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Abstract

A glued Riemannian space is obtained from Riemannian manifolds M1 and M2

by identifying their isometric submanifolds B1 and B2. A curve on a glued Riemannian

space which is a geodesic on each Riemannian manifold and satisfies certain passage

law on the identified submanifold B :¼ B1 GB2 is called a B-geodesic. Considering the

variational problem with respect to arclength L of piecewise smooth curves through B,

a critical point of L is a B-geodesic. A B-Jacobi field is a Jacobi field on each

Riemannian manifold and satisfies certain passage condition on B. In this paper, we

extend the Morse index theorem for geodesics in Riemannian manifolds to the case of a

glued Riemannian space.

0. Introduction

In Riemannian manifolds, various results have been given on geodesics by
many authors. Recently, N. Innami studied a geodesic reflecting at a boundary
point of a Riemannian manifold with boundary in [5]. Let M be a Riemannian
manifold with boundary B which is a union of smooth hypersurfaces. A curve
on M is said to be a reflecting geodesic if it is a geodesic except at reflecting
points and satisfies the reflection law. He dealt with the index form, conjugate
points and so on, as in the case of a usual geodesic. Moreover, in [6], he
generalized these to the case of a glued Riemannian manifold which is a space
obtained from Riemannian manifolds with boundary by identifying their iso-
metric boundary hypersurfaces. Some collapsing Riemannian manifolds are
considered to be a kind of glued Riemannian manifolds. In [10] the author gave
the definition of a glued Riemannian space which is obtained from Riemannian
manifolds by identifying their isometric submanifolds B1 and B2 and is a
generalization of a glued Riemannian manifold. A curve on a glued Riemannian
space which is a geodesic on each Riemannian manifold and satisfies certain
passage law on the identified submanifold B :¼ B1 GB2 was called a B-geodesic.
Considering the variational problem with respect to arclength L of piecewise
smooth curves through B, a critical point of L is a B-geodesic. Also, the
definitions of the index form of B-geodesics, B-Jacobi fields and B-conjugate
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points were given. A B-Jacobi field is a Jacobi field on each Riemannian
manifold and satisfies certain passage condition on B. The purpose of this paper
is to generalize the Morse index theorem for geodesics to the case of a glued
Riemannian space. In Section 1, we review fundamental definitions, and results
([10]) on a glued Riemannian space. In Section 2, we give a precise statement of
a Morse index theorem for B-geodesics, which relates the number of B-conjugate
points on a B-geodesic g, counted with their multiplicities, to the index of g,
and prove this theorem. Moreover, we make a comparison of the indices of B-
geodesics in di¤erent glued Riemannian spaces, in Section 3.

The author would like to express his sincere gratitude to Professor N. Abe
for suggesting this problem and his helpful advice.

1. Preliminaries

Let Nm and Ml be manifolds (possibly with boundary) for m ¼ 1; . . . ; k and
l ¼ 1; . . . ; l. We allow the case where dim Nm 0 dim Nn and dim Mk 0 dim Ml

for m0 n and k0 l. A map j : N ! M from the topological direct sum N :¼
N1

‘
� � �

‘
Nk to M :¼ M1

‘
� � �

‘
Ml is smooth if jjNm is smooth. A tangent

bundle TM of M is the direct sum TM ¼ TM1

‘
� � �

‘
TMl , where TMl denotes

the tangent bundle of Ml. We note that a tangent bundle TM on M is not
constant rank vector bundle on M. We put TpM :¼ TpMl for p A Ml. We
define a map pM : TM ! M by

pMðvpÞ :¼ p for vp A TpMl:

A vector field V on M is a map V : M ! TM such that pM � V ¼ idM , where
idM is the identity map on M. If V jMl : Ml ! TMl is smooth vector field on
each Ml, then V is smooth. Let Im be a closed interval in R which is a manifold
with boundary, for m ¼ 1; . . . ; k. A map a : I :¼ I1

‘
� � �

‘
Ik ! M is called a

curve on M if a is smooth.
Let Ml be a manifold (possibly with boundary) with a submanifold Bl for

l ¼ 1; 2 and c a di¤eomorphism from B1 to B2. A glued space M ¼ M1 Uc M2

is defined as follows: M is the quotient topological space obtained from the
topological direct sum M ¼ M1

‘
M2 of M1 and M2 by identifying p A B1 with

cðpÞ A B2. We allow the case where B1 ¼ B2 ¼ j, M1 ¼ j or M2 ¼ j, where c
is the empty map. Let p : M ! M be the natural projection which is defined by
pðpÞ ¼ ½ p�, where ½ p� is the equivalence class of p. Let Nl be a manifold with
a submanifold Cl ðl ¼ 1; 2Þ, t : C1 ! C2 a di¤eomorphism and N ¼ N1 Ut N2 a
glued space. A glued smooth map j : N ! M on N derived from a smooth map
j : N ! M or, simply, a smooth map on N is defined by j ¼ p � j. We note that
a glued smooth map on N is considered as a map on N which, possibly, take two
values at ½ p� ðp A ClÞ. A glued smooth map j is continuous if jðpÞ ¼ jðtðpÞÞ
holds for any p A C1.

A glued tangent bundle TM of M is the glued space TM1 Uc� TM2, where
c� : TB1 ! TB2 is the di¤erential map of c. Let p̂p : TM ! TM be the natural
projection which is defined by p̂pðvÞ ¼ ½v�, where ½v� is the equivalence class of v.
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For p A M, we set TpM :¼ fp̂pðTpMÞ ¼ ½v� A TMjv A TpMg. We define a map
pM : TM ! M by

pMð½vp�Þ :¼ ½ p� for vp A TpM:

We note that p � pM ¼ pM � p̂p holds. A glued vector field V : M ! TM on M
derived from a vector field V on M or, simply, a vector field on M is defined by
V ¼ p̂p � V . A glued vector field V is called a smooth glued vector field provide
V is glued smooth. If a glued vector field V on M is continuous, then we can
regard it as a cross section of TM over M; that is pM � V ¼ idM . Similarly, we
can define a glued vector field (or vector field ) along a curve a : I :¼ I1

‘
I2 ! M.

Let T �
p M be the dual vector space of TpM. We put T �M ¼

T �M1

‘
T �M2, where T �Ml is the cotangent bundle of Ml. For yp ðA T �

p MÞ,
oq ðA T �

q MÞ A T �M, we define an equivalence relation @ as follows: yp @oq if
and only if yp ¼ oq ðp ¼ qÞ or ypjTpB1

¼ c�ðoqÞ ðp A B1; q ¼ cðpÞÞ or oqjTqB1
¼

c�ðypÞ ðq A B1; p ¼ cðqÞÞ, where c� is the dual map of c�. The quotient space
obtained from T �M by this equivalence relation is denoted by T �M. Let
p̂p : T �M ! T �M be the natural projection, that is, p̂pðyÞ :¼ ½y�, where ½y� is the
equivalence class of y. For p A M, we set T �

p M :¼ p̂pðT �
p MÞ and define a map

½y� : TpM ! R by ½y�ð½v�Þ :¼ yðvÞ for y A T �
p M and v A TpM. Then we can re-

gard T �
p M as the dual of TpM. We put T r; sðMÞ :¼ T r; sðM1Þ

‘
T r; sðM2Þ, where

T r; sðMlÞ is the ðr; sÞ-tensor bundle of Ml. An ðr; sÞ-tensor field on M is a cross

section of T r; sðMÞ. The definition of the smoothness of a tensor field on M is
similar to that of a vector field on M. Similarly, we can define the equivalence
relation on T r; sðMÞ induced from those on TM and T �M, and denote the
quotient space by T r; sðMÞ. Let p̂p : T r; sðMÞ ! T r; sðMÞ be the natural projec-
tion. A glued tensor field T derived from a tensor field T on M is defined by
T ¼ p̂p � T . A glued tensor field T derived from a tensor field T on M is (glued )
smooth if T is smooth.

Definition 1.1. Let ðMl; glÞ be a Riemannian manifold with a Riemannian
submanifold Bl for l ¼ 1; 2 and c an isometry from B1 to B2. Let g be the
metric on M which is defined to be gp ¼ ðglÞp for p A Ml. A glued Riemannian
space ðM; gÞ ¼ ðM1; g1ÞUc ðM2; g2Þ is a pair of a glued space M ¼ M1 Uc M2

and a glued metric g on M derived from g which is a glued tensor field derived
from the ð0; 2Þ-tensor field g.

We note that, for any glued smooth vector fields V and W on M derived
from smooth vector fields V and W on M, respectively, a map gðV ;WÞ : M ! R
defined by

gðV ;WÞðpÞ :¼ gðVp;WpÞ
is glued smooth on M derived from a smooth map gðV ;WÞ : M ! R.

From now on, identifying B1 with B2 by c, we put B :¼ B1 GB2 and
TpB :¼ TpB1 GTpB2 for p A B and omit the symbol ½�� of the equivalence
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class. In particular, ½Ml� :¼ pðMlÞ will be denoted by Ml. We call a map
a : ½a; t0�

‘
½t0; b� ! M a glued curve derived from a curve a : ½a; t0�

‘
½t0; b� ! M

or, simply, a curve on M if a : ½a; t0�
‘

½t0; b� ! M is a continuous glued smooth
map derived from a. Let a : ½a; t0�

‘
½t0; b� ! M be a glued curve derived from a

curve a : ½a; t0�
‘

½t0; b� ! M. The (glued ) velocity vector field of a is a 0 :¼ p̂p � a 0.
We put a 0ðt0 � 0Þ :¼ p̂p � a 0

1ðt0Þ and a 0ðt0 þ 0Þ :¼ p̂p � a 0
2ðt0Þ, where a1 :¼ a j ½a; t0� :

½a; t0� ! M and a2 :¼ a j ½t0; b� : ½t0; b� ! M. We note that a glued velocity vector
field is considered as a glued vector field along a and not generally con-
tinuous. We call a : ½a; b� ! M a piecewise smooth curve on M provided there
is a partition a ¼ a0 < a1 < � � � < ak < akþ1 ¼ b of ½a; b� such that a j ½ai�1; aiþ1� :
½ai�1; ai�

‘
½ai; aiþ1� ! M is a glued curve. We call aj ð j ¼ 1; . . . ; kÞ the break.

A function l : ½a; t0�
‘

½t0; b� ! f1; 2g is defined by

lðtÞ :¼ 1 on ½a; t0�
2 on ½t0; b�

�
:

For simplicity, we put l :¼ lðtÞ.
If M is a glued Riemannian space such that ðM; gÞ ¼ ðM1; g1ÞUc ðM2; g2Þ,

then, for t0 A ða; bÞ, let W t0ðM1;M2;BÞ ¼: W t0 be the set of all piecewise smooth
curves a : ½a; b� ! M such that aðt0Þ A B, að½a; t0�ÞHM1 and að½t0; b�ÞHM2.
Moreover, if p and q are points of M1 and M2, respectively. Then let
W t0ðp; qÞHW t0 be the set of all piecewise smooth curves a A W t0 such that
aðaÞ ¼ p and aðbÞ ¼ q. The projection from TpMl to TpB is denoted by tan.
Let Dl be Levi-Civita connection of Riemannian manifold Ml for l ¼ 1; 2. A
curve g A W t0 is a B-geodesic if g satisfies the following conditions:

Dl
g 0g

0 ¼ 0 on Ml; ð1:1Þ
that is, g j ½a; t0� and g j ½t0; b� are geodesics on M1 and M2, respectively,

tan g 0ðt0 � 0Þ ¼ tan g 0ðt0 þ 0Þ; ð1:2Þ
g1ðg 0ðt0 � 0Þ; g 0ðt0 � 0ÞÞ ¼ g2ðg 0ðt0 þ 0Þ; g 0ðt0 þ 0ÞÞ: ð1:3Þ

We assume that geodesics and B-geodesics are parametrized by arclength.
Let q A B, u A TqM1 and v A TqM2 with kuk1 ¼ kvk2, tan u ¼ tan v

and v B TqB. We define a linear map Qu; v : TqBl Spanfnor1 ug ! TqBl
Spanfnor2 vg as

Qu; vðwÞ ¼ w� g1ðw; nor1 uÞ
g1ðu; nor1 uÞ nor1 u

� �
þ g1ðw; nor1 uÞ

g1ðu; nor1 uÞ nor2 v

for any w A TqBl Spanfnor1 ug, where norl : TqMl ! TqB
? is the projection.

The following hold:

Qu; vðxÞ ¼ x for any x A TqB:

Qu; vðnor1 uÞ ¼ nor2 v:

g2ðQu; vðwÞ; xÞ ¼ g1ðw; xÞ
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for any x A TqB and w A TqBl Spanfnor1 ug.

g2ðQu; vðwÞ;Qu; vðwÞÞ ¼ g1ðw;wÞ
for any w A TqBl Spanfnor1 ug. Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B
Tgðt0ÞB. Then we have

Qg 0ðt0�0Þ; g 0ðt0þ0Þðg 0ðt0 � 0ÞÞ ¼ g 0ðt0 þ 0Þ:

Remark. Let q A B, u A TqM1 and v A TqM2 with kuk1 ¼ kvk2, tan u ¼ tan v
and v B TqB. If we define a linear map Qv;u : TqBl Spanfnor2 vg ! TqBl
Spanfnor1 ug as

Qv;uðzÞ ¼ z� g2ðz; nor2 vÞ
g2ðv; nor2 vÞ nor2 v

� �
þ g2ðz; nor2 vÞ
g2ðv; nor2 vÞ nor1 u

for any z A TqBl Spanfnor2 vg. The following hold:

Qu; v �Qv;u ¼ id; Qv;u �Qu; v ¼ id;

g2ðQu; vðwÞ; zÞ ¼ g1ðw;Qv;uðzÞÞ
for w A TqBl Spanfnor1 ug and z A TqBl Spanfnor2 vg.

If g A W t0ðp; qÞ is a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB, the set TgW t0 consists
of all vector fields Y along g which satisfy the following condition:

Qg 0ðt0�0Þ; g 0ðt0þ0ÞðYðt0 � 0ÞÞ ¼ Y ðt0 þ 0Þ: ð1:4Þ
A subspace TgW t0ðp; qÞ in TgW t0 is defined by

TgW t0ðp; qÞ :¼ fY A TgW t0 jY ðaÞ ¼ 0;YðbÞ ¼ 0g:

For l ¼ 1; 2, let Rl be the Riemannian curvature tensor of a Riemannian
manifold Ml defined as

RlðX ;YÞW :¼ Dl
XD

l
YW �Dl

YD
l
XW �Dl

½X ;Y �W ;

for any vector field X ;Y and W on Ml, and S l
Z the shape operator of BHMl

defined as
S l
ZðVÞ :¼ �tan Dl

VZ;

for any vector field V tangent to B and Z normal to B. Especially, if B ¼ fpg,
we have that S l

Z ¼ 0 for Z A TpMl. A vector field Y along a piecewise smooth
curve a A W t0 is a tangent to a if Y ¼ f a 0 for some function f on ½a; b� and
perpendicular to a if glðY ; a 0Þ ¼ 0. If ka 0kl 0 0, then each tangent space TaðtÞMl

has a direct sum decomposition Spanfa 0ðtÞg þ fa 0ðtÞg?. Hence each vector field

Y along a has a unique expression Y ¼ Y T þ Y ?, where Y T is tangent to a and
Y ? is perpendicular to a, that is,

Y ? ¼ Y � glðY ; a 0Þ
glða 0; a 0Þ a

0:

If a is a B-geodesic, then ðY TÞ0 ¼ ðY 0ÞT and ðY ?Þ0 ¼ ðY 0Þ?.
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Let q A B and v A TqMl ðl ¼ 1; 2Þ is not tangent to B. A linear operator
Pv
l : TqBl Spanfnorl vg ! TqB is defined by

Pv
lðwÞ :¼ w� glðw; norl vÞ

glðv; norl vÞ
v

for any w A TqBl Spanfnorl vg ðHTqMlÞ. We note that Pv
l is surjective and

Pv
lðvÞ ¼ 0.

Let q A B, u A TqM1 and v A TqM2 with kuk1 ¼ kvk2, tan u ¼ tan v
and v B TqB. We define a symmetric linear map Au; v : TqBl Spanfnor2 vg !
TqBl Spanfnor2 vg as

Au; vðwÞ ¼ ðS1
nor1 u

� S2
nor2 v

ÞðPv
2ðwÞÞ �

g2ððS1
nor1 u

� S2
nor2 v

ÞðPv
2ðwÞÞ; vÞ

g2ðv; nor2 vÞ
nor2 v

for any w A TqBl Spanfnor2 vg. We call this map Au; v a passage endomor-
phism. The following hold:

Au; vðwÞ ? v and Au; vðvÞ ¼ 0:

The index form Ig : TgW t0 � TgW t0 ! R of a B-geodesic g A W t0 with
g 0ðt0 þ 0Þ B Tgðt0ÞB is the symmetric bilinear form defined as

IgðY ;WÞ ¼
ð t0

a

fg1ðY?0
;W?0Þ � g1ðR1ðY ; g 0Þg 0;WÞg dt

þ
ð b

t0

fg2ðY?0
;W?0Þ � g2ðR2ðY ; g 0Þg 0;WÞg dt

þ g2ðAg 0ðt0�0Þ; g 0ðt0þ0ÞðY ðt0 þ 0ÞÞ;Wðt0 þ 0ÞÞ;

for all Y ;W A TgW t0 . It follows that

IgðY ;WÞ ¼ IgðY ?;W ?Þ for all Y ;W A TgW t0 :

Thus there is no loss of information in restricting the index form Ig to

T?
g W t0 :¼ fY A TgW t0 jY ? g 0g:

We write I?g for this restriction. For g A W t0ðp; qÞ, we put

T?
g W t0ðp; qÞ :¼ fY A TgW t0ðp; qÞ jY ? g 0g

and write I 0;?
g for the restriction of the index form Ig to this.

Let pr1 : Tgðt0ÞM1 ! Tgðt0ÞBl Spanfnor1 g 0ðt0 � 0Þg and pr2 : Tgðt0ÞM2 !
Tgðt0ÞBl Spanfnor2 g 0ðt0 þ 0Þg be orthogonal projections. For proofs of Lem-
mas without the proof in this section we refer the reader to [10]. The following
holds:

Lemma 1.2. Let g A W t0ðp; qÞ be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. If Y
and W A TgW t0ðp; qÞ have breaks a1 < � � � < t0 ¼ aj < � � � < ak, then we have that
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IgðY ;WÞ

¼ �
ð t0

a

g1ðY?00 þ R1ðY ; g 0Þg 0;W ?Þ dtþ
ð b

t0

g2ðY?00 þ R2ðY ; g 0Þg 0;W?Þ dt
� �

þ g2ðAg 0ðt0�0Þ; g 0ðt0þ0ÞðYðt0 þ 0ÞÞ;Wðt0 þ 0ÞÞ

þ g1ðpr1ðY?0ðt0 � 0ÞÞ;W ?ðt0 � 0ÞÞ � g2ðpr2ðY?0ðt0 þ 0ÞÞ;W ?ðt0 þ 0ÞÞ

þ
Xj�1

i¼1

g1ðY?0ðai � 0Þ � Y?0ðai þ 0Þ;W ?ðaiÞÞ

þ
Xk
i¼jþ1

g2ðY?0ðai � 0Þ � Y?0ðai þ 0Þ;W ?ðaiÞÞ

þ g2ðY?0ðbÞ;W ?ðbÞÞ � g1ðY?0ðaÞ;W ?ðaÞÞ:

Let g A W t0 be a B-geodesic. If it holds aa t1 < t2 a t0, we set Tg j ½t1; t2�W ¼
fY j vector fields along g j ½t1; t2�g. Then we define the map ~IIg j ½t1; t2� : Tg j ½t1; t2�W�
Tg j ½t1; t2�W ! R by

~IIg j ½t1; t2�ðY ;WÞ ¼
ð t2

t1

fg1ðY?0
;W?0Þ � g1ðR1ðY ; g 0Þg 0;WÞg dt;

for all Y ;W A Tg j ½t1; t2�W. If it holds t0 < t1 < t2 a b, we set Tg j ½t1; t2�W ¼
fY j vector fields along g j ½t1; t2�g. Then we define the map ~IIg j ½t1; t2� : Tg j ½t1; t2�W�
Tg j ½t1; t2�W ! R by

~IIg j ½t1; t2�ðY ;WÞ ¼
ð t2

t1

fg2ðY?0
;W?0Þ � g2ðR2ðY ; g 0Þg 0;WÞg dt;

for all Y ;W A Tg j ½t1; t2�W.
Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. If Y A TgW t0 satisfies

Y 00 þ RlðY ; g 0Þg 0 ¼ 0 on Ml ðl ¼ 1; 2Þ; ð1:5Þ

�Ag 0ðt0�0Þ; g 0ðt0þ0ÞðYðt0 þ 0ÞÞ

¼ Qg 0ðt0�0Þ; g 0ðt0þ0Þðpr1ðY 0ðt0 � 0ÞÞÞ � pr2ðY 0ðt0 þ 0ÞÞ; ð1:6Þ

and

g1ðY 0ðt0 � 0Þ; g 0ðt0 � 0ÞÞ ¼ g2ðY 0ðt0 þ 0Þ; g 0ðt0 þ 0ÞÞ; ð1:7Þ
then Y is called a B-Jacobi field along g. Let Jg be the set of all B-Jacobi fields
along g. A B-Jacobi field Y along g is perpendicular if Y is perpendicular to g.
Let J?

g be the set of all perpendicular B-Jacobi fields along g. Let J0
g be the set

of all B-Jacobi field Y A Jg such that YðaÞ ¼ 0.

If Y is a B-Jacobi field along g, then we have that

IgðY ;YÞ ¼ g2ðY?0ðbÞ;Y ?ðbÞÞ � g1ðY?0ðaÞ;Y ?ðaÞÞ: ð1:8Þ
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Lemma 1.3. Let g A W t0ðp; qÞ be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. Then
Y A T?

g W t0ðp; qÞ is an element of the nullspace of I 0;?
g if and only if Y is a B-

Jacobi field along g.

Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. We say that gðt2Þ
ðt2 A ða; b�Þ is a B-conjugate point to gðt1Þ ðt1 A ½a; bÞ; t1 < t2Þ along g if there exists
a B-Jacobi field Y along g such that Yðt1Þ ¼ 0, Y ðt2Þ ¼ 0 and Y j ½t1; t2� is
nontrivial.

B-conjugate points in M1 are always usual ones but the converse is not true
in general. We give an example which shows this:

Example 1. Let M ¼ M1 Uid M2 be a glued Riemannian space which
consists of the following Ml and B a submanifold of Ml ðl ¼ 1; 2Þ:

M1 ¼ S2ð1Þ ¼ fðx; y; zÞ j x2 þ y2 þ z2 ¼ 1g; M2 ¼ E3; B ¼ fð0;�1; 0Þg;
and g1 is a Riemannian metric induced from the natural Euclidean metric of
E3 and g2 is the natural Euclidean metric of E3. We defined a B-geodesic
g : ½�p=2;þyÞ ! M by

gðtÞ ¼ ð0; cos t; sin tÞ on ½�p=2; p�
ð0;�tþ p� 1; 0Þ on ½p;þyÞ

�
:

Then, TgW t0 is the set of all vector fields Y along g such that Y j ½a; t0� and
Y j ½t0; b� are piecewise smooth vector fields on M1 and M2, respectively, and,
Y ðt0 � 0Þ ¼ dg 0ðt0 � 0Þ and Yðt0 þ 0Þ ¼ dg 0ðt0 þ 0Þ for some d A R. Hence,
gðp=2Þ is a conjugate point to gð�p=2Þ but not a B-conjugate point.

We define the function rK : ½a; b� ! R and fK : ½a; b� ! R by

rKðtÞ ¼

t if K ¼ 0
1ffiffiffiffi
K

p tan
ffiffiffiffi
K

p
t if K > 0

1ffiffiffiffiffiffiffiffi
�K

p tanh
ffiffiffiffiffiffiffiffi
�K

p
t if K < 0

8>>>>><
>>>>>:

and

fKðtÞ ¼

t if K ¼ 0
1ffiffiffiffi
K

p sin
ffiffiffiffi
K

p
t if K > 0

1ffiffiffiffiffiffiffiffi
�K

p sinh
ffiffiffiffiffiffiffiffi
�K

p
t if K < 0

8>>>>><
>>>>>:

;

respectively.

Lemma 1.4. Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. Then
there are ~aa and ~bb ðaa ~aa < t0 < ~bba bÞ such that gðtÞ is not a conjugate point to
gð~aaÞ for any t A ð~aa; t0� and gðtÞ is not a B-conjugate point to gð~aaÞ for any t A ðt0; ~bb�.

To show this lemma it is necessary to use the following proposition:
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Proposition ([11]). Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB.
Let K1 be any real number such that fK1

ðt� aÞ > 0 for any t A ða; t0�. Let d be
any real number. We assume that K2 :¼ K1 if d ¼ 0 and K2 is any real number if
d0 0. Let b1ð> t0Þ be the smallest value which satisfies

d ¼ �1

rK1
ðt0 � aÞ þ

�1

rK2
ðt� t0Þ

;

and b2ð> t0Þ the smallest value which satisfies fK2
ðt� t0Þ ¼ 0, where bi :¼ y

ði ¼ 1; 2Þ if there are no such bi. Moreover, we put ~bb :¼ minfb; b1; b2g. Assume
that dim B > 0,

ðthe maximal eigenvalue of Rl
t ÞaKl for any t A ½a; b�

and

ðthe minimal eigenvalue of AÞb d:

Then there are no conjugate points along g j ½a; t0� and no B-conjugate points along
g j ½a; ~bbÞ to gðaÞ.

Proof of Lemma 1.4. In case where dim B ¼ 0, the assertion is trivial. We
assume that dim B > 0. Choose a real number K and d such that

ðthe maximal eigenvalue of Rl
t ÞaK for any t A ½a; b�

and

ðthe minimal eigenvalue of AÞb d:

Moreover, choose ~aa ðaa ~aa < t0Þ such that

fKðt� ~aaÞ > 0 for any t A ð~aa; t0�:

Let b1ð> t0Þ be the smallest value which satisfies

d ¼ �1

rKðt0 � ~aaÞ þ
�1

rKðt� t0Þ
;

and b2ð> t0Þ the smallest value which satisfies fKðt� t0Þ ¼ 0, where bi :¼ y
ði ¼ 1; 2Þ if there are no such bi. Moreover, we put b0 :¼ minfb; b1; b2g. Then,
by taking ~bb as t0 < ~bb < b0 the assertion holds from the above proposition. r

Lemma 1.5. Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB: We
assume that gðt0Þ and gðbÞ are not B-conjugate points to gðaÞ. Then, for any
v1 A TgðaÞM1 and v2 A TgðbÞM2, there is a unique Y A Jg with Y ðaÞ ¼ v1 and
Y ðbÞ ¼ v2.

Lemma 1.6. Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. If gðtÞ is
not a conjugate point to gðaÞ for any t A ða; t0� and gðtÞ is not a B-conjugate point
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to gðaÞ for any t A ðt0; b�, then, for any Y A TgW t0 with YðaÞ ¼ 0, there exist a
unique B-Jacobi field J A J0

g such that JðbÞ ¼ Y ðbÞ and

IgðJ; JÞa IgðY ;Y Þ:

In particular, the equality holds if and only if J? ¼ Y ?.

Lemma 1.7. Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. If gðtÞ is
not a conjugate point to gðaÞ for any t A ða; t0� and gðtÞ is not a B-conjugate point
to gðaÞ for any t A ðt0; b�, then, for any Y A TgW t0 , there exist a unique B-Jacobi
field J A Jg such that JðaÞ ¼ Y ðaÞ, JðbÞ ¼ YðbÞ and

IgðJ; JÞa IgðY ;Y Þ:

In particular, the equality holds if and only if J? ¼ Y ?.

Proof. By Lemma 1.6, we obtain that

0a IgðJ � Y ; J � Y Þ ¼ IgðJ; JÞ � 2IgðJ;YÞ þ IgðY ;YÞ: ð1:9Þ

Moreover, from (1.8), we get

IgðJ;Y Þ ¼ g2ðJ?0ðbÞ;Y ?ðbÞÞ � g1ðJ?0ðaÞ;Y ?ðaÞÞ

¼ g2ðJ?0ðbÞ; J?ðbÞÞ � g1ðJ?0ðaÞ; J?ðaÞÞ ¼ IgðJ; JÞ:

It follows that IgðJ; JÞa IgðY ;YÞ, and the equality of (1.9) holds if and only if
J? � Y ? ¼ ðJ � YÞ? ¼ 0. r

2. Index theorem

Let g A W t0 be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB. Given a B-conjugate
point gðcÞ, a < ca b, to gðaÞ, its multiplicity (or order) ~mm is defined to be the
dimension of the space of all B-Jacobi fields along g which vanish at a and
c. We note that if gðcÞ is not B-conjugate point to gðaÞ, the multiplicity of gðcÞ
is zero. Moreover, we note that, for B-conjugate point gðcÞ ða < c < t0Þ to gðaÞ,
(the multiplicity of gðcÞ)a (the multiplicity of gðcÞ as a conjugate point), since
B-conjugate points in M1 are always usual ones but the converse is not true.
We assume that gðt0Þ is not conjugate point to gðaÞ, then ~mmam2 � 1 since
dim J0;?

g ¼ m2 � 1 where J0;?
g :¼ J0

g VJ?
g and m2 ¼ dim M2 (see [10]).

In general, given a symmetric bilinear form I on a vector space V , the index
iðIÞ, the augmented index aðIÞ and the nullity nðIÞ of I are defined by

iðIÞ :¼ the maximum dimension of those subspaces of V on which I is
negative definite;

aðIÞ :¼ the maximum dimension of those subspaces of V on which I is
negative semi-definite;

nðIÞ :¼ dimfv A V j Iðv;wÞ ¼ 0 for all w A Vg.
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Lemma 2.1 ([7]). If I is a symmetric bilinear form on a finite-dimensional
vector space V, then aðIÞ ¼ iðIÞ þ nðIÞ.

For a B-geodesic g A W t0ðp; qÞ with g 0ðt0 þ 0Þ B Tgðt0ÞB, we put

L :¼ fY A T?
g W t0ðp; qÞ j I?g ðY ;WÞ ¼ 0 for all W A T?

g W t0ðp; qÞg:
We consider the index, the augmented index and the nullity of the index form
I 0;?
g restricted Ig to T?

g W t0ðp; qÞ. The purpose of this section is to give a proof
of the index theorem:

Theorem 2.2 (Index theorem). Let g A W t0ðp; qÞ be a B-geodesic such
that g 0ðt0 þ 0Þ B Tgðt0ÞB and gðt0Þ is not conjugate point to gðaÞ. Then there
are only finitely many points gðt1Þ; . . . ; gðtmÞ ða < t1 < � � � < tm < t0Þ which are
conjugate to gðaÞ along g j ½a; t0� and finitely many points gðtmþ1Þ; . . . ; gðtlÞ
ðt0 < tmþ1 < � � � < tl < bÞ other than gðbÞ which are B-conjugate to gðaÞ along
g. Let mi be the multiplicity of gðtiÞ ði ¼ 1; . . . ;mÞ as a conjugate point to gðaÞ
and ~mmi ði ¼ 1; . . . ; lÞ the multiplicity of gðtiÞ. Then it holds that

iðI 0;?
g Þ ¼ m1 þ � � � þ mm þ ~mmmþ1 þ � � � þ ~mml b ~mm1 þ � � � þ ~mml :

We give an example where m1 þ � � � þ mm þ ~mmmþ1 þ � � � þ ~mml 0 ~mm1 þ � � � þ ~mml
holds.

Example 2. In example 1, gðp=2Þ is a conjugate point to gð�p=2Þ but not a
B-conjugate point. Let m1 be the multiplicity of gðp=2Þ as a conjugate point to
gð�p=2Þ and ~mm1 the multiplicity of gðp=2Þ. Then it holds that

iðI 0;?
g Þ ¼ m1 ¼ 1 > ~mm1 ¼ 0:

Theorem 2.3. Let g A W t0ðp; qÞ be a B-geodesic with g 0ðt0 þ 0Þ B Tgðt0ÞB.
Then

(1) nðI 0;?
g Þ ¼ 0 if gðbÞ is not B-conjugate point to gðaÞ,

(2) nðI 0;?
g Þ ¼ the multiplicity of gðbÞ if gðbÞ is B-conjugate point to gðaÞ.

Proof. By Lemma 1.3, we have

nðI 0;?
g Þ ¼ dim L ¼ dimfY A T?

g W t0ðp; qÞ jY A Jgg:

This proves (1) and (2). r

Theorem 2.4. Let g A W t0ðp; qÞ be a B-geodesic such that g 0ðt0 þ 0Þ B Tgðt0ÞB
and gðt0Þ is not conjugate point to gðaÞ. Then

aðI 0;?
g Þ ¼ iðI 0;?

g Þ þ nðI 0;?
g Þ:

Proof. We will construct a finite-dimensional subspace L1 of T?
g W t0ðp; qÞ

such that iðI 0;?
g Þ ¼ iðIgjL1Þ, aðI 0;?

g Þ ¼ aðIgjL1Þ and nðI 0;?
g Þ ¼ nðIgjL1Þ. By
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Lemma 1.4, we can take a subdivision a ¼ a0 < a1 < � � � < aj ¼ t0 < ajþ1 < � � � <
ak < akþ1 ¼ b of the interval ½a; b� such that gðtÞ is not a conjugate point to gðaiÞ
for any t A ðai; aiþ1� ði ¼ 0; 1; . . . ; j � 2; j þ 1; . . . ; kÞ, gðtÞ is not a conjugate point
to gðaj�1Þ for any t A ðaj�1; t0� and gðtÞ is not a B-conjugate point to gðaj�1Þ for
any t A ðt0; ajþ1�. We set

L1 :¼ Lða0; . . . ; akþ1Þ

:¼ fY A T?
g W t0ðp; qÞ jY is a Jacobi field along g j ½ai; aiþ1� for

i ¼ 0; . . . ; j � 2; j þ 1; . . . ; k and a B-Jacobi field along g j ½aj�1; ajþ1�g:

Let NðaiÞ be the normal space to g at gðaiÞ, that is,

NðaiÞ ¼ fg 0ðaiÞg? :¼ fv A Tgðt0ÞMl j glðv; g 0ðaiÞÞ ¼ 0g;
and define a linear map

N : L1 ! N :¼ Nða1Þ � � � � �Nðaj�1Þ �Nðajþ1Þ � � � � �NðakÞ
by

NðYÞ :¼ ðY ða1Þ; . . . ;Yðaj�1Þ;Yðajþ1Þ; . . . ;Y ðakÞÞ:

Lemma 2.5. (1) N is a linear isomorphism of L1 onto N;
(2) Define a map r : T?

g W t0ðp; qÞ ! L1 by setting

rðYÞ :¼ N�1ðYða1Þ; . . . ;Y ðaj�1Þ;Yðajþ1Þ; . . . ;YðakÞÞ
for Y A T?

g W t0ðp; qÞ. Then

IgðY ;Y Þb IgðrðYÞ; rðYÞÞ for Y A T?
g W t0ðp; qÞ;

and the equality holds if and only if Y A L1.
(3) iðI 0;?

g Þ ¼ iðIgjL1Þ, aðI 0;?
g Þ ¼ aðIgjL1Þ and nðI 0;?

g Þ ¼ nðIgjL1Þ.

Lemma 2.1 and Lemma 2.5(3) imply Theorem 2.4. r

Proof of Lemma 2.5. (1) Suppose Y A L1 and NðY Þ ¼ 0 so that YðaiÞ ¼ 0
for i ¼ 1; . . . ; j � 1; j þ 1; . . . ; k. By our choice of ai, Y ¼ 0, proving that N is
injective. To show that N is surjective, it su‰ces to prove that, given vectors vi
at gðaiÞ and viþ1 at gðaiþ1Þ, there is a Jacobi field Y along g j ½ai; aiþ1� which
extends vi and viþ1 for i ¼ 1; . . . ; j � 2; j þ 1; . . . ; k � 1, and given vectors vj�1 at
gðaj�1Þ and vjþ1 at gðajþ1Þ, there is a B-Jacobi field Y along g j ½aj�1; ajþ1� which
extends vj�1 and vjþ1. Since gðaiþ1Þ is not conjugate point to gðaiÞ, Y 7! ðvi; viþ1Þ
defines a linear isomorphism of the space of Jacobi fields along g j ½ai; aiþ1�
into the direct sum of the tangent spaces at gðaiÞ and gðaiþ1Þ for i ¼ 1; . . . ; j � 2;
j þ 1; . . . ; k � 1. Moreover since gðt0Þ and gðajþ1Þ are not conjugate points to
gðaj�1Þ, Y 7! ðvj�1; vjþ1Þ defines a linear isomorphism of the space of B-Jacobi
fields along g j ½aj�1; ajþ1� into the direct sum of the tangent spaces at gðaj�1Þ and
gðajþ1Þ. Since they are linear isomorphisms of a vector space into a vector space
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of the same dimension (cf. Lemma 1.5), it must be surjective. This completes the
proof of (1).

(2) With the notations in the Section 1, we have

I?g ðY ;Y Þ ¼
Xj�2

i¼0

~IIg j ½ai ;aiþ1�ðY ;YÞ þ Ig j ½aj�1;ajþ1�ðY ;Y Þ þ
Xk

i¼jþ1

~IIg j ½ai ;aiþ1�ðY ;Y Þ

and

I?g ðrðYÞ; rðYÞÞ ¼
Xj�2

i¼0

~IIg j ½ai ;aiþ1�ðrðYÞ; rðYÞÞ þ Ig j ½aj�1;ajþ1�ðrðY Þ; rðY ÞÞ

þ
Xk

i¼jþ1

~IIg j ½ai ;aiþ1�ðrðYÞ; rðYÞÞ:

By Proposition 3.1 in [7], we have

~IIg j ½ai ;aiþ1�ðY ;YÞb ~IIg j ½ai ;aiþ1�ðrðY Þ; rðYÞÞ
for i ¼ 0; . . . ; j � 2; j þ 1; . . . ; k and the equality holds if and only if Y is a Jacobi
field along g j ½ai; aiþ1�. By Lemma 1.7, we have

Ig j ½aj�1;ajþ1�ðY ;YÞb Ig j ½aj�1;ajþ1�ðrðYÞ; rðYÞÞ
and the equality holds if and only if Y is a B-Jacobi field along g j ½aj�1; ajþ1�.

(3) If U is a subspace of T?
g W t0ðp; qÞ on which I 0;?

g is negative semi-definite,

then I 0;?
g is negative semi-definite on rðUÞ by (2). Moreover, rjU : U ! rðUÞ

ðHL1Þ is a linear isomorphism. In fact, if Y A U and rðY Þ ¼ 0, then (2) implies

0b IgðY ;YÞb IgðrðY Þ; rðY ÞÞ ¼ 0;

and hence IgðY ;Y Þ ¼ IgðrðYÞ; rðYÞÞ. Again by (2), we have Y ¼ rðYÞ ¼ 0.
Thus rjU is injective. It is clear that rjU is surjective and linear. Moreover
we have aðI 0;?

g Þa aðIgjL1Þ. The reverse inequality is obvious. The proof for
the index iðI 0;?

g Þ is similar. Finally, to prove nðI 0;?
g Þ ¼ nðIgjL1Þ, let Y be an

element of L1 such that I?g ðY ;WÞ ¼ 0 for all W A L1. Since Y is a Jacobi field
along g j ½ai; aiþ1� for i ¼ 0; . . . ; j � 2; j þ 1; . . . ; k and a B-Jacobi field along
g j ½aj�1; ajþ1�, we have that

IgðY ;WÞ ¼
Xj�1

i¼1

g1ðY 0ðai � 0Þ � Y 0ðai þ 0Þ;WðaiÞÞ

þ
Xk

i¼jþ1

g2ðY 0ðai � 0Þ � Y 0ðai þ 0Þ;WðaiÞÞ

from Lemma 1.2. In the same way as we prove Lemma 1.3, we conclude that
Y 0ðai � 0Þ ¼ Y 0ðai þ 0Þ for i ¼ 1; . . . ; j � 1; j þ 1; . . . ; k so that Y is a B-Jacobi
field along g. This means that nðI 0;?

g Þb nðIgjL1Þ. The reverse inequality is
obvious. r
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Proof of Theorem 2.2. Since dim L1 < y, (3) of Lemma 2.5 implies that
both aðI 0;?

g Þ and iðI 0;?
g Þ are finite. The finiteness of B-conjugate points follows

from the next lemma.

Lemma 2.6. For any finite number of conjugate points gðt1Þ; . . . ;
gðtmÞ ða < t1 < � � � < tm < t0Þ to gðaÞ along g j ½a; t0� with multiplicity m1; . . . ; mm as
conjugate points and B-conjugate points gðtmþ1Þ; . . . ; gðtlÞ ðt0 < tmþ1 < � � � < tl < bÞ
to gðaÞ along g with multiplicity ~mmmþ1; . . . ; ~mml , we have

aðI 0;?
g Þb m1 þ � � � þ mm þ ~mmmþ1 þ � � � þ ~mml :

Proof. For simplicity, we put mi :¼ ~mmi ði ¼ mþ 1; . . . ; lÞ. For each i, let
~YY i

1 ; . . . ;
~YY i
mi

be a basis for the Jacobi fields along g j ½a; t0� or the B-Jacobi fields

along g which vanish at t ¼ a and t ¼ ti. We put, j ¼ 1; . . . ; mi,

Y i
m :¼

~YY i
m on ½a; ti�

0 on ½ti; b�

�
:

It su‰ces to prove that m1 þ � � � þ ml vector fields Y i
1 ; . . . ;Y

i
mi

, i ¼ 1; . . . ; l, along g
are linearly independent and that Ig is negative semi-definite on the space spanned
by them. Suppose

Xl

i¼1

Y i ¼ 0;

where

Y i ¼ ci1Y
i

1 þ � � � þ cimiY
i
mi
:

Since Y 1; . . . ;Y l�1 vanish on g j ½tl�1; b�, Y l must vanish along g j ½tl�1; tl �.
Being a B-Jacobi field or a Jacobi field along g j ½a; tl �, Y l must vanish identically
along g, since gðt0Þ is not a conjugate point to gðaÞ. Thus, cl1 ¼ � � � ¼ clml ¼ 0.

Continuing this argument, we obtain cl�1
1 ¼ � � � ¼ cl�1

ml�1
¼ 0, and so on. To prove

that Ig is negative semi-definite on the space spanned by Y i
1 ; . . . ;Y

i
mi

, i ¼ 1; . . . ; l,
let

Y ¼ Y 1 þ � � � þ Y l ;

where each Y i is a linear combination of Y i
1 ; . . . ;Y

i
mi

as above. Then

IgðY ;YÞ ¼
Xl

i¼1

IgðY i;Y iÞ þ 2
X

1as<ial

IgðY i;Y sÞ:

For each pair ði; sÞ with sa i, we shall show that IgðY i;Y sÞ ¼ 0. Let g ¼
g j ½a; ti�. Since Y i and Y s vanish beyond t ¼ ti, we have IgðY i;Y sÞ ¼ IgðY i;Y sÞ.
As Y i is a B-Jacobi field or a Jacobi field along g, IgðY i;Y sÞ ¼ 0 by Lemma
1.3. Thus, IgðY ;YÞ ¼ 0, proving our assertion. r
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Let gr denote the restriction of g to the interval ½a; br�, where br ¼
rbþ ð1 � rÞa for 0 < ra 1. Thus gr : ½a; br� ! M is a B-geodesic from gðaÞ to
gðbrÞ if ðt0 � aÞ=ðb� aÞ < ra 1 and a geodesic in M1 if 0 < ra ðt0 � aÞ=ðb� aÞ.
Let Ir denote the index form associated with this B-geodesic or geodesic. Thus
iðI1Þ is the index which we are actually trying to compute. First note that:

Assertion (1). iðIrÞ ¼ 0 for small values of r. (cf. [8])
Assertion (2). iðIrÞ is a monotone function of r.
In fact, if r < r 0 then there exists a iðIrÞ dimensional space V of vector fields

along gr which vanish at a and br such that the index form Ir is negative definite
on this vector space. Each vector field in V extends to a vector field along gr 0
which vanishes identically between br to br 0 . Thus we obtain a iðIrÞ dimensional
vector space of vector fields along gr 0 on which Ir 0 is negative definite. Hence
iðIrÞa iðIr 0 Þ. r

Now let us examine the discontinuity of the function iðIrÞ. First note that
iðIrÞ is continuous from the left:

Assertion (3). For all su‰ciently small e > 0 we have iðIr�eÞ ¼ iðIrÞ.

Proof. According to (3) of Lemma 2.5 the number iðI1Þ can be interpreted
as the index of a quadratic form on a finite dimensional vector space L1 ¼
Lða0; . . . ; akþ1Þ. If br 0 t0, we may assume that the subdivision is chosen so that
say ai < br < aiþ1. Then the index iðIrÞ can be interpreted as the index of a
corresponding quadratic form Ir on a corresponding vector space Lr of broken B-
Jacobi fields or Jacobi fields along gr. This vector space Lr is to be constructed
using the subdivision a < a1 < � � � < ai < br of ½a; br�. Since a broken B-Jacobi
field or a Jacobi field is uniquely determined by its values at the break points
gðamÞ, this vector space Lr is isomorphic to the direct sum

Nr ¼
Nða1Þ � � � � �Nðaj�1Þ �Nðajþ1Þ � � � � �NðaiÞ if br > t0

Nða1Þ � � � � �NðaiÞ if br < t0

�
;

by a map Nr : Lr ! Nr defined to be

NrðYÞ :¼ ðY1ða1Þ; . . . ;Y ðaj�1Þ;Y ðajþ1Þ; . . . ;YðaiÞÞ if br > t0

ðY1ða1Þ; . . . ;Y ðaiÞÞ if br < t0

�
:

Note that this vector space Nr is independent of r. Evidently, by Lemma 1.2,
the quadratic form Br :¼ Ir �N�1

r on Nr varies continuously with r.
Now Br is negative definite on a subspace VHNr of dimension iðBrÞ. For

all r 0 su‰ciently close to r it follows that Br 0 is negative definite on V.
Therefore iðBr 0 Þb iðBrÞ. But if r 0 ¼ r� e < r then we also have iðBr�eÞa iðBrÞ
by Assertion (2). Hence iðBr�eÞ ¼ iðBrÞ. r

Assertion (4). For all su‰ciently small e > 0 we have

iðIrþeÞ ¼ iðIrÞ þ nðIrÞ:
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Proof that iðIrþeÞa iðIrÞ þ nðIrÞ. Let Br and Nr be as in the proof of
Assertion (3). Since dim Nr < y we see that Br is positive definite on some
subspace V 0 HNr. For all r 0 su‰ciently close to r, it follows that Br 0 is positive
definite on V 0. Hence

iðBr 0 Þa dim Nr � dim V 0 ¼ aðBrÞ ¼ iðBrÞ þ nðBrÞ: r

Proof that iðIrþeÞb iðIrÞ þ nðIrÞ. Let V A Nr, with VðaiÞ0 0, and denote by
Vbr A Lr the broken B-Jacobi field or Jacobi field which coincides with VðamÞ at
am, m ¼ 1; . . . ; i, and which vanishes at the point br A ðai; aiþ1Þ. We claim that

BrðV ;VÞ ¼ IrðVbr ;VbrÞ > IrþeðVbrþe
;Vbrþe

Þ ¼ BrþeðV ;VÞ:
In fact, if we denote by Wbr the vector field defined along grþe by

WbrðtÞ ¼
VbrðtÞ; t A ½a; br�
0; t A ½br; brþe�

�
;

we have, from Lemma 1.6,

IrðVbr ;VbrÞ ¼ IrþeðWbr ;WbrÞ > IrþeðVbrþe
;Vbrþe

Þ;
where the last inequality is strict, since Wbr j ½ai; brþe� is neither a B-Jacobi field
nor Jacobi field. Therefore, if V A Nr and BrðV ;VÞ ¼ IrðVbr ;VbrÞa 0, then
BrþeðV ;VÞ ¼ IrþeðVbrþe

;Vbrþe
Þ < 0. Hence, if Br is negative definite on a sub-

space VHNr, Brþe will still be negative definite on the direct sum of V with the
null space of Br. Therefore

iðBrþeÞb iðBrÞ þ nðBrÞ: r

The index Theorem 2.2 clearly follows from the Assertion (1), (2), (3) and
(4). r

3. Comparison theorem

Let ðMl; glÞ (resp. ðMl; glÞ) be Riemannian manifold with Rieman-
nian submanifold Bl (resp. Bl) for l ¼ 1; 2, and c (resp. c) isometry from B1

to B2 (resp. B1 to B2). Let ðM; gÞ ¼ ðM1; g1ÞUc ðM2; g2Þ and ðM; gÞ ¼
ðM1; g1ÞUc

ðM2; g2Þ be glued Riemannian spaces. We put B :¼ B1 GB2 and

B :¼ B1 GB2 and assume that dim B > 0 if dim B > 0. Let g A W t0 (resp.
g A W t0 ) be a B-geodesic (resp. B-geodesic) with g 0ðt0 þ 0Þ B Tgðt0ÞB (resp.

g 0ðt0 þ 0Þ B Tgðt0ÞB). We assume that gðt0Þ (resp. gðt0Þ) is not conjugate point

to gðaÞ (resp. gðaÞ). For l ¼ 1; 2, let Rl (resp. Rl) be the Riemannian curvature
tensor of Riemannian manifold Ml (resp. Ml). We define operators
Rl

t : fg 0ðtÞg? ! fg 0ðtÞg? and Rl
t : fg 0ðtÞg? ! fg 0ðtÞg? by

Rl
t v ¼ Rlðv; g 0ðtÞÞg 0ðtÞ for v A fg 0ðtÞg?

and
Rl

t v ¼ Rlðv; g 0ðtÞÞg 0ðtÞ for v A fg 0ðtÞg?;
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where

fg 0ðtÞg? :¼ fv A TgðtÞMl j glðv; g 0ðtÞÞ ¼ 0g
and

fg 0ðtÞg? :¼ fv A TgðtÞMl j glðv; g 0ðtÞÞ ¼ 0g:
Similarly, a bar is used to distinguish objects in M from the correspond-
ing objects in M. We put G2ðg 0Þ :¼ Tgðt0ÞBl Spanfnor2 g 0ðt0 þ 0Þg, G?

2 ðg 0Þ :¼
fv A G2ðg 0Þ j g2ðv; g 0ðt0 þ 0ÞÞ ¼ 0g and A :¼ Ag 0ðt0�0Þ; g 0ðt0þ0Þ jG?

2 ðg 0Þ.
We assume that dim Ml b 2 and dim Ml b 2. Then the following assertion

holds:

Proposition 3.1. We assume that dim Ml a dim Ml ðl ¼ 1; 2Þ and the
following conditions hold:

(1) For any t A ½a; b�,
ðthe maximal eigenvalue of Rl

t Þa ðthe minimal eigenvalue of Rl
t Þ

(2) If dim B > 0, then

ðthe minimal eigenvalue of AÞb ðthe maximal eigenvalue of AÞ:
Then iðI 0;?

g Þa iðI 0;?
g Þ holds. In particular, if one of two inequalities (1) and (2) is

strict, then aðI 0;?
g Þ ¼ iðI 0;?

g Þ þ nðI 0;?
g Þa iðI 0;?

g Þ holds.

Proof. For Y A T?
g W t0ðgðaÞ; gðbÞÞ, let e�1 ; . . . ; e

�
m1

:¼ g 0ðt0 � 0Þ be an or-

thonormal basis of Tgðt0ÞM1 and eþ1 ; . . . ; e
þ
m2

:¼ g 0ðt0 þ 0Þ an orthonormal basis of
Tgðt0ÞM2 such that e�1 ¼ Yðt0 � 0Þ=kYðt0 � 0Þk1 and eþ1 ¼ Y ðt0 þ 0Þ=kYðt0 þ 0Þk2

if Yðt0 � 0Þ0 0. Let e�i ðtÞ (resp. eþi ðtÞ) be the vector field along g j ½a; t0� (resp.
g j ½t0; b�) obtained by parallel translation of e�i (resp. eþi ) along g j ½a; t0� (resp.
g j ½t0; b�) for i ¼ 1; . . . ;m1 (resp. i ¼ 1; . . . ;m2). We can denote YðtÞ by

YðtÞ ¼
Xm1�1

i¼1

yi
�ðtÞe�i ðtÞ; t A ½a; t0�

and

Y ðtÞ ¼
Xm2�1

i¼1

yi
þðtÞeþi ðtÞ; t A ½t0; b�:

Let e�1 ; . . . ; e
�
m1

:¼ g 0ðt0 � 0Þ (resp. eþ1 ; . . . ; e
þ
m2

:¼ g 0ðt0 þ 0Þ) be an orthonormal

basis of Tgðt0ÞM1 (resp. Tgðt0ÞM2) such that if e�1 A G1ðg 0Þ and eþ1 ¼ Qðe�1 Þ if

Y ðt0 � 0Þ0 0. Let e�i ðtÞ (resp. eþi ðtÞ) be the vector field along g j ½a; t0� (resp.
g j ½t0; b�) obtained by parallel translation of e�i (resp. eþi ) along g j ½a; t0� (resp.
g j ½t0; b�) for i ¼ 1; . . . ;m1 (resp. i ¼ 1; . . . ;m2). If we put

YðtÞ ¼
Xm1�1

i¼1

yi
�ðtÞe�i ðtÞ; t A ½a; t0�
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and

YðtÞ ¼
Xm2�1

i¼1

yi
þðtÞeþi ðtÞ; t A ½t0; b�;

then it holds that Y A T?
g W t0ðgðaÞ; gðbÞÞ, since Y ðt0 þ 0Þ ¼ y1

þðt0 þ 0Þeþ1 ¼
y1
�ðt0 � 0ÞQðe�1 Þ ¼ QðYðt0 � 0ÞÞ if Y ðt0Þ0 0. Furthermore, by the definition,

we have that kYðtÞkl ¼ kYðtÞkl and kY 0ðtÞkl ¼ kY 0ðtÞkl. From the assumption
(1) and (2), we get

glðRl
t YðtÞ;YðtÞÞa glðR

l

t YðtÞ;YðtÞÞ
and

g2ðAðY ðt0 þ 0ÞÞ;Yðt0 þ 0ÞÞb g2ðAðYðt0 þ 0ÞÞ;Yðt0 þ 0ÞÞ:
Then we have that

IgðY ;Y Þb I gðY ;Y Þ: ð3:1Þ
Let U be the subspace of T?

g W t0ðgðaÞ; gðbÞÞ on which I?g is negative definite and

U :¼ fY jY A Ug. If Y A U, then I gðY ;YÞ < 0. Hence, I g is negative definite

on U and we have iðI?g Þa iðI?g Þ.
If one of two inequalities (1) and (2) is strict, then it holds that

IgðY ;YÞ > I gðY ;YÞ: ð3:2Þ
Let V be the subspace of T?

g W t0ðgðaÞ; gðbÞÞ on which I?g is negative semi-definite

and V :¼ fY jY A Vg. If Y A V, then I gðY ;YÞ < 0. Hence, I g is negative

definite on V and we have aðI 0;?
g Þa iðI 0;?

g Þ. r

The condition that dim Ml a dim Ml ðl ¼ 1; 2Þ is necessary. We give an
example which shows that:

Example 3. Let Smð1Þ be the m-sphere of constant curvature 1 and g
a geodesic on Smð1Þ. Let e1ðtÞ; e2ðtÞ; . . . ; em�1ðtÞ; g 0ðtÞ be a parallel orthonormal
frame along g. Let t be the geodesic through gð0Þ with t 0ð0Þ ¼ e1ð0Þ. We put
Ml :¼ Smð1Þ ðl ¼ 1; 2Þ, B :¼ ftðtÞ j t A Rg, c ¼ idB and M ¼ M1 Uc M2. Then
g : ½�p=2; p� ! M is a B-geodesic. We set a :¼ �p=2, t0 :¼ 0 and b :¼ p=2.
Then gðbÞ is a B-conjugate point to gðaÞ, its multiplicity is m� 1 and iðI?g Þ ¼
m� 1. For m < m, we set Ml :¼ Smð1Þ, B;c;M ¼ M1 Uc

M2 and g as above.

Then, we have that iðI 0;?
g Þ > iðI 0;?

g Þ.
In [11], the following assertion is given without the assumption that

dim Ml a dim Ml ðl ¼ 1; 2Þ:

Corollary 3.2. We assume that dim Ml a dim Ml ðl ¼ 1; 2Þ and the
following conditions hold:

(1) For any t A ½a; b�,
ðthe maximal eigenvalue of Rl

t Þa ðthe minimal eigenvalue of Rl
t Þ
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(2) If dim B > 0, then

ðthe minimal eigenvalue of AÞb ðthe maximal eigenvalue of AÞ:
(3) gðtÞ is not a conjugate point to gðaÞ for any t A ða; t0� and also gðtÞ is not a

B-conjugate point to gðaÞ for any t A ðt0; b�.
Then gðtÞ is not a conjugate point to gðaÞ for any t A ða; t0� and also gðtÞ is not B-
conjugate point to gðaÞ for any t A ðt0; b�.

Proof. By the assumption (3), iðI 0;?
g Þ ¼ 0 holds. Hence we have that

iðI 0;?
g Þ ¼ 0 from Proposition 3.1. r
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