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A REMARK ON EXPONENTIAL GROWTH AND THE
SPECTRUM OF THE LAPLACIAN

Yusuke HiGcuchr!

Abstract

In terms of the exponential growth of a non-compact Riemannian manifold, we
give an upper bounds for the bottom of the essential spectrum of the Laplacian. This is
an improvement of Brooks’ result.

1. Introduction

Let M be a smooth, complete, non-compact Riemannian manifold, and A
the Laplace-Beltrami operator on L?(M), where its sign is chosen so that it
becomes a positive operator. We denote by Ay the bottom (that is, the greatest
lower bound) of the spectrum of A and by A;* the bottom of the essential
spectrum. It is easy to see that 4y < Ag", and that A" = limg Ao(M — K), where
K runs over an increasing set of compact subdomains of M such that UK = M
and Ao(M — K) stands for the bottom of the spectrum of A with the Dirichlet
boundary condition on 0K. For a compact manifold, the essential spectrum is
empty, thus we put A" = oo.

There exist many works on the estimates for 4y or A5 (for instance, [1], [2],
(3], [4], [5], [7], [8])) Among them, R. Brooks ([2], [3]) has given the upper
bounds for A;* in terms of the volume growth: Pick a point xo € M and let B(r)
be the ball of radius r around x¢ and V(r) the volume of this ball. It is shown
that A" < fi2/4 if the volume of M is infinite in [2] and that 4§ < @7 /4 if that is
finite in [3] where i, and fi, are the exponential volume growtﬁ of M, re-
spectively, defined as

1 -1
(1.1) @, =lim sup — log V(r) and fi; = lim sup — log(Vol( ) — V(r)).
r—0oo Fr—0o0
The purpose of this note is to give an estimate for A" using another kind of
exponential growth than Brooks’. This estimate is not only a slight improve-
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ment of Brooks’ results but a continuous analogue of the result for the discrete
Laplacian on an infinite graph ([6]).

Let us state our result. For the ball B(r) = B(r, xo) of radius » whose origin
is an arbitrary fixed point xo € M and any fixed positive number J, we set

(1.2) B3(0B(r)) = {x & M — B()| plx, 0B(r)) <35},

where p(x,dB(r)) is the distance between x and JB(r), and denote by S;(r) the
volume of Bs(0B(r)). Moreover, we set

| R I _
(1.3) oy = lim Tim inf () and g = lim lim sup (1),

Fr—0o0
where u5(r) = (1/r) log S5(r). Our result is the following:
THEOREM 1.  For a non-compact manifold M, we have 15 < y? /4, where p =
max(uy,0) if the volume of M is infinite and u = g, if that is finite.

We have 0 <y < fi, in the infinite case and |f)| < Zi, in the finite as is seen
later. In this sense, Theorem 1 is somewhat better than Brooks’. The next
corollary follows from Theorem 1 directly. We set

(14)  p, =lim inf % log V(r) and u, = lim inf _Tl log(Vol(M) — V (r)).

r—oo r—o0

COROLLARY 2. We have 15" < u2 /4 if the volume of M is infinite, and 15" <
,u}/4 if that is finite.

The author would like to express his sincere gratitude to Professors
Tomoyuki Shirai and Yoichiro Takahashi for their comments.

2. Proof of Theorem 1

For an arbitrary fixed 6 > 0, we set

(2.1) s =lim inf ps5(r) and fi; = lim sup u;(r),

where us(r) = (1/r) log Ss(r). Theorem 1 follows from the following:
THEOREM 3. 1) If M has infinite volume, then " < 13 /4 for any fixed 6 >

0. Moreover, 25" =0 if us <O.
2) If M has finite volume, then .§* < ji2 /4 for any fixed 6 > 0.

Proof of Theorem 1 and Corollary 2 from Theorem 3. We first assume that
M has infinite volume. It is obvious that u; < s, if 6 < 2. Then there exists
Uo = lims_o p5, and we clearly have

(22) Ho < Hs < Hy < ﬁl}'
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Let yy < 0. Then, from the above, there exists J > 0 such that us < 0. Thus
}'633‘.\' — 0

Next, we assume that M has finite volume. It holds also here that z; < i,
if 6; <,. Therefore there exist j, = lims_o i; and fi,, = lims_o, fis; we have

. 1
(2.3) o < iy < fi,, < lim sup - log(Vol(M) — V(r)) = —u; < 0.
Let iy < 0. In this case, for any ¢ > 0 such that fi; + & < 0, there exists 7y such
that, for any r >ry, (1/r) log Ss(r) < fi; +¢. Then we get, for any r > ro,

o0

Vol(M) — V(r) = ng(r—l—ké) < exp((f@is + &)(r + k9)).
=0 =

Thus, we have

* log(Vol(M) ~ V(1)) < iy + & — - log(1 — exp((7; + )

and —p, < ji;+e Since we can select arbitrary small &>0, —ur < i
Therefore, by (2.3), —u, = fi5; we have also —u, = ji; for any 6 > 0. Moreover,
we easily get is =0 for any 6 and fi; = —u, = 0 if ji; =0 for some J. Con-
sequently, we have g, =ji,, = —u, and |@y| =pu, < ii;. Hence the proof is
completed. O

Remark 4. 1t is obvious that lims_o S5(r) /0 = S(r), where S(r) = S(r, xo) is
the surface area of the distance sphere of radius r at xy. In addition, it is also
obvious that lim inf,_, . (1/r) log(Ss(r)/d0) = us and lim sup,_, . (1/r) log(Ss(r)/0)
= Ji; for any fixed 6. Note that, for any r and any fixed J > 0, there exists ¢, s €
(r,r +0) such that

S(4rs) = (B(r+0) — B(r)) /0 = S5(r) /0.

Then, setting u, = lim inf,_.,,(1/7) log S(r) and f, = lim sup,_, . (1/r) log S(r), we
have u, < uy < @y < i, When u, = p, or iy = i, we can substitute in Theorem
1 u, or p, for y, or f,, respectively.

Now let us prove Theorem 3 following an idea in [6] and Brooks’ one in [2].

Proof of Theorem 3. Let o(M — K) be the bottom of the spectrum of A on
L*(M — K) with the Dirichlet boundary condition on ¢K. It is well-known that

¢ Jurllgrad 71°
I t?

where f runs over uniformly Lipshitz functions with compact support on M — K.
Then we only have to show the following: for any fixed § > 0, for any compact
subset K and for any sufficiently small ¢ & > 0, there exists a function f sup-
ported in M — K such that

(2.4) Jo(M —K) =in

)
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d 2
Jo lerad £

2.5
(2.5) I /2

ocz(a) + &1,

where o(e) — us/2 as ¢ — 0.
Consider a test function f(x) = exp(h(x))- x(x), where y(x) has compact
support in M — K. Then

(2.6) j ||gradf|\2=j 09 (|lgrad & - 7 + grad 7]
M—-K M—-K
= J ¢ (2 - (grad h, grad x> + || grad x||)
M—-K

—|—J szgrad th.
M-K

For xe M, let p(x) = p(x,x9) denote the distance from a fixed point xy € M.
For r sufficiently large so that K < B(r —9), we set y as follows:

0, if xe K or p(x) >r+9,
p(x,K)/9, if 0 < p(x,K) <9,

2.7 =y .(x) =

GO A= =N B0 e, i r < p) <10,
1, otherwise.

Then grad y is supported in Bs(0B(r)) and a neibourhood B;(dK) of radius ¢
about 0K; moreover, |lgrad || < 1/6. In addition, we put, for a fixed number
o >0 and for a positive integer j,

B MP(X), if p(X) Sj,
(2.8) hy(x) = {2og' —oap(x), if p(x)>j.

Note that, for every j, ||grad th2 < o2, and that &, increases pointwise to /1 = ap.
Thus, for r and j sufficiently large and r > j, we have

(2.9) J lerad /| < (sz 124 (2054 1/67) (J o +J eZh’)
M—-K M-K B5(0K) B5(0B(r))
and there exists a finite constant C independent of r and j such that
(2.10) (20/5 + 1 /52)J e < C,
Bs(0K)

From here, we divide our proof into two cases: the case of M with infinite
volume and that of M with finite volume.
First, we assume that A has infinite volume. Then it is obvious that

(2.11) J fZ:J ey - oo as rj— 0.
M-K M-K
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Let y5 > 0. It follows form the definition of ; that, for any ¢ > 0, there exists a
sequence {r,} such that

1
(2.12) #5(rn) = log Ss(rn) < w5 +e
and r, > 2j(2 + p;s/¢) for every n. Therefore, setting o = a(e) = (u; + 2¢)/2, we
have
(2.13) J e < exp((2f — 1) (s + 2¢)) - exp((u; + &)ra) < 1.
By(0B(r,))

By (2.9), (2.10), (2.11) and (2.13), we can select » and j such that

IM |?raf2fn|| < 062(8) —|—81
MJIn

for any & >0, where f, =e"y, .
If u; <0, then, for any ¢ > 0 satisfying ps + ¢ < 0, there exists a sequence
{r.} such that us(r,) < pus+e. Setting o =0, that is, exp(/;j(x)) =1, we have

(2.14)

(2.15) e = S5(ry) < exp((us +&)ry) < 1.

Lé(@s(r,,))
Thus, for any & > 0, we can select n such that [, [grad f,,||2/jM f% <&, where
Jo=1x,. We finish the proof in the case of infinite volume.

Next, let M have finite volume. Then, we clearly have —oo < fi; < 0; we
may assume —oo < fiy < 0. It follows form the definition of fg; that, for any
sufficiently small ¢ > 0, there exists a sequence {r,} such that

1
(2.16) s — e < us(r) = Py log Ss(ry) < fis +¢

and r, > 2j(2¢ — fi;) /(e — 2fis) for every n. Here we can assume this sequence
{r,} satisfies r,| —r, >0 for any n. Setting o = a(e) = —(fi; — 2¢)/2 and g(x) =
e we have

(2.17) J 9> > J g> > Zexp(Zocrn) - Ss(rn) = Zexp(srn) — w0
B(r) A(r) B(r,+9)—B(ry) A(r) A(r)

as r — oo, where A(r) = {n|r, +J <r}. Then we have
(2.18) J f? :J eth)(f > J g* —J g>— w0 asrj— o
M-K M-K B(j) K

and

(2.19) e < exp((2/ — rn)(2e — @) - exp((@; + &)rn) < 1.

JB,;(@B(}’”))
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In the same way as in the case of infinite volume, selecting sufficiently large » and
j, one obtain the desired estimate. O
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