that {Av,v) > 4;. Since 4; < H =0 and /12

((n—1)/n)tr A%, then
A= <I’l — 1>tr A2,
n

which is the desired result (b) for H = 0.
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Suppose now that H #0 and let B=A4 — HI, where I:V — V is the
identity map. Then tr B=0, B> = A> —2HA + H*I and tr B> = tr A*> — nH>.
The result (a) follows immediately by applying the case H =0 to B. Since
{Av,vy > 21 and H > A;, choose v =wv; in (a) for B=A — HI. Then

(J—H)* < ("; 1) [tr A> — nH?),
and the first part of (b) follows for H # 0. For the proof of the second part
of (b), since (n—1)3.(h;)* = (3. b;)* holds, where b; = 4; — H and i > 2, then

we have A; — H =1, — H for all i >2. This completes the proof.

LemmA 2.2. Let M", n>4, be a connected, compact n-dimensional Rie-
mannian manifold such that M" is orientable if n is even, and let M" be the
universal covering of M". If m(M) is finite and H,(M,Z) ~ H,(M,Z) = {0}
for all p=2,...,n—2, then M" is homeomorphic to a sphere S".

Proof. Firstly we observe that M" is orientable if n is odd. In fact, if not,
then H,(M,Z) = {0}, see Corollary 7.12 of [B]. But the Euler characteristic
x(M) of M" is zero and also y(M)=by—by+---+by_1 —b,, where b; =
rank H;(M,Z). Since n;(M) is finite, b =0 and then y(M)=1+b,_1 =1, a
contradiction. Now the torsion part of H(M,Z) is H,(M,Z), because it is
finite. But by the universal coefficient theorem, see [B, p. 282], the cohomology
group H(M,Z) is isomorphic to F; ® T; |, where F; and T; are the free and
torsion parts of H;(M,Z). By Poincaré duality, H,(M,Z) is isomorphic to
H" ' (M,Z) and so H|(M,Z) = {0}. Again by the universal coefficient theo-
rem, H'(M,Z) = {0} and, by Poincaré duality, H, |(M,Z) = {0}. Then M" is
a homology sphere and the same arguments applied to M" tell us that M" is a
homology sphere. Since 7; (M) = {0}, by standards arguments using the Hurewicz
isomorphism theorem and Whitehead theorem, see [Sp, p. 398], we conclude
that M" is indeed a homotopy sphere. By the generalized Poincaré conjecture
for n > 4, M" is homeomorphic to a sphere. Then we have a homology sphere
M" which is covered by a sphere M” and so, by a theorem of Sjerve [Sj],
(M) = {0} and hence M" is also homeomorphic to a sphere. This concludes
the proof.

Lemma 2.3. Let V be a real vector space of dimension n > 2 with inner
product {,» and let A:V — V be a symmetric linear map with tr A =nH. Let
p be a positive integer such that p <n/2 and let {vi,...,0,,Vps1,...,0,} be an
orthonormal basis of V. Denote by

tr A2 — (n+ 1)H? = (n = 2)H{Avy,v1), if p=1,
. _ )4
(12) ©= p(nn p)trA2—anz—(n—ZP)HZ<AUI>”1>’ if p>1.

i=1
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Then

2
(13) (Z <Avi,vi>> —nH Y (A +23 < Av, ) <O,
i i ik

where, i=1,...,p and k=p+1,...,n
Proof. Since A is symmetric, clearly
(14) trd? > (Av,o)? + ) (v ud? +2) (v v’
i k ik
Assume first that tr 4 =nH =0. If p=1, we have
tr A% > (Avy, 1) + 22 (Avy, v d?
k

and the lemma follows for H=0and p=1. If 2 <p <n/2, then p(n—p)=>n
On the other hand, we have that

1
tr 42 > 1—) lz {Avi, v

Since tr 4 =Y, {Av;,v;) + > {Auvk,vry = 0, then from the above inequalities it
follows that

2

2
1
— +2) (Ao, vy’
h=p ik

> Avg, o)
k

2
”(”Tt A2 > lz CAvi oy | +237 (v o,

ik
which is the desired result (13) for H=0 and p>1. For H #0, let B=
A—HI, where I:V — V is the identity map. Then tr B=0, B>=A4%—
2HA + A*I and tr B> =tr A> —nH?. The result (13) follows immediately by
applying the case H =0 to B.

3. Proofs of Theorem 1.1 and Corollary 1.2

The following theorem, which was proved by Lawson and Simons [LS] in
the case ¢ > 0 and, independently, by Leung [Le2], Wei [W] and Xin [X] in the
case ¢ =0, is essential in the proof of Theorem 1.1.

THEOREM 3.1. Let M" be a compact manifold isometrically immersed in
Q" ¢ >0. Denote by o the second fundamental form of the immersion and let
p and q be positive integers such that p+q =n. Suppose that at each point x
of M" and for all orthonormal basis {vi,...,0y,Vps1,...,0,} of TuM, the following
condition is valid
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)4 n
(15) =) Z (2w, o) 1> = <ol v0), (v, v8)D] < pge.

i=1 k=p+1
Then H,(M,Z) = H,(M,Z) = {0} and m (M) ={0} if p=1.

Proof of Theorem 1.1. Let xe M". If (x) #0, let &,...,&, be an
orthonormal basis of 7.M* such that & = (1/H)H(x). Since tr A;, = nH and
tr 4z, =0 for f>2, it follows from (9) that

(16) Z <Agﬁv vy 4+ (A v,v) —nH{Agv,0)

= —Ric(v) + (n — 1)c.

If H(x) =0, let {&p}p-1 be any orthonormal basis of (.M )* and then (16) also
follows from (9). Now applying Lemma 2.1 to each 4¢, in (16), we get (1).

(a) Suppose that n > 3 and that (1) is an equality for some unit vector v in
T.M. By (8) and (16) we have

(17) zm:{méﬂu vy — ( - 1>t Agﬂ}

p=2
—1
+ {<A v, 0y — ( )t AZ —2H{Azv,v) +nH?*| = 0.

Also by Lemma 2.1(a), we see that in (17), the expressions between the brackets
are null. Therefore, again by 2.1(a), v is an eigenvector for all 4¢, and, for any
w orthogonal to v in 7:M, we have Asw = Agw. That is, f is quasi-umbilical
at x and also RL =0. Let vy =v, vp,...,v, be an orthonormal basis of T,M
such that Agv1 = oy and Agyvi = /lﬁv, for all i >2. The first normal space
Ni(x) is spanned by a(v;,v;), i=1,...,n. For i>2 we have that o(v;v;) =
Z”’ Jply=¢& and, for i=1, oc(vl,vl) Zﬁ | 1glp = fo This shows that the
dlmension of Ny(x) is at most two. In particular, if H(x) =0 then (n— 1)é+
&y =0 and the dimension of N;(x ) is at most one. This proves (al). For (a2),
let &=3";a5¢s be a unit vector in T,M~*. Then A:v = v, where 1=y apu,
and the mult1p11c1ty of 1is 1 or n.

(b) Let n > 3. 1If n >4, then (b) follows from (a) and from a result of [CY]
on conformally flat submanifolds. If n =3, by a well known characterization
of conformally flat manifolds, see [D, p. 108], we have to show that the ten-
sor y(X) = Q(X) — tX /4 satisfies the Codazzi’s equation (Vyy)(Y) = (Vyy)(X),
X,YeTM. Given x in M?, since R =0 there exists a connected open set V
around x in M3, where we can take a normal orthonormal frame field &,,..., &,
such that VL@; =0, f>1. By part (a), there exists an orthonormal basis
{X],XQ,X3} of T.M such that AéﬂXl :,uﬁXl and AéﬁX'[ = l/;X',, =1 i=273.
Observe that tr Az, = uz + 245 and 7= Ric(X;) + 2 Ric(X;), i=2,3. Then by
(9) we obtain that Ric(X1) =2c+23 ;gus and
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Ric(X;) =2c+ > (dppp+45), =23, f=>1.
I3

Taking these to the definition of y, gives

( +ZAB( ﬁ_)”ﬁ>>xl, y(X;) = <§+;2ﬁ:i§>x i=2,3.

Therefore y = (¢/2)I + > 4 Ap(Ae, — (Ap/2)1).

Assume now that m =1 (the case m >2 is similar) and consider A4 =
{yeV:lh=u}and B={yeV:1 #u} (for the general m, we have to con-
sider 2™ of such subsets). Clearly int(4)UB is open and dense in ¥ and, in
particular, 4; and g, are smooth in this set. Now using the Codazzi’s equations
for each Hg, in int(4) U B, it follows that y satisfies the Codazzi’s equations
in int(4)U B and therefore in V. This proves that M? is conformally flat.

Proof of Corollary 1.2. Let M" be a compact and minimal submanifold
of "t such that S <n on M" and with infinite 7;(M). By (1) we have that
M" has everywhere nonnegative Ricci curvature and we claim that for all x in
M, there exists an unit v in 7, M such that Ric(v) = 0. In fact, if there exists x
in M" such that Ric(v) > 0 for all unit vector v in 7 M, then by Aubin’s theorem
[A, p. 397], M" has a metric with positive Ricci curvature and by Bonnet-Myers’
theorem, 7;(M) is finite, a contradiction which proves our claim. Then by (1)
and 1.1(al), S =n, Rt =0 and the dimension of N is 1 on M”. The corollary
now follows immediately from Theorem 3 of [K].

4. Proofs of Theorem 1.3 and Corollary 1.4

Proof of Theorem 1.3. (a) Let 2<p <n/2, xe M" and let {v),...,v,} be
an orthonormal basis of T.M. Let {fﬁ}ﬂ | be an orthonormal basis of .M+
such that &, = (1/H)H(x) if H(x) #0. Since tr As, = nH and tr Ag, =0, =2,
we have

(18) o= 2|loc(vi, vi) ||~ = <oulwy, vi), 0t(vk, vk ) D]
ik

= [2Ae,vi, 06 )% — {Ag,vi, v <A, vk, V)]
1

=2 {Ae,ui, v + Z

ik f>1 =1

2
Z<A<lvi,v,~>] —nH Y (Ae v, v,

i

2
> (A, Ui>1

i

+2 <Ag|vl7vk> +
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fori=1,...,pand k=p+1,...,n. Applying Lemma 2.3 to each 4:,, we get

C/v
(19) D < MS—anz - (n—2p)HZ<Agvlv,-,v,->.
n i
Applying Lemma 2.1(b) to (19), we get
D < @S —pnH? — p(n — 2p)H)\,,
and then the condition (15) of Theorem 3.1 is valid if
‘H? -2
n n n(n —2p)

S < HA +nc
n—p n—p
on M". On the other hand, for p <k <n— p, we have that
*H? -2 n’H? -2k
(20) ! +n(n ») HA +ne < +n(n )Hﬂyl + ne
n—p n—p n—k n—k

and it follows from Theorem 3.1 and (20) that H;(M,Z) = {0}, which proves
1.3(a).

(b) Let xe M" and v be a unit vector in T, M. Since {Agv,v) > A; when
H #0, by (1) we have that

Ric(v) > (n

If the condition in 1.3(b) holds on M", then the Ricci curvature of M" is positive
and by Bonnet-Myers’ theorem, 71 (M) is finite. If n = 2, we obtain 1.2(b1) by the
Gauss-Bonnet’s formula. If n =3, since 7;(M) = {0}, we have (b2) by Ham-
ilton’s theorem [H]. Now let n > 4 and M" orientable when n is even. Since

n’H?* n(n—2) n’H?* n(n—4)

n—l+ P— Hii+nec < _2+ PR
it follows from part (a) that Hy(M,Z) = {0} for 2<k <n-—2. The above
arguments applyed to the immersion fom: M" — Q" where 7 : M" — M" is
the covering map, tell us that Hy(M,Z) = {0} for 2 <k <n—2. Then (b2) is
a consequence of Lemma 2.2.

- )(nc— S) 4 (n—2)H +nH?>.

HJy + nc,

Proof of Corollary 1.4. Under the hypothesis of 1.4, let xe M" and let v
be a unit vector in 7.M. By (1) we have that

—1
Ric(v)znn (ne — S) +nH?* + (n — 2)H i
_ 252 _
g (e 0 =2)
n n—1 n—1

> n; ! [—sup(S) + inf(7T)] = —(%) sup(S—T) =9 > 0.

Then M" is compact and the result follows from 1.3(b).
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5. Proofs of Theorem 1.5 and Corollary 1.6

Proof of Theorem 1.5. Let xe M" and let v be a unit vector in T, M. By
using (1) and Lemma 2.1(b), it is easy to see that

(1) LlRic(u)zAszc,

P
where

2172 _
(22) T =) s,

n—1 n—1

“H i1

(23) B:n—S+2nH2—n(’;_l) \/”n (S — nH?),

nn—2)H [n—1
n—1

(24) C=n—S+2nH* - (S —nH?),

where Sy =tr Agl. We claim that S < C(H) is equivalent to C >0 and also
S = C(H) if and only if C =0. In fact, writing S| =S —nH?, we have

2
-2) /n—1 n(n —2)*H?
_ o _ n(n I
C=n+n \/Sl+2(n—l) P + A=)
=(K-L)(K+L),
where
n3H?
K=\"T3=n
and

(n—2)H n

L=/S + 5 —

Then C > 0 if and only if K > L, that is S < C(H). By (21) we then have that
the Ricci cuvature of M" is nonnegative.

(a) Let (M) be finite. Observe that M" is compact, in this case.

(al) If n =2, it follows from the Gauss-Bonnet’s formula that M? is dif-
feomorphic to S? or to RP2.

(a2) If n=3, assume firstly that there exists a point x in M3 such that
Ric(v) > 0 for all unit vector v in .M. It follows then by Aubin’s theorem
that M” has a metric of positive Ricci curvature and, since (M) = {0}, M? is
diffeomorphic to S by Hamilton’s theorem. Suppose now that for each x in
M?", there exists a unit vector v e T,M such that Ric(v) =0. Since C >0, we
have by (21) that 4 = B= C = 0 and also, as it is easy to see, an equality occurs
in (1) of Theorem 1.1 for each x € M and some unit vector v e T,M. Then M?
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is conformally flat and, since 7, (M) = {0}, we have by a theorem of Kuiper, see
[D, p. 116], that M? is (conformally) diffeomorphic to S3.

(a3) Let n >4 and assume that H #0 when S= C(H). Since 4> B>
C >0, see (21), we have

2H2 ) 2H2 —_4
(25) s<™H =) g a4
n—1 n—1 n—2 n—2

Hli+n

on M". We claim that

n’H?* n(n—4)
n—2 + n—2
on M". In fact, if there exists a point x in M" where (26) is an equality, then it
follows from (25) that H =0 or Ay = H at x. It also follows from the equality
in (26) that A =B=C =0 and so S = C(H), thatis, H # 0. Therefore Ay = H
and by 4 =0, we obtain that S =n+2nH? at x. On the other hand, by
S =n+2nH? and C =0, we obtain that S =nH?> at x, a contradiction. This
proves (26) and then, by Theorem 1.3(a) we have that H;(M,Z) = {0} for
i=2,...,n—2 and the same holds for M". Then (a3) follows from Lemma 2.2.
(b) If (M) is infinite then, for each x in M" there exists a unit vector
ve TyM such that Ric(v) =0. Otherwise by Aubin’s theorem and Bonnet-
Myers’ theorem, we would have 7;(M) finite. By (21) and C > 0 we have

(27) S=C(H), A=B=C=0

(26) S < Hi +n

on M". Moreover, if n >3 and H # 0, we have on M" that

1
(28) S =Sy, Ale—\/nn (Sy — nH?).

(bl) If n=2, it is clear that M? is flat.

(b2) If n > 3, assume firstly that H # 0 on M". By (28) and Lemma 2.1(b),
we can see that Ae has two eigenvalues 4; and 4, where 4; has multiplicity
at least n— 1. Also Ny = [H] because S =Sy. Now we want to show that
Ay = —1. For this, observe that if v is a unit vector in 7, M and Ric(v) = 0,
then the equality occurs in (1) for x and v, and A¢ v = Ajv. Let vy = v,v2,...,0,
be an orthonormal basis of 7,M such that Asv= Ajv and Aev; = Av; for
i > 2. By the Gauss’ equation we have

n

0 = Ric(v) = Z(l + Ca(vr,v1), (7, 07) > — Jlee(vr, v3)|)

i—2
= (I’l - 1)(},1/12 + 1),
that is, 414, = —1. We claim that N; is parallel in the normal connection. Let

€1y-+ 5 Sy and Xj, ..., X, be local orthonormal frame fields, normal and tangent
to M" respectively, chosen in a way that & = H/H and A¢ X = L1 X1, Ae X; =
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A X;, i >2. Since 1 # Ay, they are smooth functions on M". By the Codazzi
equations

(Vi o) (Xi, X1) = (Vg o) (X1, X1),  (Vy,0)(X;, Xi) = (Vy0) (X1, X5),
and by the fact that N is spanned by H, we obtain
MV &1 = [(l = A2){Vx X1, Xi> — Xi(A1)]E1,
22V &1 = [(J = ) <Vx Xi, X1 ) — X1 (A))&).

But the left sides of (29) cannot be parallel to & unless Vifl =0, for i=
1,2,...,n. This proves our claim. By a well known result of Erbacher, the
codimension m of f can be reduced to 1 and f can be seen as an immersion
of M" into S™! where Ag, has two eigenvalues 4; # 4,. Now by a result of
Ryan [R, p. 372], the distribution T, := {X : A X = 1, X} is differentiable and
involutive, and X;(4;) =0 for i>2. Since A41d = —1, We also have that
Xi(41) =0 for i > 2. Taking this to (29), we see that < LXi>=0 for i>2
and, since <VX ,X;> =0, this shows that the orthogonal distribution TL
{1 45, X = L1 X} is totally geodesic. We then have a compact manifold M "
with nonnegative Ricci curvature and with a codimension one foliation, defined
by T;,, whose orthogonal distribution T, is totally geodesic. It follows imme-
diately from Corollary 2 of [BW] that 7}, is also totally geodesic and then
{Vx,X;, X1) =0 for i >2. Again by (29) we conclude that X;(1;) =0. This
proves that A; and 4, are constant on M". Clearly f has constant mean cur-
vature H #0 and S = C(H). Now (b2) follows, in this case, from the theorem
in [AC] or [Xu] quoted in the Introduction.

Suppose now that there exists a point xo in M" such that H(xy) = 0. Since
A=B=C=0o0n M", (1) is an equality everywhere. By Theorem 1.1, R* =0
and M" is conformally flat. On the other hand, S(xo) =n because H(xy) =0
and then 7(xo) = n(n —2) by (10), that is, M" cannot be flat. Since 7;(M) is
infinite, we can now use the same arguments of the proof of Theorem 1 of [N
p. 259], to conclude that M" = R" x Sc’?z’l, for some ¢, > 0. This shows that M"
has constant scalar curvature and so M" also, that is, 7 =n(n—2). Again by
(10), S =n?H? +n on M" and combining this with S = C(H), we obtain that
H =0, S=n. The result (b2) now follows from Corollary 1.2, in this case.

(29)

Proof of Corollary 1.6. Let S <2,/(n—1) on M". By (24), we have

(30) C=D>E>0
on M", where
nS a’
D=n-— + ,
(31) 2vn—1 2vn—1

=(Wn—1+1)WnH - (Vn—1-1)VS —nH?,

and
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(32) E—n(l—N%)

Since C >0, we have that M" has nonnegative Ricci curvature and S < C(H)
on M". We have two possibilities, (a) and (b):

(a) There exists a point x in M" such that Ric(v) > 0 for all unit v in
T.M. In this case, it follows from Aubin’s theorem and Bonnet-Myers’ theorem
that M" has a metric of positive Ricci curvature, M" is compact and 7; (M) is
finite. If n =2 or n=23, then (al) and (a2) follows from the same arguments
as in 1.5(al)(a2). For (a3), let n > 4 and observe that H # 0 when S = C(H).
In fact, if there exists xo in M" with S = C(H) and H =0, then C(xo) =0 and
also D(xg) = E(xp) =0, by (30). This shows that 0 =S =2vn — 1 at xy, which
is a contradiction. Then (a3) follows from 1.5(a3).

(b) For the case (b), using (30) we obtain A=B=C=D=E =0 on M".
Then S=2vn—1 and n’H*>=nvVn—1-2(n—1). (bl) If n =2, then M? is
flat and H = 0. In particular, if m = 1, it follows from [CCK] or [L] that M? is
isometric to S5 x S;. (b2) Let n>3. In this case, it follows from B =0 that
S = Sy on M" and therefore N; is spanned by H. We now imitate the proof of
1.5(b) to show that f can be seen as an isometric immersion of M”" into S”*!
with constant H # 0 and S =2vn—1 on M"; (b2) is now a direct consequence
of the result in [Ho] mentioned in the Introduction.
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