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Abstract

Using the Newton algorithm we show how to compute all the polar quotients and
their multiplicities of a plane curve f =0, where f is a formal power series of two
variables over an algebraically closed field k with characteristic zero. The curve is not
necessarily reduced.

1 Introduction

Let k be an algebraically closed field with characteristic zero. We use
standard notations; k[[X, Y]] is the ring of formal power series, ord f is the order

of fek[X,Y]] (ord0=+0c0). For elements ai,...,a, of a given set we define
the system o/ = {ai,...,a,) as the sequence ai,...,a, treated as unordered. Put
deg o7 = p. Instead of <{ai,...,a1,...a,,...,a,) we write {aj :my,...a, :mp).
N——t N’
m; times m, times

For o/ =<{ay,...,a,) and # = (b1,...,b,» we have a natural addition &/ ® # =
{ai,...ap,b1,...bs) with the neutral element { ». By convention {a:0) =< .
(see [Wh], notion of symetric power).

Let f(X,Y)ek[[X,Y]] be such a series that p=ord f(0,Y) > 1.
Recall the polar curve 0f /0Y = 0 with its positive-order-roots zi(X),...,z,-1(X)
in the ring k[[X]]" =], . k[X'/"]] of the Puiseux series. We consider the
system

3(f,X) = <ord f(X,z1(X)),...ord £(X,zp_1(X))> (1)

of polar quotients of f with respect to X. Every polar quotient is either a
positive rational or +c0. We omit the bar over 2 to denote the system of finite
quotients. We have 2(f,X) = 2(f,X) if and only if f is reduced.
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When X and f are transverse, the polar quotients are topological invariants
called polar invariants (k = C). We have [T]:

(Lojasiewicz exponent of grad f near zero) = (maximal polar invariant) — 1.

The study of polar quotients and polar invariants extends over many authors
(], [M], [DJ, [E], [Eph], [CA], [LMWI1], [LMW2], [Gal, [GP1], [GP2], [LMP]).
Let us mention Merle’s [M] description of polar invariants for irreducible series
(see also [GP1]); Delgado’s developement of the case of two branches [D]; and the
computation of polar invariants for multi-branched singularity using Egger’s
diagrams ([E], [Ga]). The authors of [GP2] give explicit formulae for the polar
quotients in terms of characteristics and intersection multiplicities of branches.
For a nondegenerate series f the polar invariants can be calculated using the
Newton polygon of f [LP], [LMP].

This paper aims to compute the system of polar quotients using a version
of the Newton algorithm (W], [Can], [KP], [L2]). We generalize the approach
from [LP], [LMP].

2 Main result

It is convenient to consider the ring k[[X*, Y]] =], _ k[X'/", Y]]. Take
=X fupX*YPek[[X*, Y]]. As usual we define the support supp f as {(o,f) :
fop # 0}, the Newton diagram A(f) as conv(supp f +R2), and the Newton
polygon N '(f) as the set of compact faces of A(f). By d(f) we denote the
distance between A(f) and the horizontal axis.

For Se A°(f), by |S|, and |S|, we denote the lengths of projections of S
onto the horizontal and vertical axies, respectively. We call the ratio |S|,/|S|,
the inclination of S. For 6 >0 (or § = —c0) it will be useful to consider the
polygon .4°’(f), which consists of all the faces Se./(f) with an inclina-
tion strictly greater than 6. Let «(S) denote the abscissa of the point where the
line determined by S intersects the horizontal axis. We define the initial form
in(f,S) =3 f,pX*Y?, where («,f) runs over SNsupp /. By #(f,S) we denote
the number of different roots of the polynomial in(f,S)(1,Y)e€k[Y]. The
number &(S) € {—1,0} is defined as —1 when S touches the horizontal axis and
as 0 otherwise. Put d(f,S) =S|, +¢&(S)—f,S)+1. Note that d(f,S)=0
if and only if every nonzero root of in(f,S) in K[[X]]" is of multiplicity 1. Then
we call the series f nondegenerate on S.

For any ¢ e k[[X]]", ord ¢ >0 one can apply the substitution f,(X,Y) =
S(X,p(X)+Y)ek[[X* Y]] ([Can], [GP1], [KP]). Clearly, f, =/ for ¢ =0.
Consider the ring k[X]" = (), _, k[X"/"] of Puiseux polynomials. For ¢ e k[X]",
degp < +o0. Put deg0 = —oo. The set T(f,X) = k[X]" of the tracks (of the
Newton algorithm) for f is defined to be the minimal set satisfying two prop-
erties: (I)0 e T(f,X), (IT) for every p(X) € T(f, X), if there exists S € A" 9E7( 1),
then for every nonzero root aX? of in(f,,S), ¢ +aX%e T(f,X). We will write
N, instead of A 4E?(f) when f is fixed.
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We call series i € k[[X]]* a continuation of ¢ e kK[X]" if ord(p — ) > deg o.
Then we write y =¢p+---. Let ¢ be a track of the Newton algorithm for f.
Let 2,(f,X) @(ordf (X,z(X))>, where z(X) is a continuation of ¢. By
analogy we deﬁne 2,(f,X) < 2(f,X) for ord f(X,z(X)) < +o0.

Now, put %, = <oo:5(f,/,) —1>if o(f,) > 1 and 6, =< > if 6(f,) =1 or 0.
For Se ./, we denote .7, g = {a(S) : t(f,,S) —1). We have the following

THEOREM 2.1 (main result).
(a) For pe T(f,X) we have 2,(f,X) = (—BSE‘ Ay s ® By, s) ® C,, where
By s is a system of quotzents strictly greater than o(S), deg B, s =

da(f,s).

(b) By.s =D, 50 2psaxo(f X), where aX® runs over all multiple nonzero
roots of in(f,,S),
(C) "JQ(f7 X) = C—Bye T(f, X)@Se_‘,% ‘Q/(ﬂ,s

We prove the above theorem in the next section.

Remark 2.2. Clearly o(S) is a polar quotients if and only if #(f,,S) > 1.
This condition is always satisfied for S e .4, which does not touch the horizontal
axis. When «(S) is not a polar quotient then S touches the axis and in(f,, S) =

bXE(Y —ax?)Sh,

Remark 2.3. We can consider the system .Z,(f,X) @s c o Lps of
finite quotients which are determined by the behav1our of fw on .4, Clearly

deg ,(f, X) =D gc yolt(fp, S) —1].

Remark 2.4. We state that the sum in (c) is in fact finite. We can replace
T(f,X) by the finite Tn(f, X), which contains all ¢ € T(f, X) such that there
exists S e 4, with #(f,,S) > 1.

For ¢ =0 we have the following two corollaries. We write .o, 4 instead of
2y, s,%0, s and € instead of %.

CorOLLARY 2.5. (a) 2(f,X) = [Dg. y(s)(As © Bs)| @ C,
(b) Bs =P, yo 2axo(f, X), where aX 9 yuns over all possible multiple nonzero
roots of in(f,S).

COROLLARY 2.6. If 0(f) <1 and d(f,S) =0 for every Se N (f) then

2L X)=2(f,X)=Ao(f, X)= D <aS):|S|,+2(S5)).

Se(f)
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al (),2 -.. . as

When S € A7(f) touches the horizontal axis and |S|, = | then «(S) is not a polar
quotient. We call such a face exceptional ([LP]).

ExampLE 2.7. Consider the curve [ = Y(Y>—X)’ —2XY2(y2—Xx)*+
8X3Y + X6 We have A '(f) ={S,T}, where S joins (0,7) with (3,1) and T
joins (3,1) with (6,0). From Corollary 2.5 2(f,X) = /s ® Bs ® A7 ® Br ®
%. Clearly in(f,S)=Y(Y2—X)’=Y(Y —X'/)3y+ X123 oS)=17/2,
(f,8)=3, d(f,S)=4 in(f,T)=-XY+X°=-X3(Y-X3), oT)=6,
t(f,T)=1,d(f,T)=0 and 6(f) =0. Obviously /7 = HBr =% =< ).

-3 A(S Al fxt2)

8 8

—1 ~_ \

T

A 4

1 8 1

Hence 2(f,X) = /s ® Bs =<7/2,7/2)> ® #Bs, where #s contains four quo-
tients strictly greater then 7/2. Consider two multiple nonzero roots X'/2 and
—X'2 of in(f,S). We have Bs= 2y1.(f,X)®2_y12(f,X). Taking X'/?
as a track we obtain fyi.= f(X, X2 4+ Y)=(Y + X2 Y3 (Y +2x"/?)° -
2X(Y + XV2)2Y2(Y +2X1/2)? 4+ 8X5(Y + XV/2) 4 X6, The polygon ./ has
two faces: P which joins (2,3) with (3,2) and R which joins (3,2) with
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(11/2,0). We have Qxl/z(f,X) %Xl/vP@@X1/2p®ﬂX1/ZR@@X1/27R@
%y12. Note that in(fyi2,P) = 8X2Y3 8X3Y2 =8X2Y*(Y - X), a(P)=>5,
t(fy12, P) =2, d(fyy, P) =0; in(fyi2, R) = —8X3Y? +8x11/2 = _8x3.
(Y = XY + X%, a(R)=11/2, t(fy,R)=2, d(fy2,R)=0 and
5(fX1/2) =0. Since ,@Xl/v p= e%’X]/z R= (gXl/Z =< > we finish with Qxl/z(f, X) =
Ay p® Ay g =<5, 11/2> Analogously, 2 _yi»(f,X)=¢5,11/2) and
ﬁnally Q(f7 ) ej%0(]{7 )@QXI/Z(fa )@Q XI/Z(f7 )_<7/277/21575111/27
11/2>. As a result we see that f is reduced. We can compute the Milnor
number from Teissier's formula wy(f)=> 2(f,X)—ord f(0,Y)+1=22.
Note that T (f, X) = {0, X1/, —X1/2},

3 Proof of the main result

The proof of the main result will be performed in several steps. The first
step is the classical Newton-Puiseux theorem, which provides a description of the
Puiseux roots of a series in terms of its Newton polygon (Theorem 3.1). The
second and fundamental step is the description of the Newton polygon of
the derivative. In the final steps of the proof we applicate these methods to
the Newton algorithm.

The Newton-Puiseux theorem

Let fek[[X*, Y]] be a series such that p =ord f(0,Y) > 1. Let Zer f =
1(X),...,yp(X)> be the system of all the positive-order-roots of f =0 in
k[[X]]*. Consider Se ./ (f) and define the form in(f,S)° by the equation
in(f,S) = X%Y"’ in(f,S)° where as and bs are the maximal possible powers.
Let s note that degZerin(f,S)° =|S|,. For any 0 >0 (or § = —o0) we define
Zer’ £, which contains those roots of Zer f which satisfy ord yi(X) > 6. By the
height of A°(f) we mean sy S, and we denote it by |A0(f)]. We
need the Newton-Puiseux theorem in the following form (we use convention
in 0 = 0).

TurOREM 3.1. Let Zer’ f <n(X) ys(X)>. Then
() <ord y(X),...,ond yy(X)5 = Dy, v XISH/ISL 181> @
{(+o :5(f)>,

(i) n p(X),...,in p(X)> = @Set Zerm(f S)? ®<0:(f)>.
(iii) s = [A()] +5(/).

The following property geometrically expresses the orders from (1). For 6 >0
and any closed nonempty subset Z < Ri we define the number

o(0,Z) =min{a+ 0 : (o, f) € Z}.

Obviously «(0,Ar) = «(0,supp f). This number is the abscissa of the point
where the line of inclination 6, supporting A(f), intersects the horizontal axis.
We have the following simple
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ProOPERTY 3.2. Let z(X) ek[[X]]", 0 <ord z(X) < +o0. Then

(a) ord f(X,z(X)) = a(ord z,Ay),

(b) the inequality is sharp if and only if there exists a face S € N (f) such that
IS],/1S], = ord z(X) and inz(X) is a root of in(f,S).

Polygon of the derivative

In this next step we describe the polygon A°(df/0Y). By eliminating the
points from supp f that lie on the horizontal axis and by moving all remaining
points one unit down, we obtain the support of df/0Y. In effect, if Se A °(f)
does not touch the horizontal axis, then 7 =S — (0,1) is a face of the polygon
A(0f /oY) and

in(i T)—aiYin(f,S). (2)

If S touches the horizontal axis then there exists the corresponding family of
faces T € A°(df/0Y) such that |T|,/|T|, =|S|,/IS|, and > |T|, +d(df/0Y) =
|S|, — 1. If there exists an element 7, of the family which is parallel to S, then
(2) is also satisfied. As a result we have

CoroLLARY 3.3 (see [L1], Corollary 5.4). Let T € A (3f/0Y).
(@) If T is parallel to face S e N(f), then (2) is satisfied.
(b) If T is not parallel to any face of N'(f), then
CTW/ITly > IS|,/ISl, for every S A(f),
- the polygon N'(f) touches the horizontal axis.

We need a more detailed analysis of the relations between roots of in(f,S) and
0/0Y in(f,S). Consider the factorization
in(f,S)=bX“YL! .. L}, (3)

where Y,L;,...,L; are different monic linear factors of in(f,S) in k[X]"[Y]
(b #0,k>0,r;,>0). Every factor has the form Y —aX"? where 0 = |S|,/|S|,.
We have the following

LemMA 3.4 (see [LMP], Lemma 4.1).
(i) If S does not touch the horizonatal axis (bs > 0), then

. o -
Sy in(f.8) =Xy SRRV SLny AR 4
o

where Li,...,L; are monic linear factors different from Y, Ly,..., Ly.
(i) If' S touches the horizontal axis (bs =0) and k > 1 then

0 . _
F%G in(f,8) =o' XLy L L L,

where Li,...,L;,_, are monic linear factors different from Ly,..., Ly.
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Proof. If bs >0 then Y-differentiation of in(f,S)= X*Y"s in(f,S)°
moves the support of in(f,S) by the vector (0,—1). We obtain

% in(f,S) =Xy 'hX,Y), (4)

where the powers as and bg — 1 are the maximal possible. Let us consider a
factor of in(f,S) of the form L' = (Y —aX?)". By substitution aX’+ Y in
place of Y, we obtain Y in place of L". We use (4) to show that L' divides
0/0Y in(f,S) and r—1 is the maximal possible power.

Remark 3.5. If S touches the horizontal axis (bg = 0) and k = 1 in (3), then
in(f,S) =bX%L" and 0/0Y (in(f,S)) =b' XL,

From the above lemma and the previous statements we have

PrOPOSITION 3.6. Let Se A(f).

(@) If t=1(f,S) > 1 then there exists t — 1 solutions Y{(X),..., ¥, 1(X) of
Af /oY =0 such that ord f(X, /(X)) = a(S).

(b) If d=d(f,S)>0 then there exists d solutions Y, (X),..., ¥, (X) of
0f /0Y =0 such that ord f(X,y,;(X)) > a(S).

Proof. (a) If S does not touch the horizontal axis, then by using notations
of Lemma 3.4, k=1¢f,S)—1. Since T=S-(0,1) is a face of A7 (Jf/0Y),
from Theorem 3.1 there exist solutions v (X),..., Y (X) of df/0Y =0 that
correspond to the factor L{---L; of 0/0Y(in(f,S))=in(0f/0Y,T). Clearly

ord y/(X) =|T|,/|T|, = |S|,/|S|,. Since Li,...,L; are different from Y,L,,...,
Ly, then in ;] is not a root of in(f,S). By Property 3.2 we obtain

ord /(X (X)) = o(|S],/S]5, Ar) = (). (5)
If S touches the horizontal axis, then k =1¢#(f,S). Let s be the number of
appearances of Y in the sequence Li{,...,L; ;. We can assume that L{,...,
L, , , are different from Y. Analogously, as before, we construct solutions

Yi(X),..., ¥, (X) that satisfy (5). For s> 0, by the Newton-Puiseux the-
orem, there exist s solutions Y, (X),...,¥;_(X) of 3f/0Y =0 that correspond
to the family of faces T € A°(9f/0Y), that lie below the line f =3, and to the
distance 6(0f/0Y). We have Y |T|, +6(3f/0Y)=s. If y/(X) comes from a
face T of the family, then by Corollary 3.3 we have ord y,(X) = |T|,/|T|, >
IS|,/IS|,. Since S touches the horizontal axis, it is the lower possible face of
N'(f). Therefore, the line supporting A, which is parallel to 7', meets A, at the
vertex lying on the horizontal axis. The vertex has the abscissa ord f(X,0).
From Property 3.2 we obtain ord f(X,y/(X)) =a(|T|,/|T|,,As) = ord f(X,0).
If y,(X) = 0, then similarly ord f (X, /(X)) = ord f(X,0). Since ord f(X,0) =
o(S) we finish with (5) in both cases.

(b) Note that d =d(f,S)=(r1—1)+---+(x—1). If d>0 then there
exists a face T € A7(9f/0Y) which is parallel to S. By Theorem 3.1 and by
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Lemma 3.4 there exist solutions ¥, (X),..., ¥, (X) of df/0Y = 0 corresponding to
the factor L]'~'--- L' of 0/0Y (in(f,S)) = in(df /dY, T). Clearly ord y,(X) =
IT|,/IT|, = |SI;/|S], and in y,(X) is a root of in(f,S). From Property 3.2 it
follows that ord f(X,y;(X)) > a(|S],/|S],, Ar) = a(S), which completes the proof.

The Newton polygon relative to a Puiseux polynomial

Let ¢ e k[X]|" be an arbitrary Puiseux polynomial of a positive order. We
begin by describing the polygon A4, = .4"%€?(f,). Applying the Weierstrass
preparation theorem we can write

JX,Y)=UX, Y)(Y = pi(X)) - (Y = yp(X)), (6)
where U(X, Y) e k[[X, Y]] is a unit and, as before, Zer f = {y1,...,y,». Hence
X, Y) =/(X,0(X)+ Y) =U'(X, V)[Y = (y1 = )] --- [Y = (yp — 9)],

where U'(X,Y) ek[[X*, Y]] is also a unit. Therefore

Zerf(ﬂ:<y1_(07"'>yp_¢>'

Using Theorem 3.1 (a) with 0 = —c0 we obtain

Cord(y1 — ¢),...,ord(y, — 9)> = @( )<|S|1/|S|2 S @ <+ :6(f,))-
SeN(f,

Let Zer, f = {y1,...,)s) denote the system of such solutions from Zer f that
ord(y; — @) > deg ¢ (i.e. yi(X),...,y(X) are continuations of ¢). As a con-
sequence of Theorem 3.1 applied with 8 = deg ¢ we have

COROLLARY 3.7.
() Cord(y1 =), ..., ord(ys = 9)) = Dy s, ISIi/IS]y : S © {Ho0 : (/)

(b) <in(y1 —¢),...,in(yy — 9)> = Dy, Zerin(f,, S)" @ <0 :6(f,)>
(€) s =[N +6(fp)-

We will need the following simple
PrROPERTY 3.8. Let g €K[[X*, Y]] be a nonzero series. Fix 0> 0.
(i) There exists a unique representation

g=gotgit+ga+--

such that every g; is a quasi-homogeneous form of the weights (0,1).
(i) If r is the maximal power such that Y divides gy, then

[A7%(g)] +(g) =r-
(iii) If there exists S € A'(g) such that |S|,/|S|, =0, then go =in(f,S).

Now, we can prove the following
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PROPOSITION 3.9. Assume that ¢ € K[X|" is such a polynomial that .V, is
nonempty. Let Se A, and let aX? be a nonzero root of in(f,S). Then

| N praxo| +0(fpraxo) = mutiplicity of aX? as a root of in(f,S).

Proof. For 0 =S|,/|S|, let us consider the representation

fo=90+ag1+g2+-
according to Property 3.8. We have go =in(f,,S). Let us write in(f,,S) =

(Y —aX?)"h(X,Y), where r is the maximal possible power. We have r > 0.
Let us note that f, ,yo(X,Y) = f,(X,aX’+ Y). Hence

Jorax? =9do+ g1 +go+ -, (7)
where §;(X,Y) = g;(X,aX?+ Y). Since aX?+ Y is the homogeneous form of
the weights (0, 1), (7) is the unique representation guaranteed by Property 3.8.
We have gy(X, Y) =in(f,,S)(X,aX’+ Y) = Y"h(X,Y). From Property 3.8(b)
follows that

r= "/V(/J—O—aX“| +5(f;p+aX”)7

which concludes the proof.

Tracks of the Newton algorithm

We give here two different characterizations of the set 7'(f, X), of the tracks
of the Newton algorithm for f, and prove their equivalency with the definition
from Section 2. Recall

DerFINITION 3.10.  7'(f,X) < k[X]" is the minimal subset satisfying two
properties: (1) 0 e T(f, X), (II) for every ¢(X) € T(f,X), if there exists S € 4,
then for every nonzero root aX’ of in(f,,S), p+aX’e T(f,X).

Let us define
T(f,X)={pek[X]" :3y(X) € Zer f such that ord(y(X) — ¢) > deg ¢}
and
T(f, X) ={p ek[X]" : |45 +5(f,) > O}.

ProposiTiION  3.11. If Zer f is nonempty then T(f,X)=Ti(f,X)=
Ta(f, X).

Proof. The equality T\(f,X) = T»(f,X) follows directly from Corollary
3.7 (c). Since T(f,X) is the minimal set with properties (I) and (II), it suffices
to show that 7,(f, X) satisfies both properties in order to verify that T(f, X) <
T>(f,X). Because Zer f is nonempty, the first condition 0 € T>(f, X) is clear.
In order to check the second condition, let us consider ¢ € T»(f,X). Let us
assume that there exists S e ./, and let aX’ be an arbitrary nonzero root of
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in(f,,S). We must show that ¢ +aX’e T>(f,X), which follows immediately
from Proposition 3.9.

To finish the proof it suffices to verify that T,(f,X) < T(f,X). Let
p=a X" +...+a,X% be a non zero element of Ty(f,X) ie. there exists
y(X) € Zer f such that ord(y(X)—¢) >degg. Let us put ¢, =0 and ¢, =
a X%+ +aq X% for k=1,...,n—1. We will show the implication ¢, €
T(f,X)= ¢ €T(f,X). Assume that ¢, e T(f,X). We have in(p(X)—¢,)=
ar1 X %1, By Corollary 3.7 there exists S e./;, such that ;1 X% is a root
of in(f,,,S). From property (II) we obtain ¢ = ¢ + a1 X% e T(f, X).
Since 0 € T(f, X), by induction we show that ¢ = ¢, € T(f, X), completing the
proof.

End of the proof
We are in a good position to finish the proof of the main result (Theorem
2.1).

Proof of (a). Let pe T(f,X). By Proposition 3.11 s =|A,|+d(f,) > 0.
By Theorem 3.1 there exist solutions ;(X),...,¥,(X) of f, =0 such that
degy, > degp. By using previous notation we can write Zerd®?( fo) =
Y1, ... ¥». On the other hand, we have the system Zer, f = {y1,..., ys» of
roots of f = 0 which are continuations of ¢. Corollary 3.7 states the one-to-one
correspondence between Zerd2?( f») and Zer, f by Y — y = ¢+ (the inverse:
y—y=y—g¢). Since (9f/0 Y)q, = 0f,/0Y, this construction can be directly
applied to Zer,(0f /0Y). If s=|A,|+(f,) > 1, then by Y-differentiation and
by Theorem 3.1, there exist s — 1 solutions V,...,¥,_; of df,/0Y = 0 such that
ord ; > deg ¢. Clearly

Zer,(0f JOY) =Lp+ 1, d+ ). (8)

Consider S e A,. If t =1t(f,, S) > 1, then by Proposition 3.6 (a) there exist  — 1
solutions Y{,...,¥, , of df,/dY =0 such that ord f,(X, /(X)) =a(S). Then
for z/(X) = p(X) + (X) € Zer,(3f /0Y) we have

ord f(X,zj(X)) = ord f(X,¢(X) + (X)) = ord f,(X, /(X)) = «(S).

If d =d(f,S) > 0 then by Proposition 3.6 (b) we analogously construct solutions
21(X), ..., z4(X) € Zer,(0f /0Y) such that ord f(X,z;(X)) > «(S). We finish
with the observation that if 6(f,) > 1, then ¢(X) is a common root of f =0 and
df/0Y = 0 with multiplicity 6(f,) — 1 and ord f(X, (X)) = ord f,(X,0) = +o0

Proof of (b). Consider roots z(X),...,z4(X) € Zer,(df/0Y) such that

By s = Cord f(X,z1(X)),...,ord f(X,z4(X))).

Fix ie{l,....d}. We must show the fact that z; has the form ¢ +aX" + 04
where aX? is a multiple root of in(f,,S). Let ¢, =z —¢. Since iny; = aX 0
this fact follows immediately from the construction described in Proposition 3. 6
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Proof of (c). We begin with an observation that Ti,,(f,X) is finite
(Remark 2.4). It is enough to consider the tracks generated by solutions of
f =0 with infinite number of termes. Let us fix such a solution y(X)=
ar X" Jraz)(g2 +---eZer f. Let us define the sequence of tracks ¢, =0,...,
9= a X0 4. anO/, ... and the sequences of series f1/) := Jo,_, and polygons
N = =N, . Forany j=1,2,..., according to Corollary 3.7, there exists a
face S € Jl/( with the 1ncl1nat10n Hj, such that g; Xﬁf is a root of in(f\), S /))
with multiplicity r; > 0. We write /; = degy in( f S(’) Of course, [; >
From Proposition 3.9 we have r; = [A4UD] 4 5(f ) ) =1li11. As the result
we have the infinite sequence /} >ri >hL >r, >--- of positive integers.
Therefore, there exists j such that r; = j+1 =7j41 = ---. The first equality means
that S (+) is the hrghest face of A"). The second equality means that
in(fU+D SU+D) has a unique nonzero root, hence #(fU+) SU+D) =1. Since
SU+D touches the horizontal axis (Remark 3.5), .4/ *! has only one face.

To conclude the proof we need to show that for every solution z(X)e
Zer(df/0Y), such that

ord f(X,z(X)) < +o0 9)

there exists a track ¢ € T(f,X) and a face S €./, such that ord f(X,z(X)) =
o(S). According to (6) and (9) we have ord(z(X) — y(X)) < +oo for every

y(X) eZer f. Let us choose a solution y(X) with the longest common track
p(X) of both series z(X) and y(X). We have z(X) = ¢(X) + .(X) and y(X) =
(p( ) +,(X), where ord . > deg ¢, ord ¥, > deg ¢ and iny, #ini.. Since

(af/(?Y)(X 2(X)) = (0f,/0Y)(X,y.(X)), therefore in . can be described by
/1/ ' = %e7(3f,/0Y) by virtue of Corollary 3.7.

If ordy, =400, then z(X)=g¢(X) and according to (9) we have
ord f(X,z(X)) = ord f(X,¢(X)) =ord f,(X,0) < +c0. Hence, there exists
S e ./, which touches the horizontal axis and ord f,(X,0) = «(S). If ord y.(X)
is ﬁnrte but does not appear as an inclination of any face of .4, then according
Corollary 3.3 (b) the line supporting A(f,), of inclination ord y_, intersects the
horizontal axis at the point (ord f,(X,0),0). Hence, by Property 3.2 we have
ord f(X,z(X)) = ord f,(X,.(X)) =ord f,(X,0). Therefore, in both cases
ord f(X,z(X)) = a(S).

Let us assume that ord y. = |S|,/|S|, for a certain S e .4, but that iny,
is not a root of in(f,,S). By Property 3.2 we have ord f(X,z(X)) = «(S) as
before. If iny, is a root of in(f,,S), then by Theorem 3.1 there exists
y(X)eZer f of the form y(X)=¢(X)+ .(X)+---, which contradicts the
definition of y(X). Because of this contradiction, the last possibility cannot
happen and we conclude the proof of the main result.

4 Eggers’ example

The following example shows that curves which are not equisingular can
have the same polar invariants, counting their multiplicities. Let us consider the
following four Puiseux series
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V= X+X3/2 +X15/4’ y3 = X+X5/2 +X11/4,
Y2 =2X + X2 xBA y=2x + X324 x4

Let f1, /5, f3, fa €Kk[[X, Y]] be the minimal series respectively for yi, ys, y3, ya.
We put /= fif; and f' = f3/4. Let us begin with . We have the following
cycle for y .
yﬁ') — M XA 4 g6y 6/4 L 15iy15/4
as well as for y,
yé’) — M X A4 L 10y 10/4 —|—813iX13/4,

where i =0,1,2,3 and where ¢ is a primitive root of unity of degree four. On
the basis of the table provided below we can analyze tracks 0, X, X + X3/2 and
X — X3

f(X,Y) S X+ (XX +XP+)| (X, X-X2+7Y)
y(10> — X+ X324 x5/ X3/ X 15/4 2x3/?
y(ll> — X _ X322 _oxl5/4 _x3n2 _ox3/? _ex 15/4
y§2) — X X2 xl15/4 Y32 _x15/4 2x3/2
y§3> — X — X2 pex s/ _x3/? _ox3/? ex15/4
) =2X X524 x4 X X X
W =2X — X524 ex13/4 X X X
W =2X + X527 x13/4 X X X
W =2X — X2 gx13/4 X X X

The first column presents all the roots of f = 0; the second—the initial forms
of solutions of f(X,X + Y)=0; the third—f(X,X +X3?>+Y)=0 and the
fourth—f(X,X — X324 Y) =0. This information allows us to reconstruct the
relative polygons as well as their initial forms.

(0, 8)¢
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Polygon A4"(f) has one face 4, which joins points (0,8) and (8,0), in(f,A4)
(Y =)y —2X)*, thus r=1#(f,4)=2; from this we obtain invariant
a(4) =8 with multiplicity ¢ —1=1. Polygon 4y has one face B, which
joins points (4,4) and (10,0), in(fy,B)=X*(Y — X¥2)*(Y + X¥?)?, thus
t=1t(fx,B) =2; we obtain invariant o(B) =10 with multiplicity r—1=1.
Finally polygon A%, ys» has a single face C, which joins (7,2) and
(29/2,0), in(fysys, C) =4X7(Y — X/ (Y + X4, thus = t(fy,ys, C)
=2; therefore we obtain invariant o(C) =29/2 with multiplicity r—1=1.
Taking into account track X — X3/> we again obtain «(C) =29/2 with multi-
plicity 1.

Witl}zthe help of the second table we analyze tracks 2X,2X + X°/2 as well as
2X — X3/,

f(X,Y) FX2X+Y) [ f(X,2X+ X324+ 7)) | f(X,2X - X2+ 7)
W =X 4 X324 x5/ X -X X
W =X — x3/2 ey 15/ -X -X X
W= X 4 x32 xs/e X X X
W= X — X324 ex s/ -X -X X
yEO) — X+ X524 x13/4 x3/2 Y 13/4 2X3/2
ygl)ZZX—X5/2+6X13/4 _xs2 _ox5/? ex13/4
y(22) — X 4+ X2 x13/4 x3/2 _x /4 2X3/2
y(23) X X5/2 _ex13/4 _xs”2 _ox5/? X 13/4

Polygon 45y has one segment D, which joins (4,4) and (14,0), in(fox,D) =
X4Y — X32)2(Y + X%?)%, thus 1 = 1(fox, D) = 2; we obtain invariant «(D) = 14
with multiplicity 1 — 1 = 1.

(4.4)

©,2)

14 31/2

Polygon .A5y,ys» contains one face E, which joins (9,2) and (31/2,0),
in(foyiysn, E) =4X°(Y — XB/H(Y + X4, thus t=t(faxsxsn, E) =2; we
obtain invariant «(E) = 31/2 with multiplicity t— 1= 1. Considering track
2X — X2 we again obtain «(E) = 31/2 with multiplicity 1.
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The remaining tracks do not lead to new solutions. The complete system of
invariants is as follows

¢8,10,14,29/2,29/2,31/2,31/2>.

An analogous analysis of series f’ results in the same system. The idea behind
Eggers’ example becomes visible when we simultaneously mark faces A4, B, C,
D,E. Dotted lines signify new faces, which take the place of C and E for f”.

(8,0) (10,0) 142 4l

5 The case of one branch

Let us consider the case when f € k[[X, Y]] is an irreducible series Y-regular
of order p (p >1). Let us fix Puiseux solution

y(X) = X" 4 X P 4 (10)

of equation f =0 (¢; #0, 0 < v; <, <integers, GCD(p,vi,v2,...) =1). This
solution generates other solutions in the form of a cycle

Yi(X) = ai e X"P 4 ape™ X 4 i=0,...,p—1, (11)

where ¢ is a primitive root of unity of degree p. Let 0; =v;/p. Let us consider
a sequence of tracks of the Newton algorithm for f constructed from solution
(10): @o(X) =0,...,¢;(X) =ar X" + -+ ;X% ... Let us put fU):=f,
and AV = N, It is convenient to denote vy = p, Oh =0. We have

PROPERTY 5.1.
(i) Polygon N consists of one face SV, with inclination v;/p, which
touches the horizontal axis.
(ii) degyin(fV),SU)) = GCD(vy,...,v;i1) for j=1,2,....
(iii) Every root of in(f),SU)) has the multiplicity GCD(vy, ..., ;).
. ; : GCD(VQ,...,V',l)
(). Sy = J
O T To (PRI
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(v) a(SY) =Y}, (GCD(v,...,vy_1) — GCD(w .., vj,))%+
GCD(vo, ..., V) v
p
Recall the definition of a generalized characteristic (by,...,bp):

by = Vo, .- - ,bk = min{v_/ > b | GCD(VQ, ceey Vj—l) > GCD(V(), ey Vj)},
..., by = min{y; | GCD(v,...,v;) = 1}.
If p=vy < v, then the generalized characteristic coincides with the topological

characteristic (k = C). We call b,/p,...,b,/p characteristic exponents. From
Property 5.1 we obtain

COROLLARY 5.2. t(fV,SUY>1 if and only if vj/p is a characteristic
exponent.

By Ji,...,jn let us denote the values of index j for characteristic exponents
and let oy = a(SU+)), k=1,...,h. Furthermore let

e = GCD(VQ, caey ij) = C}CD(Z)O7 ve ,bk).
We have

COROLLARY 5.3.  All polar quotients obtained on the tracks of solution (10)
have the form

K b by
(xk:Z(ek’fl_ek’) +er—, k=1,...,h,
k=1 p p

and appear with multiplicity (ex—1/ex) — 1.

Let ny = ex—1/ex. To take into consideration the multiplicity deriving from
the remaining tracks, let us write cycle (11) in the form

$AX) = Vo) -+ 6 X))

44 ‘/jh(8;1+n1iz+~~+n1nz~~~"114i/xXl/(nlnz---nh))

'l b
where Y, ..., ¥, €K[X], ¥, €eK[[X]], en = ¢, g =™ (k=1,...,h—1) and
i=i+nmi+---+mny---nu_1i; is the unique decomposition of ie{0,...,

p—1} such that 0 <i; <m —1,...,0<i, <mny,—1. Therefore the track

9; (X) = o (X) + (XM e (X ey
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generates the cycle composed of nj---n;_; elements. Hence the multiplicity of
polar quotient oy is

o G2fa- [\ _e e
nl"'nk—l(nk_ ):__ R - —
er er—1 \ ek e er—1

COMMENTARY. From Property 5.1 result the common relations between
faces S¢) and SU*V depending whether or not j stands in the characteristic
position. If j ¢ {ji,..., jn}, then GCD(v,...,v;—1) = GCD(v,...,v;) and faces
S SU+D have a common upper end.

GCD(vo, - .., vi1) R GCD(vo, - - -, v4)

This means that polygon 4 "U*!) does not contain a segment parallel to S/,
If j = ji, then GCD(vy,...,vj-1) = ex_1 > ex = GCD(vy,..., V).

GCD(vo,...,v; )|

Let us divide face SU/) into m; = ex_, /ex equal parts. Face SU+D appears in
place of the lowest part. Polygon ./~ (+1) contains a face S’() that is parallel to
SU). The length of the projection of S’/) onto the vertical axis is

GCD(vo, ...,vj-1) — GCD(vy, ..., V;) = €x—1 — ex.

The sequence of polygons A1), ¢ approaches the polygon of series
f(X,y(X) +Y), which is composed of segments S’/1) ... /()
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p:[)ozeo

€1

€h—-1

l:eh

o o,

The numbers o,...,o; represent the abscissae of the points where the lines
determined by the faces intersect the horizontal axis (see: [GP1]).
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