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ON HOLOMORPHIC FAMILIES OF RATIONAL MAPS:

FINITENESS, RIGIDITY AND STABILITY

Hiroshige Shiga

Abstract

We consider holomorphic families of rational maps from the viewpoint of complex

dynamics.

First, we consider some classes of families of rational maps which satisfy a certain

stability condition. We show a ®niteness theorem for such holomorphic families of

rational maps parameterized by a Riemann surface of ®nite type.

Next, we consider the monodromy of quasiconformally stable holomorphic families

of rational maps over a punctured disk, and study the action of the monodromy on the

Julia set.

1. Introduction

D. Sullivan proposed a project to look up similar phenomena between the
theory of Kleinian groups and the theory of complex dynamics of rational maps
(cf. [Su]). The list of collected phenomena is called ``Sullivan's dictionary''.
For example, the number of generators of ®nitely generated Kleinian groups
corresponds to the degree of rational maps, and as many computer graphics
show, the Julia sets of rational maps look like the limit sets of Kleinian groups.
Furthermore, TeichmuÈller spaces for rational maps are de®ned and it is shown
that they have the similar properties to TeichmuÈller spaces of Kleinian groups.

In this paper, we consider holomorphic families of rational functions par-
ameterized by Riemann surfaces. From the standpoint of Sullivan's dictionary,
we ®nd a natural correspondence of families of Riemann surfaces to those of
rational maps. Actually, if we consider a holomorphic family of (hyperbolic)
Riemann surfaces, then it produces a holomorphic assignment from the para-
meter space to quasi-Fuchsian groups uniformizing the Riemann surfaces.
According to the dictionary, quasi-Fuchsian groups correspond to rational maps.
Therefore, we consider that holomorphic families of rational maps correspond to
those of Riemann surfaces.

First of all, we recall the following ®niteness theorem for holomorphic
families of Riemann surfaces parameterized by a Riemann surface of ®nite type.
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Theorem 1.1 (Parshin-Arakelov). Let X be a Riemann surface of ®nite type.
Then, there are only ®nitely many non-isomorphic and locally non-trivial holomor-
phic families of Riemann surfaces of ®xed ®nite type �g; n� with 2gÿ 2� n > 0
over X.

This theorem was ®rst conjectured by Shafarevich and it is called Shafarevich
conjecture in the function ®eld case. Parshin proved it for a compact Riemann
surface X and holomorphic families of Riemann surfaces of type �g; 0� �gV 2�.
Arakelov proved it for X of ®nite type and holomorphic families of Riemann
surfaces of type �g; 0� �gV 2�. In [ISh], the theorem with the condition as above
is shown by using the theory of TeichmuÈller spaces and Kleinian groups.

Once the ®niteness theorem is established, uniform boundedness of the
number of families is an interesting question, that is, if the Riemann surface X
varies in the moduli space, then whether or not there exists an upper bound of
the numbers of holomorphic families over X which does not depend on X.

Recently, we have obtained a partial answer to this problem ([Sh2]).

Theorem 1.2. Let X be a Riemann surface of type � p; k�. Then, the number
of non-isomorphic and locally non-trivial holomorphic families of Riemann surfaces
of type �g; n� over X is uniformly bounded if �g; n� � �0; n�; �1; 1�; �1; 2� or �2; 0�
�nV 4�.

As a corresponding problem in holomorphic families of rational functions,
we shall consider the following one.

Problem. Let X be a Riemann surface of type �g; n�. Then, are there at
most ®nitely many non-isomorphic and locally non-trivial holomorphic families
of rational maps of degree d V 2? And if it is ®nite, then is there an upper
bound of the number of families which depends only on d; g and n?

Unfortunately, this problem has a negative answer. Namely, we can ®nd
a Riemann surface of ®nite type over which there are in®nitely many non-
isomorphic and locally non-trivial holomorphic families of rational maps.
However, we shall show that if we restrict our families to ones which satisfy a
certain reasonable condition, then the number of families over a Riemann surface
of ®nite type is ®nite.

Secondly, we consider the monodromy of holomorphic families.
In case of holomorphic families of Riemann surfaces, all Riemann surfaces

which appear in ®bers of the family are quasiconformally equivalent to each
other. So, analytic continuations of closed curves in the parameter space de-
termines a (homotopy class of ) quasiconformal self mapping of the Riemann
surfaces. It induces a homomorphisms of the fundamental group of the surface
to the mapping class group which is called monodromy. It is known that the
monodromy groups play an important role in holomorphic families of Riemann
surfaces (cf. [ISh], [Sh2]).

On the other hand, in case of holomorphic families of rational maps with
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the same degree, all rational maps in a family are not necessarily quasiconform-
ally equivalent to each other. In this paper, we consider holomorphic families
of rational maps over the punctured disk D� � f0 < jzj < 1g, and assume that
they are obtained by quasiconformal deformations. We shall show that under a
condition the monodromy for a simple closed curve in D� around the origin is
of in®nite order (Theorem 4.7). It is a generalization of a result in a paper of
McMullen [Mc2]. The result corresponds to the fact that for a holomorphic
family of Riemann surfaces over the punctured disk, the monodromy for a simple
closed curve around the origin is a Dehn twist if the family does not have an
analytic continuation to the origin ([I]). Our proof deeply depends on the theory
of TeichmuÈller spaces of complex dynamics which is developed in a paper of
McMullen and Sullivan [MSu].

We give some examples of families for Theorem 4.7 in the last section.
As for terminologies (e.g. Julia set, Fatou set etc.) and fundamental facts of

complex dynamics of rational maps, we refer to [B] and [CG].
The author thanks Curt McMullen for his helpful comments and suggestions.

He also thanks the referee who carefully read the manisucript and gave useful
comments.

2. Holomorphic families of rational maps

Throughout this paper, the degree d of a rational map is not less than 2.
We denote by Ratd the space of rational functions of degree d. Since Ratd is
identi®ed with P2d�2 ÿ fsome algebraic varietiesg, it has a natural complex
structure.

Definition 2.1. Let fRlgl AM be a family of rational functions para-
meterized by a complex manifold M. Then it is called a holomorphic family over
M if the assignment

M C l 7! Rl A Ratd

is holomorphic.

Definition 2.2. Let fR� j�
l gl AM � j � 1; 2� be holomorphic families of

rational maps over a complex manifold M. They are called isomorphic if there
exists a holomorphic mapping f from M to PSL�2;C� such that

f�l� � R
�1�
l � R

�2�
l � f�l� for all l A M:

A holomorphic family fRlgl AM of rational maps over M is called locally trivial
if for each point z A M there exist a neighbourhood U of z and a rational map
R0 such that the restricted family fRlgl AU on U is isomorphic to a trivial family
fR0g �U over U.

First, we construct a Riemann surface X of ®nite type which gives a negative
answer to the problem in the introduction. Namely, X admits in®nitely many
non-isomorphic and locally non-trivial holomorphic families of rational maps.
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Example 2.1. Let X be a compact Riemann surface and R be an arbitrary
rational map. For each non-constant meromorphic function f �l� on X , consider
an assignment

X � X ÿ Z C l 7! Rl � f �l�R A Ratd ;�2:1�
where Z be the set of zeros and poles of f on X . Then above assignment
determines a holomorphic family over X. Obviously, X is a Riemann surface of
®nite type.

We can ®nd a rational map R so that the above family is locally non-trivial.
For example, if R has at least three critical points, then the family fRlgl AX is
not locally trivial. Indeed, if it is locally trivial, then there exists a g A PSL�2;C�
such that

g � Rl�z� � Rl 0 � g�z�
for l 0�0 l� in a small neighbourhood of l in X. Since g maps the set of critical
points of Rl to that of Rl 0 from the above relation and all of critical points are
constants with respect to l from (2.1), g ®xes these critical points. Hence we see
that g must be the identity because the set of critical points contains three points.
On the other hand, Rl 0 is actually di¨erent from Rl because f is non-constant.
Thus we have a contradiction and we conclude that the family is not locally
trivial.

Similarly, we have in®nitely many locally non-trivial holomorphic families
fR�n�l gl AX by

X C l 7! R
�n�
l � f �l�nR A Ratd �n � 2; 3; . . .�:

By the similar reason as above, we verify that a family fR�n�l gl AX is not iso-
morphic to fR�m�l gl AX if n0m. Therefore the Riemann surface X admits in-
®nitely many locally non-trivial and non-isomorphic holomorphic families.

Here, we reconsider the problem for some classes of holomorphic families
of rational maps which appear in many situations. In fact, there are several
important classes of holomorphic families (cf. [MSu]). We recall the de®nition of
stable families and quasiconformally stable families.

Definition 2.3 (Stability). Let fRlgl AM be a holomorphic family of ra-
tional maps over a complex manifold M. Then it is stable (resp. quasicon-
formally stable) if for each point l A M there exists a neighbourhood U of l
such that the action of Rl on its Julia set J�Rl� (resp. on Ĉ ) is quasiconformally
conjugate to the action of Rl 0 on the Julia set J�Rl 0 � (resp. on Ĉ ) for each l 0 A
U . More precisely, there exists a quasiconformal self-mapping fl 0 of Ĉ for each
l 0 A U such that fl 0 depends holomorphically on l 0 and

fl 0 � Rl�z� � Rl 0 � fl 0 �z�
holds for every z A J�Rl� (resp. z A Ĉ ).

Stable families are well investigated by many authors. It is known that
there are some equivalent conditions for stable families.
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Proposition 2.1. Let fRlgl AM be a holomorphic family of rational maps
over a complex manifold M. Let l0 be an any point in M. Then the following
conditions are equivalent.

1. fRlgl AM is a stable family.
2. The number of attracting cycles of Rl is locally bounded at l0.
3. The Julia set Jl of Rl depends continuously on l (in the Hausdor¨

topology) on a neighbourhood of l0.

McMullen considers stable holomorphic families of rational maps over a
``nearly'' compact complex manifold.

Proposition 2.2 (McMullen [Mc2]). Let M be a complex manifold on which
there do not exist non-constant bounded holomorphic functions. Then, any stable
family of rational maps over M is either a½ne or trivial.

In the above proposition, a family of rational maps is called a½ne if the
family consists of a½ne rational maps. A½ne rational maps are rational maps
constructed by the following way.

Take a torus T � C=L determined by an integral lattice L and consider a
multiplicative map ga : z 7! az for some a A C with jaj > 1. We assume that ga

is equivariant with respect to the action of L. (Take a in Z, for example.)
Since ga is also equivariant to the involution E : z 7! ÿz, it is projected to a
holomorphic mapping of C=fL;Eg � Ĉ onto itself. Therefore, the projected
mapping is a rational map. We call rational functions obtained by this way
a½ne rational maps.

Note that the degree of an a½ne rational map obtained from ga as above
is jaj2 and that the Julia set of any a½ne rational map is Ĉ .

From Proposition 2.2, we have a ®niteness theorem for stable holomorphic
families of rational maps over a Riemann surface of ®nite type.

Corollary 2.3. There are only ®nitely many non-isomorphic and locally
non-trivial holomorphic stable families of rational maps of degree d over a Riemann
surface X of type �g; n�. Moreover, there exists a number N � N�g; n; d� de-
pending only on g; n and d such that the number of non-isomorphic and locally non-
trivial stable families over X is less than N.

Proof. Since X admits no non-constant bounded holomorphic functions,
any locally non-trivial holomorphic family fRlgl AX of rational maps over X must
be a½ne from Proposition 2.2.

Let al and Tl be a constant and a torus which de®ne an a½ne rational map
Rl for l A X . Let pl : Tl ! Ĉ be the rami®ed covering map induced by E
above. Then, the postcritical set P�Rl� de®ned by

P�Rl� � 6
c AC�Rl�;n>0

Rn
l �c�;
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coincides with the set of the critical values of pl, where C�Rl� is the set of critical
points of Rl. Hence, P�Rl� consists of four points and any two points of them
do not collide for any l A X . Since Rl depends holomorphically on l, so does
each point of P�Rl�. By taking a ®nite covering of X if necessary, we may
assume that these four points are holomorphic mapping of X to the sphere Ĉ and
three of them are 0; 1 and y by taking a conjugation via a MoÈbius transform-
ation. Thus, the rest of them, say c�l�, de®nes a holomorphic mapping of X to
C ÿ f0; 1g, and it determines pl and Tl. It is known that there are only ®nitely
many holomorphic mappings of X to C ÿ f0; 1g (see Proposition 3.4). Thus, we
verify that there are only ®nitely many possibilities for c�l� and for Tl if c�l� is
non-constant with respect to l.

As for al, it is easily seen that there are only ®nitely many possibilities for al

because d � jalj2. Therefore, we verify that the number of non-isomorphic and
locally non-trivial stable holomorphic families of rational maps of degree d over
X is bounded by some number depending only on g; n and d. r

3. Weakly stable families and ®niteness theorem

We have shown a ®niteness theorem of stable holomorphic families of
rational maps over a Riemann surface X of ®nite type. But, as we have seen,
stable families over a Riemann surface of ®nite type are strongly restrictive, i.e.,
trivial or a½ne. In this section, we give a ®niteness theorem for holomorphic
families of rational maps belonging to a certain class which is a generalization of
stable families.

Definition 3.1 (Weakly stable family). Let fRlgl AM be a holomorphic
family of rational maps of degree d over a complex manifold M and k a positive
integer. Then, it is called a weakly k-stable family over M if it satis®es the
following condition.

. There exists some period p such that the set of periodic points El of Rl

with period p consists of exactly k points for every l A M (cf. [CG] III
Lemma 2.5).

If a holomorphic family fRlgl AM is weakly k-stable, then we see that there exists
a neighbourhood U of l A M such that each points of El 0 is holomorphic with
respect to l 0 A U .

We can show that any stable family is weakly stable.

Proposition 3.1. Let fRlgl AM be a stable holomorphic families of rational
maps of degree d over a complex manifold M. Then, it is a weakly k-stable family
over M for a su½ciently large order k.

Proof. From a characterization of stable families (Proposition 2.1), we see
that periods of attractive cycles of the family are uniformly bounded. Therefore,
any indi¨erent periodic point is stable because if not, the multiplier moves
holomorphically and it produces a new attractive periodic point. Thus, if we
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take periodic cycles for a su½ciently large period p, all of then are repelling and
they are in the Julia sets. Since a stable family has a quasiconformal conjugacy
on the Julia sets and the quasiconformal mappings depend holomorphically on
l A M, we verify that the family is weakly stable. r

For any holomorphic family fRlgl AM of rational maps over a complex
manifold M, we denote by M stable the set of stable parameters l in M and by
M w-stable

k the set of weakly stable parameters l with order k in M. From
Proposition 3.1 M stable H6

k
M w-stable

k . It is known that M stable is an open dense

subset of M. For M w-stable
k , we can show more.

Proposition 3.2. For any k0, M ÿM w-stable
k consists of a locally ®nite union

of analytic varieties on M for some k V k0.

Proof. Let us consider an algebraic equation

R
p
l �z� ÿ z � 0�3:1�

for some p A N . On a neighbourhood U of l0 A M, we denote by NU the
maximal number of the solutions of (3.1) in U. Since any collision of solutions
of (3.1) gives algebraic equations of coe½cients of (3.1), the complement of the
set of l A U for which the number of solutions of (3.1) is NU is a ®nite union of
analytic varieties on U. If we take p su½ciently large, then we have k � NU V
k0. Hence the set of l A U for which the number of the solutions of (3.1) is k
gives a weakly k-stable family. Thus, we complete the proof. r

There is a weakly stable family of rational maps which is not stable. Thus,
the weakly stability is actually a generalization of the stability.

Example 3.1 (A weakly stable family which is not stable.). Let X be a
compact Riemann surface and f be a non-constant meromorphic function on X .
We take a rational function R�z� of degree d and consider a family de®ned by

l 7! f �l�R�z� � Rl�z�
over X as Example 2.1. We assume that the Julia set J�Rl� of Rl�z� � f �l�R�z�
is not the sphere Ĉ for all l in some open set in X . (Take a polynomial, for
example.) Let Z be the zeros and the poles of f in X . We may also assume
that the family fRlgl AXÿZ is not locally trivial as Example 2.1.

Now, we consider the periodic points of Rl with some period p. They are
solutions of an algebraic equation

R
p
l �z� ÿ z � 0:

Therefore, the number of the periodic points is constant except at most ®nitely
many points Y on X , because a point in Y, which makes a collision of these
periodic points, is a zero of some meromorphic functions on X . Hence, X �
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X ÿ Y ÿ Z is a Riemann surface of ®nite type and the family fRlgl AX is a
weakly stable family from the construction. But it is not stable. Indeed, if the
family is stable, then it is an a½ne family from Proposition 2.2, because it is not
trivial. Thus, the Julia set J�Rl� for any rational map Rl for l A X is the sphere
Ĉ . It contradicts our choice of R. Hence this is our desired example.

We extend Corollary 2.3 to weakly stable families.

Theorem 3.3. Let X be a Riemann surface of type �g; n�. We denote by
N�X ; d; k� the number of non-isomorphic and locally non-trivial weakly k-stable
holomorphic families of rational maps of degree d over X. If k V 3�2d 2 � 1�, then
there exists an N � N�g; n; d; k� depending only on g; n; d and k such that
N�X ; d; k�UN for all X of type �g; n�.

Proof. Let fRlgl AX be a locally non-trivial weakly k-stable holomorphic
family of rational maps over X for k V 3�2d 2 � 1� and denote by El � fa1�l�;
a2�l�; . . . ; ak�l�g the ®nite set associated to Rl in the de®nition of weakly stable
family. From the de®nition, each aj�l� is holomorphic on an open set U in X.
Hence, taking a smooth covering ~X over X, we verify that each aj�l� is lifted to a
holomorphic function on ~X .

Indeed, take a base point l0 A U and consider an analytic continuation of
aj�l� along a c A p1�X ; l0�. We denote by ac

j �l� a holomorphic germ at l0

obtained by the analytic continuation of aj�l� along c. Since Rl�El� � El, we
verify that ac

j �l� A El. Therefore, we have a homomorphism r : p1�X ; l0� !Sk

by

ar�c�� j��l� � ac
j �l�

for c A p1�X ; l0�, where Sk is the k-symmetric group. The kernel Ker rH
p1�X ; l0� determines a ®nite-sheeted smooth covering ~X over X, and the index
�p1�X ; l0� : Ker r� is the number of the sheets, which is not greater than k!.
From the construction, each aj�l� is lifted to an analytic function Aj�l� on ~X .
Note that the genus ~g and the number of punctures, ~n of ~X have an upper bound
depending only on g; n and k.

Taking conjugations via MoÈbius transformations, we may assume that
A1�l� � 0, A2�l� � 1 and A3�l� �y for all l A ~X . Therefore, A4�l�; . . . ;Ak�l�
are holomorphic mappings from ~X to C ÿ f0; 1g. Here, we note the following
fact (cf. [Mc2], [Sh2]).

Proposition 3.4. Let X be a Riemann surface of type �g; n�. Then, there
are only ®nitely many holomorphic functions on X which do not take 0 and 1.
Moreover, the number of these holomorphic functions on X has an upper bound
M�g; n� which depends only on g and n.

Hence, if some Aj�l� is not a constant on ~X , there are only ®nitely many
possibilities of Aj�l�. Let Con�k� be the set of j A f1; 2; . . . ; kg so that Aj�l� is a
constant function on ~X and NCon�k� � f1; 2; . . . ; kg ÿ Con�k�.
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Lemma 3.5. Let Rj � j � 1; 2� be rational maps of degree d. If there are
�2d � 1� points z1; z2; . . . ; z2d�1 in Ĉ such that R1�zi� � R2�zi� �i � 1; 2; . . . ;
2d � 1�, then R1 � R2.

Proof of the lemma. By taking a conjugation via a MoÈbius transformation,
we may assume that zj ;R1�zj�, R2�zj� are in C � j � 1; 2; . . . ; 2d � 1�. Since the
degree of a rational map R � R1 ÿ R2 is less than �2d � 1�, R is at most 2d-

valent holomorphic mapping of Ĉ into itself. Hence R must be identically zero
because it has �2d � 1� zeros. r

Since Rl�El� � El;Rl determines an element s A Sk with

Rl�Aj�l�� � As� j��l� � j � 1; 2; . . . ; k�:

Then, for j A f1; 2; . . . ; kg the following cases are possible.
P1: Both j and s� j� belong to Con�k�.
P2: Both j and s� j� belong to NCon�k�.
P3: j belongs to NCon�k� but s� j� belongs to Con�k�.
P4: j belongs to Con�k� but s� j� belongs to NCon�k�.
1. If there are �2d � 1� numbers j A f1; 2; . . . ; kg which satisfy P1, then Rl

is locally constant with respect to l from Lemma 3.5. This means fRlgl A ~X is
locally trivial. Hence, we do not need to consider such a case.

2. Assume that there are �2d � 1� numbers j A f1; 2; . . . ; kg which satisfy
P2. From Proposition 3.4, there are only ®nitely many possibilities for Aj�l�
and As� j��l� � Rl�Aj�l��. Hence, we verify that there are also ®nitely many
possibilities for Rl from Lemma 3.5, and it shows the ®niteness of families.

3. Suppose that j satis®es P3. From Proposition 3.4, there are only ®nitely
many possibilities for Aj�l�. But there may be in®nitely many possibilities for a
constant function As� j��l�. We consider s2� j�.

(a) If s2� j� belongs to Con�k�, then the relationship between s� j� and
s2� j� is P1. Thus, we can apply the ®rst argument above and we
conclude that the family is locally trivial if there are �2d � 1� such
numbers j.

(b) If s2� j� belongs to NCon�k�, then the relationship of j and s2� j� is
P2. There are only ®nitely many possibilities for Aj�l� and As2� j��l�
� R2

l�Aj�l��. Thus, we can apply the second argument above for
R2

l . Since R2
l is a rational map of degree d 2, if there are �2d 2 � 1�

such numbers j, we verify the ®niteness of R2
l . And it also shows the

®niteness of Rl.
4. If j satis®es P4, by the similar argument as (3), we verify the ®niteness of

Rl.
From our assumption, k V 3�2d 2 � 1�, we see that one of these cases occurs in El

and the ®niteness is shown as above.
Moreover, if we ®nd �2d 2 � 1� numbers j such that j; s2� j� A NCon�k� or

�2d � 1� numbers j such that j; s� j� A NCon�k�, then we conclude that the number
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of such families is at most M�~g; ~n�2d 2�1 or M�~g; ~n�2d�1, where M�~g; ~n� is a
constant given in Proposition 3.4 for ~X . Hence, we complete the proof of
Theorem 3.3. r

4. Monodromy of holomorphic families of rational maps

We review the theory of TeichmuÈller spaces of rational maps developed in
[MSu]. See [MSu] for the details.

Let R be a rational mapping of degree d V 2. We consider quasiconformal
maps j : Ĉ ! Ĉ such that Rj � j � R � jÿ1 are rational maps. Such quasi-
conformal mappings are said to be compatible with the rational map R. Two
quasiconformal mappings j1 and j2 are equivalent to each other if there exists a
MoÈbius transformation A such that j2 � A � j1. We denote by Def�R� the set
of equivalence classes of quasiconformal mappings j compatible with R.

The quasiconformal automorphism group QC�R� is the set of quasicon-
formal maps o such that Ro � R. The group QC�R� acts on Def�R� by

o : �j� 7! �j � oÿ1�;�4:1�
where �j� means the equivalence class of j.

A normal subgroup QC0�R� of QC�R� consists of quasiconformal mappings
o0 A QC�R� admitting a quasiconformal isotopy fotgt A �0;1� in QC�R� such that
o1 � id.

Definition 4.1. The TeichmuÈller space of a rational map R is the
quotient space Def�R�=QC0�R� via the action (4.1). The quotient space
Mod�R� � QC�R�=QC0�R� is called the modular group (or mapping class group)
and each element �o� A Mod�R� is called a modular transformation.

Let o1;o2 be in QC�R�. If they determines the same modular transform-
ation, then o � o1 � oÿ1

2 A QC0�R�. Then, we see that o ®xes each repelling
periodic points of R. Since o is a quasiconformal mapping of Ĉ , we conclude
that o is the identity on J�R� because the set of repelling periodic points is dense
in the Julia set J�R� of R. Hence, if o1 and o2 determine the same modular
transformation, they have the same value on the Julia set.

As for the action of the modular group, the following is known.

Proposition 4.1. The action of the modular group Mod�R� on the Teich-
muÈller space Teich�R� is properly discontinuous.

One of the important results in [MSu] is a structural theorem of TeichmuÈller
spaces of rational maps. To describe the theorem, it is necessary to understand
how the Beltrami di¨erentials of quasiconformal mappings compatible with R are
determined on Ĉ .

If a quasiconformal mapping j is compatible with a rational map R, then the
Beltrami di¨erential mj of j satis®es
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mj�R�z��R 0�z��R 0�z��ÿ1 � mj�z��4:2�
for almost all z A Ĉ . Therefore we verify that mj�z� determines mj�w� for w A
6y

n�1 Rÿn�z�. It leads us the notion of the grand orbit relation with respect to
the action of R.

Definition 4.2. The grant orbit of z A Ĉ is the set of w such that Rn�z� �
Rm�w� for some n;mV 0. Then, z and w belong to the same grand orbit
equivalence class and we denote by z@w the grand orbit equivalence relation.

From the equation (4.2), we verify that the quotient space Ĉ=@ is essential
for Beltrami di¨erentials of quasiconformal mappings which are compatible with
R. Generally, the quotient space may be complicated. Fortunately, every
connected component of the Fatou set F �R� of R is preperiodic. Namely, the
following result is known.

Proposition 4.2. Every connected component D of F �R� is eventually
periodic, that is, there exists some n A N such that Rn�D� is a periodic component
of R.

This result shows that periodic components of F�R� determine the Beltrami
di¨erential on F �R�.

A fundamental theorem of the complex dynamics gives a complete classi-
®cation of periodic components of the Fatou set (cf. [CG]).

Proposition 4.3. A periodic component D of the Fatou set of a rational map
is one of the following types.

1. An attractive basin.
2. A super-attractive basin.
3. A parabolic basin.
4. A Siegel disk.
5. A Herman ring.

After a deep analysis on grand orbit relations on periodic components, we
see that the grand orbit relations on attractive basins and parabolic basins
produce Riemann surfaces of type �1;m� and �0; n�, respectively while annuli with
foliations are obtained from the grand orbit relations on super-attractive basins,
Siegel disks and Herman rings. The TeichmuÈller spaces corresponding to the
former ones are denoted by Teich�Wdis;R� and the latter ones are denoted by
Teich�W fol;R�.

The space of Beltrami di¨erentials supported on the Julia set J�R� is
identi®ed with the set of invariant line ®elds. Therefore, we have the following.

Theorem 4.4. The TeichmuÈller space Teich�R� of a rational map R is
isomorphic to
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M1�J�R�� � Teich�W fol;R� � Teich�Wdis;R�;
where M1�J�R�� is the set of invariant line ®elds on the Julia set J�R� of
R. Moreover, M1�J�R�� and Teich�W fol;R� are isomorphic to polydisks, and
Teich�Wdis;R� is isomorphic to ®nite products of TeichmuÈller spaces of Riemann
surfaces of type �0; n� and �1;m�.

Now, we describe a motivation of the problem treated in this section. In
[Mc2], McMullen considers a holomorphic family of polynomials Pl over S �
flj10 < jlj <yg (GD� � fzj0 < jzj < 1g) de®ned by

Pl�z� � z3 � lz2:

It is shown that the family is quasiconformally stable. Hence, for any point l in
S there exists a neighbourhood Ul of l in S such that Pl 0 and Pl are quasi-
conformally conjugate to each other for each l 0 in Ul. Thus, we may take a
quasiconformal self-mapping fl 0 of Ĉ such that

Pl � fl 0 �z� � fl 0 � Pl 0 �z��4:3�
for all z A Ĉ . We take a circle C � freiyj0U yU 2pgHS. Then, an analytic
continuation of Pl along C determines a quasiconformal mapping fC satisfying

Pl � fC�z� � fC � Pl�z�:�4:4�
Hence, the quasiconformal mapping fC determines a modular transformation
o�C �.

The quasiconformal mapping fC is not uniquely determined by C, but from
(4.4) the restriction fC jJ�Pl� on the Julia set J�Pl� is uniquely determined.
Moreover, fC jJ�Pl� depends only on the homotopy class �C � of C in S. So, we

denote it by o
J�Pl�
�C � and call it monodromy of the family for �C � on the Julia set.

Then, the following is shown ([Mc2]).

Proposition 4.5. The order of o
J�Pl�
�C� is in®nite.

The proof is done by using an approximation of the Julia set J�Pl� via a
nested sequence of closed curves in the Fatou set F �Pl� and by a careful analysis
of the action of fC on the nested sequence. To extend Proposition 4.5, we derive
a similar result by a di¨erent method to quasiconformal stable families of rational
maps over the punctured disk D�.

Let fRlgl AD � be a quasiconformally stable family over the punctured disk
D�. We consider a monodromy o�C� of the family for a simple closed curve C
around the origin. Then, we have the following theorem.

Theorem 4.6. Let fRlgl AD� be a locally non-trivial quasiconformally stable
family over the punctured disk D�. We assume that the limit liml!0 Rl does not
exist in the TeichmuÈller space of a rational map Rl0

for some l0 A D�. Then, the
order of o�C � is in®nite.
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Proof. Suppose that the order of o�C� is ®nite, say k. Take k-sheeted
unrami®ed covering of D�. Then, the covering surface is still the punctured disk
D�. Thus, we have a quasiconformally stable holomorphic family fRzgz AD � from
fRlgl AD� . From the construction, the monodromy for a simple closed curve
around the origin is trivial. Therefore, we see that the assignment D� C z 7! Rz

induces a holomorphic mapping h of D� to the TeichmuÈller space Teich�Rz0
� of

some Rz0
in the family.

Here, we consider about complex analytic properties of Teich�Rz0
�. It is

well known that the polydisk and the upper half plane, which are ingredients of
M1�J�Rz0

�� � Teich�W fol�, are complete with respect to the CaratheÂodory metrics
on each spaces. Also, it is known that any ®nite dimensional TeichmuÈller space
of Riemann surfaces is complete with respect to the CaratheÂodory metric (cf. [E],
[Sh1] etc.). Therefore, Teich�Rz0

�, which are ®nite products of M1�J�Rz0
���

Teich�W fol� and ®nite dimensional TeichmuÈller spaces of Riemann surfaces, is
complete with respect to the CaratheÂodory metric ([K]). This implies that
the origin is a removable singularity of the holomorphic mapping h : D� !
Teich�Rz0

� and the limit limz!0 h�z� exists in Teich�Rz0
�. It contradicts our

assumption. r

The statement of Theorem 4.6 is similar to that of Proposition 4.5, but it

does not cover that of Proposition 4.5 because o
J�Rl�
�C� may be of ®nite order even

if o�C� is of in®nite order. Here, we extend Proposition 4.5 by the following way.

Theorem 4.7. Let fPlgl AD� be a locally non-trivial quasiconformal stable
holomorphic family of polynomials of degree d over the punctured disk D� and C�l�
the set of ®nite critical points of Pl. Suppose that the limit liml!0 Pl does not
exist in the TeichmuÈller space of a rational map Pl0

for some l0 A D�, and that the
set C�l� has the following properties.

1. There exists a non-empty subset A�l� of C�l� such that any c A A�l� is
attracted to y, that is, limn!y Pn

l �c� �y.
2. C�l� ÿ A�l� is not empty, and any c A C�l� ÿ A�l� is either a super-

attracting periodic point or it lands in a parabolic component of F�Pl�.
Furthermore, if c is in a parabolic component, then it is a unique critical point
which lands in the component.
Then, o

J�Pl�
�C� is of in®nite order.

Remark 4.1. We have some comments about the above assumption.
. From the assumption in Theorem 4.7, we have d V 3. Furthermore, we

see that the Julia set J�Pl� is not connected.
. Suppose that a holomorphic family of rational maps satis®es the above

conditions (1) and (2), and that the postcritical sets of critical points in A�l� are
disjoint to each other for any l A D�. Then the postcritical set gives a holo-
morphic motion on D�. It follows from Corollary 7.5 in [MSu] that the family
is quasiconformally stable. In particular, if A�l� consists of only one critical
point, then the family satisfying the condition (1) and (2) is quasiconformally
stable.
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Proof. First of all, we note that under the condition of the theorem, every
Pl is expansive in the sense of Denker and UrbanÂski ([DU]) because the Julia set
J�Pl� has no critical point ([DU] Theorem 4). Therefore, J�Pl� has zero area
([DU] Theorem 14) and the space of invariant line ®elds on the Julia set is trivial.

Let f be a quasiconformal self-mapping of Ĉ which determines the mon-
odromy o�C�. Since the quasiconformal self-mapping f satis®es Pl � f � f � Pl,
the mapping f preserves both F�Pl� and the set of critical points of Pl. Thus, by
taking a ®nite-sheeted covering of D� which is still D� if necessary, we may
assume that any component F of F�Pl� with F VC�l�0j is preserved by f. So,
f determines modular transformations of TeichmuÈller spaces of Riemann surfaces
and holomorphic mappings of H both of which are factors of Teich�Pl�. Since
o�C� is of in®nite order from Theorem 4.6, at least one modular transformation
on a factored TeichmuÈller space is of in®nite order. Only Fatou components
which contain forward orbits of critical points contribute to the TeichmuÈller space
of Pl. Hence, we consider only super-attractive basin at y and Fatou com-
ponents which meet with C�l�.

Let F be a component of F �Pl� with F VC�l�0j. From our assumption,
F is either parabolic or super-attractive.

If F is parabolic, then the set of grand orbit equivalence classes in F gives the
TeichmuÈller space of thrice punctured sphere because F contains only one critical
orbit. Therefore, the TeichmuÈller space is trivial, and we do not need to care
about such a component.

If F belongs to a bounded super-attractive cycle, then F contains only a
super-attracting periodic point in the post-critical set from our assumptions.
Thus, the TeichmuÈller space for F is also trivial and we do not need to consider
it.

Hence, the rest is a super-attractive component Fy of y with critical points.
As we have seen, o�C� induces a modular transformation of in®nite order acting
on the space of grand orbits in Fy. First, we assume that jFy VC�l�j � 1.
Then, Fy contains a super-attracting ®xed point y and a critical point c1 which
is attracted to y. Consider the grand orbit equivalence classes in Fy. They
consists of a foliated annuli bounded by leaves containing grand orbits of the
critical point c1.

To see this, take a holomorphic mapping j in the neighbourhood of y with
j�y� � 0 and

j�Pl�z�� � j�z�d :�4:5�
Then, It is known that logjj�z�j is de®ned all over Fy and that it is Green's
function of Fy with pole at y. jÿ1 has an analytic continuation along any line
from 0 unless the line encounters j�c1�.

Let Dr � fjzj < rg be the maximal disk where jÿ1 is de®ned. In Dr �
jÿ1�Dr�HFy, jÿ1�fjzj � rg��r < r� is a subset of the closure of the grand orbits
of any p A jÿ1�fjzj � rg�, and L1 � qDr contains a union of ®nite number of
simple closed curves A1; . . . ;An attached to each other at c1. Set L0 � Pl�L1�.
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Then, L0 is a simple closed curve and an annulus U1 bounded by L0 and L1 is
foliated by leaves of the closure of grand orbits equivalence classes. Actually,
the leaves are level curves of j.

From our assumption, There exist a critical point c B fy; c1g of Pl and a
simple closed curve Aj �1U j U n� such that c belongs to a component of Ĉ ÿ Aj

not containing y. We denote the curve Aj by B1.

Notation. For any simple closed curve C with C C=y, we call a com-
ponent of Ĉ ÿ C which does not contain y the inside of C and denote it by
I�C�.

Lemma 4.8. There exists a component B2 of Pÿ1
l �B1� such that I�B1�I

I�B2�UB2 C c and Pl : U2 ! U1 is a covering map of some degree k V 2, where U2

is a component of Pÿ1
l �U1� with qU2 IB2.

Proof of Lemma 4.8. From our assumption (2), the critical point c is in a
forward invariant component of F �Pl�. Therefore, Pl�c� is in I�B1�. Thus, we
may ®nd a component B2 of Pÿ1

l �B1� whose inside contains c.
A polynomial Pl�z� ÿ Pl�c� has at least two zeros in I�B1� because I�B1�

contains a critical point c. And it has no poles in I�B1�. It follows from the
argument principle that Pl : U2 ! U1 is a covering map with some degree
k > 1. r

Denote by L2 a component of Pÿ1
l �L1� which contains B2. Note that L2 is

a part of qU2 and it consists of B2 and simple closed curves, say C21;C22; . . . ;
C2l�2�, which are attached to B2 at points in Pÿ1

l �c1�.
We can continue the above procedure. Namely, we may ®nd a simple

closed curve Bn�1 in I�Bn� so that I�Bn�I I�Bn�1�UBn�1 C c for n � 1; 2; . . . :
Furthermore, there exists a nested sequence fUngyn�1 of annuli with qUn IBn

such that Pn
l �Un� � U0 and Pl : Un�1 ! Un is a covering map with degreeV 2.

We denote by Ln a component of Pÿn�1
l �L1� which contains Bn. As before, Ln is

a part of qUn and it consists of Bn and a ®nite number of simple closed curves,
say Cn1;Cn2; . . . ;Cnl�n�, which are attached to Bn at points in Pÿn

l �c1�.

Figure 1

hiroshige shiga62



Recall that o�C � induces a modular transformation of in®nite order acting on
the space of grand orbits in Fy. Since f ®xes the critical point c1 in Fy, it also
®xes any point on two simple closed curves L0 and Pl�L0�. Therefore, the action
on an annulus U0 � Pl�U1� must be a Dehn twist.

On the other hand, Pn
l : Un ! U0 is a covering map with degree not less

than 2n with the following commutative diagram.

Un ���!Pn
l

U0

f

???y ???yf

Un ���!
Pn

l

U0

�4:6�

Hence, for a su½ciently large n the action of f on Un is a ``fractional'' Dehn
twist. In other words, f jUn is regarded as a ``rotation'' with angle 2p=Nn and
Nn !y as n!y. Therefore, it gives a permutation on fCn1;Cn2; . . . ;Cnl�n�g
and the order diverges as n!y. Since I�Cnj�V J�Pl�0j for each Cnj, we have
shown that o

J�Pl�
�C� is of in®nite order when jFy VC�l�j � 1.

When jFy VC�l�jV 2, we also have several foliated annuli in Fy bounded
by leaves containing critical points or postcritical points. Since o�C � is of in®nite
order, we verify that the action of f is a Dehn twist on some annulus. Hence the
same argument also works when jFy VC�l�jV 2. The details are left to the
reader.

Thus, we complete the proof of Theorem 4.7. r

5. Examples

In this section, we exhibit some examples about Theorem 4.7. The fol-
lowing families are de®ned over fjlj > Mg for some M > 0. As we noted in the
remark of Theorem 4.7, the holomorphic motion formed by the postcritical set
induces the quasiconformal stability of the family. Thus, we verify that all of
the following families are quasiconformally stable if they satisfy the conditions (1)
and (2) in Theorem 4.7.

Example 5.1. Pl�z� � zd ÿ lzdÿ1 �d V 3�.
This is a direct extension of an example given in McMullen [Mc2]. We

have

P 0l�z� � dzdÿ2 zÿ d ÿ 1

d
l

� �
:

Thus, z � 0 is a super-attracting ®xed point and a � �d ÿ 1�l=d is another critical
point. We verify that if M > 0 is su½ciently large, then a is attracted to y.
Thus, the family satis®es the condition of Theorem 4.7.
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Example 5.2. For nV 2,

Pl�z� � 1

�n� 2�lÿ n
f�n� 1�nzn�2�5:1�

ÿ �n� 2�n�l� 1�zn�1 � �n� 2��n� 1�lzng:
We have

P 0l�z� �
�n� 2��n� 1�n
�n� 2�lÿ n

znÿ1�zÿ 1��zÿ l�:

Hence, z � 0; 1; l are critical points and z � 0; 1 are super-attracting ®xed points.
From (5.1), we have

jPl�l�j � jljn�1

j�n� 2�lÿ nj jnlÿ nÿ 2j:

Hence, if jljg 1, then jPl�l�=ljg 1. From

jPl�z�j � jzjn
j�n� 2�lÿ nj
� jn�n� 1�z2 ÿ n�n� 1��l� 1�z� �n� 1��n� 2�lj

V
jzjn

j�n� 2�lÿ nj fn�n� 1�jzj2 ÿ n�n� 1��jlj � 1�jzj

ÿ �n� 1��n� 2�jljg;
it follows that if jz=ljg 1 and jljg 1, then jPl�z�=zjg 1. Hence, we verify
that if M > 0 is su½ciently large, then l is attracted to y. Thus, the example
satis®es the condition of Theorem 4.7.

Finally, we give an example with a parabolic ®xed point.

Example 5.3.

Pl�z� � 1

3
z3 ÿ 1

2
�l� lÿ1�z2 � z:�5:2�

We have

P 0l�z� � �zÿ l��zÿ lÿ1�; P 0l�0� � 1;

and Pl�0� � 0. Hence, z � 0 is a parabolic ®xed point and z � l; lÿ1 are critical
points of Pl�z�. We see that if M > 0 is su½ciently large, then Pn

l �l� !y as
n!y. On the other hand, a parabolic component contains a critical point

(cf. [CG] III. Theorem 2.3). Therefore, z � lÿ1 is attracted to z � 0 and it is
contained in the parabolic component for z � 0. Thus, the example also satis®es
the condition of Theorem 4.7.
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