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Abstract

A glued Riemannian space is obtained from Riemannian manifolds M; and M,
by identifying their isometric submanifolds B; and B,. A curve on a glued Riemannian
space which is a geodesic on each Riemannian manifold and satisfies certain passage
law on the identified submanifold B := B = B, is called a B-geodesic. Considering the
variational problem with respect to arclength L of piecewise smooth curves through B,
a critical point of L is a B-geodesic. A B-Jacobi field is a Jacobi field on each
Riemannian manifold and satisfies certain passage condition on B. In this paper, we
extend the Morse index theorem for geodesics in Riemannian manifolds to the case of a
glued Riemannian space.

0. Introduction

In Riemannian manifolds, various results have been given on geodesics by
many authors. Recently, N. Innami studied a geodesic reflecting at a boundary
point of a Riemannian manifold with boundary in [5]. Let M be a Riemannian
manifold with boundary B which is a union of smooth hypersurfaces. A curve
on M is said to be a reflecting geodesic if it is a geodesic except at reflecting
points and satisfies the reflection law. He dealt with the index form, conjugate
points and so on, as in the case of a usual geodesic. Moreover, in [6], he
generalized these to the case of a glued Riemannian manifold which is a space
obtained from Riemannian manifolds with boundary by identifying their iso-
metric boundary hypersurfaces. Some collapsing Riemannian manifolds are
considered to be a kind of glued Riemannian manifolds. In [10] the author gave
the definition of a glued Riemannian space which is obtained from Riemannian
manifolds by identifying their isometric submanifolds B; and B, and is a
generalization of a glued Riemannian manifold. A curve on a glued Riemannian
space which is a geodesic on each Riemannian manifold and satisfies certain
passage law on the identified submanifold B := B; = B, was called a B-geodesic.
Considering the variational problem with respect to arclength L of piecewise
smooth curves through B, a critical point of L is a B-geodesic. Also, the
definitions of the index form of B-geodesics, B-Jacobi fields and B-conjugate
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points were given. A B-Jacobi field is a Jacobi field on each Riemannian
manifold and satisfies certain passage condition on B. The purpose of this paper
is to generalize the Morse index theorem for geodesics to the case of a glued
Riemannian space. In Section 1, we review fundamental definitions, and results
([10]) on a glued Riemannian space. In Section 2, we give a precise statement of
a Morse index theorem for B-geodesics, which relates the number of B-conjugate
points on a B-geodesic y, counted with their multiplicities, to the index of y,
and prove this theorem. Moreover, we make a comparison of the indices of B-
geodesics in different glued Riemannian spaces, in Section 3.

The author would like to express his sincere gratitude to Professor N. Abe
for suggesting this problem and his helpful advice.

1. Preliminaries

Let N, and M; be manifolds (possibly with boundary) for x=1,...,k and
A=1,...,I. We allow the case where dim N, # dim N, and dim M, # dim M,
for u#vand Kk #4. A map ¢: N — M from the topological direct sum N :=
NiIL-- 1INk to M := M []---1IM; is smooth if p|N, is smooth. A rangent
bundle TM of M is the direct sum TM = TM,[]---]] TM,, where TM; denotes
the tangent bundle of M;. We note that a tangent bundle 7M on M is not
constant rank vector bundle on M. We put T,M := T,M; for pe M;. We
define a map ny; : TM — M by

ni;(vp) :=p for v, e T,M,.

A vector field V on M is a map V : M — TM such that ng; o VV =id;, where
idj; is the identity map on M. If VM, : M; — TM; is smooth vector field on
each M;, then V' is smooth. Let I, be a closed interval in R which is a manifold
with boundary, for u=1,...,k. A map a:I:=0L]]---][lx — M is called a
curve on M if & is smooth.

Let M, be a manifold (possibly with boundary) with a submanifold B; for
A=1,2 and y a diffeomorphism from B; to By. A glued space M = M, Uy M,
is defined as follows: M is the quotient topological space obtained from the
topological direct sum M = M| [[ M, of M, and M, by identifying p € B| with
Y(p) € B,. We allow the case where B; = B, =0, M; =0 or M, = (), where
is the empty map. Let 7: M — M be the natural projection which is defined by
n(p) = [p], where [p] is the equivalence class of p. Let N, be a manifold with
a submanifold C, (A1 =1,2), 7: C; — C, a diffeomorphism and N = N;U, N, a
glued space. A glued smooth map ¢ : N — M on N derived from a smooth map
@: N — M or, simply, a smooth map on N is defined by ¢ = 70 @. We note that
a glued smooth map on N is considered as a map on N which, possibly, take two
values at [p] (pe C;). A glued smooth map ¢ is continuous if ¢(p) = ¢(z(p))
holds for any p e Cj.

A glued tangent bundle TM of M is the glued space TM; Uy TM,, where
W, : TBy — TB, is the differential map of . Let #: TM — TM be the natural
projection which is defined by #(v) = [v], where [v] is the equivalence class of v.
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For pe M, we set T,M :={#(T,M) =[v]e TM|ve T,M}. We define a map
iy TM — M by

mu([vy)) :==[p] for v, e T,M.

We note that mony; = my o7 holds. A glued vector field V : M — TM on M
derived from a vector field V on M or, simply, a vector field on M is defined by
V=nroV. A glued vector field V is called a smooth glued vector field provide
V' is glued smooth. If a glued vector field ¥ on M is continuous, then we can
regard it as a cross section of TM over M; that is my o V' =1idy,. Similarly, we
can define a glued vector field (or vector field) along a curve a: I := 1L [[L — M.
Let T M be the dual vector space of T,M. We put T*M =
"M ]| T* Mz, where 7*M; is the cotangent bundle of M;. For 0, (e T, M),
@, (e T;M) e T*M, we define an equivalence relation ~ as follows: 0, ~ @, if
and only if 0,=a@, (p=q) or 0 bl1,8 = Vv (@g) (peBi,g=1y(p)) or ql7,5 =
lﬂ*(@l,) (g€ Bi,p=1(q)), where y* is the dual map of ,. The quotient space
obtained from T*M by this equivalence relation is _denoted by T"M. Let
: T*M — T*M be the natural projection, that is, #(0) := [0], where [0] is the
equlvalence class of . For pe M, we set ;M :=7(T, M) and define a map

[0]: T,M — R by [0)([8]) := 0(¢) for ()eT M and v € T,M. Then we can re-
gard Tp M as the dual of T,M. We put T’ S(M) :=T" ‘(Ml) 11 775(M,), where
T"5(M;) is the (r,s)-tensor bundle of M;. An (r,s)-tensor field on M is a cross
section of T"5(M). The definition of the smoothness of a tensor field on M is
similar to that of a vector field on M. Similarly, we can define the equivalence
relation on T"*(M) induced from those on TM and T*M, and denote the
quotient space by T"*(M). Let #n:T"(M)— T"*(M) be the natural projec-
tion. A glued tensor field T derived from a tensor field T on M is defined by
T=roT. A glued tensor field T derived from a tensor field 7 on M is (glued)
smooth if T is smooth.

DeriniTION 1.1, Let (M), g;) be a Riemannian manifold with a Riemannian
submanifold B, for 2 =1,2 and { an isometry from B; to B,. Let g be the
metric on M which is defined to be d, = (9. )p for pe M;,. A glued Riemannian
space (M,g) = (My,91)Uy (M>,g>) is a pair of a glued space M = M, Uy M,
and a glued metric g on M derived from g which is a glued tensor field derived
from the (0,2)-tensor field g.

We note that, for any glued smooth vector fields ' and W on M derived
from smooth vector fields " and W on M, respectively, a map g(V,W): M — R
defined by

gV, W) (p) = g(vpv Wp)

is glued smooth on M derived from a smooth map g(V,W): M — R.
From now on, identifying B; with B, by ¥, we put B:= B =~ B, and
T,B:=T,B = T,B, for pe B and omit the symbol [] of the equivalence
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class. In particular, [M;]:=n(M;) will be denoted by M,;. We call a map
o [a, 0] [to,b] — M a glued curve derived from a curve @ : |a,to] ] [to,b] — M
or, simply, a curve on M if «: [a,t][] [to,b] — M is a continuous glued smooth
map derived from a. Let o : [a,1]]][t,b] — M be a glued curve derived from a
curve & : [a, 2] [ [to,b] — M. The (glued) velocity vector field of o is o' := o &'.
We put o' (9 — 0) := 720 aj(ty) and o'(ty + 0) := 7 o &(ty), where & := | [a, 1] :
[a,t)] — M and &, := &|[to,b] : [to,b] — M. We note that a glued velocity vector
field is considered as a glued vector field along & and not generally con-
tinuous. We call o : [a,b] — M a piecewise smooth curve on M provided there
is a partition a =ap < a; < -+ < ag < ary; = b of [a,b] such that o|[a;—1,a;1] :
ai—1,a]) []]ai,ai1] — M is a glued curve. We call ¢; (j=1,...,k) the break.
A function A: [a, t] [][to,b] — {1,2} is defined by

1 on [a,t]
At) = {2 on [to, b

For simplicity, we put 4 := A(f).

If M is a glued Riemannian space such that (M,g) = (M1, g1) Uy (M>, g2),
then, for # € (a,b), let Q, (M, M>; B) =: Q,, be the set of all piecewise smooth
curves «:[a,b] — M such that «(t) € B, a(la,t]) = My and o([ty,b]) = Mo.
Moreover, if p and ¢ are points of M; and M,, respectively. Then let
Q. (p,q) = Q, be the set of all piecewise smooth curves o€ €, such that
a(a) = p and a(b) =¢. The projection from 7,M; to T,B is denoted by tan.
Let D be Levi-Civita connection of Riemannian manifold M, for A =1,2. A
curve y € Q, is a B-geodesic if y satisfies the following conditions:

D}y’ =0 on M, (1.1)

that is, y|[a, %] and y|[t,b] are geodesics on M| and M), respectively,
tan y’(zp — 0) = tan y'(zo + 0), (1.2)
91(7'(to = 0),7(to — 0)) = g2(y'(to + 0),y"(to + 0)). (1.3)

We assume that geodesics and B-geodesics are parametrized by arclength.

Let geB, ueT,M, and veT,M, with |ul|,=]|v|l,, tanu=tanv
and v¢ T,B. We define a linear map Q,,:7T,B® Span{nor; u} — T,B®
Span{nor, v} as

0w~ {-

g1(w, nor; u) g1(w, nor u)

nor; v
g1(u,nory u)

nor; u} +
g1 (u,nor; u)

for any w e T,B @ Span{nor; u}, where nor; : T,M, — T,B* is the projection.
The following hold:

Q.v(x) =x for any xe T,B.
Q..»(nor; u) = nor; v.

92(Quo (W), x) = g1(w, x)
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for any x e T,B and w e T,B ® Span{nor; u}.

gZ(Qum(“’)v Qu,v(w)) = gl(”’» W)
for any w e T,B @ Span{nor; u}. Let yeQ, be a B-geodesic with y'(¢) + 0) ¢
T, B. Then we have

Oy (19-0),7(10+0) (' (1o — 0)) = y'(t0 + 0).

Remark. Let ge B, ue T,M, and ve T,M, with |ju||;, = ||v||,, tan u = tan v
and v¢ T,B. If we define a linear map Q,,: 7,B ® Span{nor, v} — T,B®
Span{nor; u} as

_J . g2(z,n0rs v) g2(z,nor v)
Ovu(z) = {z 4g2(v,nor2 ) nor; v} + 4g2(v,nor2 ) nor; u
for any z e T,B @ Span{nor, v}. The following hold:
Qu,v o Qu,u == 1d7 Qu,u o Qu‘v == ld»
gZ(Qu,v(W)7 Z) = gl(W7 Qb\,u(Z))

for we T,B @ Span{nor; u} and z e T,B @ Span{nor, v}.
If y e Q,(p,q) is a B-geodesic with y(to +0) ¢ T, B, the set T,L, consists
of all vector fields Y along y which satisfy the following condition:

Qy1(1-0), (140 (Y (0 — 0)) = Y (0 + 0). (1.4)
A subspace T,Q,(p,q) in T,Q, is defined by
T”/Qlo(paq) = {Y € TVQIO | Y(a) =0, Y(b) = 0}

For 2 =1,2, let R* be the Riemannian curvature tensor of a Riemannian
manifold M; defined as

RYX,Y)W := DyDyW — DDy W — Dly W,
for any vector field X, Y and W on M, and Sé the shape operator of B< M,
defined as
SL(V) := —tan D}.Z,

for any vector field V' tangent to B and Z normal to B. Especially, if B = {p},
we have that S =0 for Ze T,M;. A vector field Y along a piecewise smooth
curve a € Q, is a tangent to o if Y = fo’ for some function f on [a,b] and
perpendicular to o if g;(Y,a’) = 0. 1If ||«'||; # 0, then each tangent space T,;)M;
has a direct sum decomposition Span{a'()} 4+ {o/()}". Hence each vector field

Y along o has a unique expression Y = YT + Y+ where Y7 is tangent to o and
Y+ is perpendicular to o, that is,

g).(vaxl) o
gi(“/v‘“/) .
If o is a B-geodesic, then (Y7) = (Y')" and (Y+) = (Y")".

Yt=Y-—
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Let ge B and ve T,M, (A=1,2) is not tangent to B. A linear operator
P! : T,B@® Span{nor, v} — T,B is defined by

g,(w, nor; v)

Pi(w) :=w—
20w) = w g, (v,nor; v)

for any we T,B ® Span{nor, v} (c T,M;). We note that P is surjective and
Pi(v) =0.

Let geB, ueT,M, and veT,M, with |u|,=v],, tanu=tanwv
and v ¢ T,B. We define a symmetric linear map 4, , : T,B ® Span{nor, v} —
T,B ® Span{nor, v} as

92((Snor, u = Stor, o) (P5 (1)), )

Au,v(w) = (Sriorl u Sr%orz v)(P;(W)) - o ugz(v 11];);21'2 D)

nor; v

for any we T,B ® Span{nor, v}. We call this map 4,, a passage endomor-
phism. The following hold:

Ay,(w) Lv and A4, ,(v) =0.

The index form I,:T,Q, x T,Q2,, — R of a B-geodesic yeQ, with
' (to +0) ¢ T, B is the symmetric bilinear form defined as

to

1LY, W) = j (o (YE W) — g (RN, )y W) de

a

b
+j (9(YX W) — ga(R(Y, )y W)} di

fh
+ 92(Ayr(1-0),(1040) (Y (20 + 0)), W(to + 0)),
for all Y, W e T,Q,. It follows that
L(Y,W)=L(Y*, W) for all Y, W eT,Q,.
Thus there is no loss of information in restricting the index form 7, to
T Q,:={YeT,Q,|Y Ly}
We write Iﬂ/L for this restriction. For ye Q,(p,q), we put

T;Qu(p.q) = {Y e T,Qqu(p.q) | Y LV}

and write I)EU for the restriction of the index form I/, to this.

Let pry : Ty M1 — T B @ Span{nor; y’(t —0)} and pr,: Ty Mr —
T, ;) B @ Span{nor, y'(to + 0)} be orthogonal projections. For proofs of Lem-
mas without the proof in this section we refer the reader to [10]. The following
holds:

Lemma 1.2, Let y e Q,(p,q) be a B-geodesic with y'(to +0) ¢ T,,\B. If Y
and W e T,Q, (p,q) have breaks a; < --- <ty =a; < --- < ai, then we have that
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L(Y, W)

b
{J g (Y +RY (Y, )y, W) dt+J g (Y + RY Y,y , W) dl}

)

gZ(A;’ I(HrO)(Y(ZO + 0))7 W(ZO + 0))
ql(prl(YL (to —0)), W(to — 0)) — g2 (pry (Y (10 + 0)), W (10 +0))

+qu (Y*(a — Y+ (a; +0), WH(a))

+ Z (Y (= 0) — Y+ (a4 0), W (a)
i=j+1
+ g2 (Y (), WHD)) — g1 (Y (@), W(a)).
Let y € Q,, be a B-geodesic. If it holds a <t < 1, < 19, we set T}, ,)Q =

{Y | vector fields along y|[t;,2]}. Then we define the map I, 1] : Ty, )2 ¥
Ty\[tl,tz]Q — R by

5]
LYo W) = | {an (V) = g (R W)
n
for all Y, VVETWl tz]Q- If it holds # <t <t <b, we set THTI ,,]Q—

{Y | vector fields along y|[t,2]}. Then we define the map I,|(;, 1) : Ty, €2 ¥
Ty)11,)Q2 — R by

Lo (Y, W) = J,tz{gz(YL'v W) — g2 (R*(Y )y, W)} dt,

for all Y, W eT,q, ,Q
Let y € Q; be a B-geodesic with y'(to +0) ¢ T, )B. If Y e T,Q, satisfies

Y+ RYY,y)y'=0 on M; (A=1,2), (1.5)
—Ay(19-0).7(10+0) (¥ (10 + 0))
= Qy(15-0), (100 (Pr1 (Y (20 — 0))) — pry (Y (20 + 0)), (1.6)
and
g1(Y'(t9 = 0),7"(to = 0)) = g2(Y' (20 + 0),7'(t0 +0)), (1.7)

then Y is called a B-Jacobi field along y. Let 7, be the set of all B-Jacobi fields
along y. A B-Jacobi field Y along y is perpendicular if Y is perpendicular to j.
Let ff be the set of all perpendicular B-Jacobi fields along y. Let //0 be the set
of all' B-Jacobi field Y € 7, such that Y(a) = 0.

If Y is a B-Jacobi field along y, then we have that

L(Y,Y)=ga(Y" (6), Y*(0)) = 1(Y* (a), Y*(a)). (1.8)
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Lemma 1.3, Let y € Q;(p,q) be a B-geodesic with y'(to +0) ¢ T, B. Then
Ye T Q. (p,q) is an element of the nullspace of I0 L if and only lf Y is a B-
Jacobl field along 7.

Let yeQ, be a B-geodesic with y'(ty +0) ¢ T, )B. We say that y(5)
(t2 € (a, b)) is a B-conjugate point to y(t;) (t) € [a,b), 1 < t2) along y if there exists
a B-Jacobi field Y along y such that Y(#) =0, Y(©) =0 and Y |[f,1] is
nontrivial.

B-conjugate points in M; are always usual ones but the converse is not true
in general. We give an example which shows this:

ExampPLE 1. Let M = M;U,; M, be a glued Riemannian space which
consists of the following M; and B a submanifold of M; (1=1,2):

=S’ (1) ={(x, ) [x*+ )+ =1}, My=E’, B={(0,-1,0)},

and ¢, is a Riemannian metric induced from the natural Euclidean metric of
E® and ¢, is the natural Euclidean metric of E®. We defined a B-geodesic
y:[-n/2,+00) — M by

(1) = (0, cos t,sin ¢) on [—n/2, 7]

=0, 1+ 72-1,0) on[r,+0)
Then, T,Q, is the set of all vector fields Y along y such that Y |[a, 1] and
Y |[ty,b] are piecewise smooth vector fields on M| and M,, respectively, and,
Y(to—0)=dy'(tp—0) and Y(tp+0)=dy'(tp+0) for some deR. Hence,
p(n/2) is a conjugate point to y(—n/2) but not a B-conjugate point.

We define the function pg : [¢,b] — R and fx : [a,b] — R by

t if K=0
1
— tan VK1 if K>0
pk(t) = ¢ VK
1
tanh vV—-Kt if K <0
v—-K
and
t if K=0
— sin VK¢ if K>0
Jx(1) = \/E ,
1
sinh v—Kt if K<0
vV—K
respectively.

Lemma 1.4.  Let yeQ; be a B-geodesic with y'(to +0) ¢ T,B. Then
there are @ and b (a < a < ty < b < b) such that y(t) is not a con]uqate point to
y(@) for any t € (a, 1] and y(1) is not a B-conjugate point to y(a) for any t € (to,b].

To show this lemma it is necessary to use the following proposition:



288 MASAKAZU TAKIGUCHI

ProposITION ([11]).  Let yeQ, be a B-geodesic with y'(to +0) ¢ T, B.
Let Ky be any real number such that fx, (t —a) >0 for any t€ (a,t)). Let o be
any real number. We assume that K, := K| if 6 = 0 and K, is any real number if
0#0. Let bi(> ty) be the smallest value which satisfies

—1 -1
5= +
P, (o —a) ~ pg, (1= to)

and by(> ty) the smallest value which satisfies fx,(t—t)) =0, where b; := o0

(i =1,2) if there are no such b;. Moreover, we put b :=min{b,by,b,}. Assume
that dim B > 0,

?

(the maximal eigenvalue of R/) < K, for any t€[a,b]
and

(the minimal eigenvalue of A) >J.

Then there are no conjugate points along vy | [a,ty] and no B-conjugate points along
y1la,b) to y(a).

Proof of Lemma 1.4. 1In case where dim B = 0, the assertion is trivial. We
assume that dim B > 0. Choose a real number K and J such that

(the maximal eigenvalue of R') < K for any € [a,b]

and

(the minimal eigenvalue of A) >J.
Moreover, choose d (a < a < ty) such that

Jxk(t—a) >0 for any t € (a,t).
Let b;(> tp) be the smallest value which satisfies

-1 -1

pxlo =) " pilt—10)

and by(> 1p) the smallest value which satisfies fx(z —#) =0, where b; := o
(i =1,2) if there are no such b;. Moreover, we put by := min{b, by, b,}. Then,
by taking b as fy < b < by the assertion holds from the above proposition. O

5:

Lemma 1.5. Let yeQ,; be a B-geodesic with y'(tg+0)¢ T,,)B. We
assume that y(ty) and y(b) are not B-conjugate points to y(a). Then, for any
v1 € TyyMy and vy € Typ)Ma, there is a unique Y € ¢, with Y(a)=uv and
Y(b) = 0y.

LEmMA 1.6, Letr y € Q, be a B-geodesic with y'(19+0) ¢ Ty, B. If y(t) is
not a conjugate point to y(a) for any t € (a, ty] and y(t) is not a B-conjugate point
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to y(a) for any te (to,b], then, for any Y € T,Q, with Y(a) =0, there exist a
unique B-Jacobi field J e fyo such that J(b) = Y (b) and

L(J,J) < L(Y,Y).

In particular, the equality holds if and only if J+ =Y+ .

Lemma 1.7, Let y € Q) be a B-geodesic with y'(ty +0) ¢ Ty B.  If y(1) is
not a conjugate point to y(a) for any t € (a, ty] and y(t) is not a B-conjugate point
to y(a) for any te (ty,b), then, for any Y € T,Q,, there exist a unique B-Jacobi
field J € ¢, such that J(a) = Y(a), J(b) = Y(b) and

L(J.J) < L(Y,Y).
In particular, the equality holds if and only if J* = Y+,

Proof. By Lemma 1.6, we obtain that
0<L(J-Y,J=Y)=L(J,J) —2L(J,Y)+L(Y,Y). (1.9)
Moreover, from (1.8), we get
LU, Y) =200 (0), Y (b)) — 1(J* (@), Y (a))
= g2(J (b), T (b)) — 1 (T (a), T M (@) = L,(J,J).

It follows that I,(J,J) < L(Y,Y), and the equality of (1.9) holds if and only if
Jt-yt=J-v)=0. O

2. Index theorem

Let y € Q, be a B-geodesic with y'(z +0) ¢ T,(,)B. Given a B-conjugate
point y(c), a < c¢ < b, to y(a), its multiplicity (or order) fi is defined to be the
dimension of the space of all B-Jacobi fields along y which vanish at ¢ and
¢. We note that if y(c) is not B-conjugate point to y(a), the multiplicity of y(c)
is zero. Moreover, we note that, for B-conjugate point y(c¢) (a < ¢ < 1) to y(a),
(the multiplicity of y(c)) < (the multiplicity of y(c¢) as a conjugate point), since
B-conjugate points in M, are always usual ones but the converse is not true.
We assume that p(zp) is not conjugate point to y(a), then g <mp—1 since
dim £+ =my — 1 where g>*:= 7’0 7 and my = dim M, (see [10]).

In general, given a symmetric bilinear form / on a vector space V, the index
i(I), the augmented index a(I) and the nullity n(I) of I are defined by

i(I) := the maximum dimension of those subspaces of V' on which I is
negative definite;

a(I) := the maximum dimension of those subspaces of V' on which [ is
negative semi-definite;

n(I) :=dim{ve V|I(v,w) =0 for all we V}.
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Lemma 2.1 ([7)). If I is a symmetric bilinear form on a finite-dimensional
vector space V, then a(I) =i(I) + n(I).

For a B-geodesic y € Q (p,q) with y'(t9 +0) ¢ T, B, we put
L:={Ye€ TyiQ,o(p,q) \Iyi(Y, W)=0 for all W e Tle,O(p,q)}.

We consider the index, the augmented index and the nullity of the index form
ij)‘l restricted I, to T, yLQ,O (p,q). The purpose of this section is to give a proof
of the index theorem:

THEOREM 2.2 (Index theorem). Let yeQ,(p,q) be a B-geodesic such
that y'(ty +0) ¢ T,,)B and y(to) is not conjugate point to y(a). Then there
are only finitely many points p(t1),...,9(tn) (a <ty <--- < t, <ty) which are
conjugate to y(a) along 7yl|la,to] and finitely many points y(tmi1),...,y(t)
(to < tmy1 < -+ <ty <b) other than y(b) which are B-conjugate to y(a) along
y.  Let u; be the multiplicity of y(t;) (i=1,...,m) as a conjugate point to y(a)
and g; (i=1,...,1) the multiplicity of y(t;). Then it holds that

W) = g byt g+l 2

We give an example where gy + -+ @, + fyyy + Tl Ffy + L
holds.

ExampPLE 2. In example 1, y(z/2) is a conjugate point to y(—zx/2) but not a
B-conjugate point. Let g4; be the multiplicity of y(7/2) as a conjugate point to
y(—n/2) and g, the multiplicity of yp(x/2). Then it holds that

i(I4) = =1> 4 =0.

TueOREM 2.3. Let y€Q(p,q) be a B-geodesic with y'(to +0) ¢ T, B.
Then

(1) n(L/()VL) =0 if y(b) is not B-comjugate point to y(a),

(2) n(L)+) = the multiplicity of y(b) if y(b) is B-conjugate point to y(a).

Proof. By Lemma 1.3, we have

n(I}*+) = dim L = dim{Y € T,"Q,,(p,q) | Y € %,}.

This proves (1) and (2). O

THEOREM 2.4. Let y € Q,(p,q) be a B-geodesic such that y'(ty 4 0) ¢ T, B
and y(ty) is not conjugate point to y(a). Then

a(L}) = i(I) ) + (1)),

Proof. We will construct a finite-dimensional subspace L; of TjQ,O (p,q)
such that (1) =i(L|L1), a(I>*)=a(L|L) and n(I>*) =n(L|L)). By
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Lemma 1.4, we can take a subdivision a =a¢ <a; <---<agj =t <ajp1 < - <
ar < ar+1 = b of the interval [a,b] such that y(7) is not a conjugate point to y(a;)
for any 7€ (a;,a;11] (i=0,1,...,7—2,j+1,...,k), y(¢) is not a conjugate point
to y(aj_1) for any ¢ € (a;_1,t] and p(¢) is not a B-conjugate point to y(a;_1) for
any t€ (t,a;.1]. We set

Ly := L(ag,...,ak11)
={Y eT, Qu(p,q)| Y is a Jacobi field along y|[a;,a;1] for
i=0,...,j—2,j+1,...,k and a B-Jacobi field along y|[a;j_1,a;11]}.
Let N(a;) be the normal space to y at y(a;), that is,
N(a)) = {7 ()} = {v e Ty Mz | g:(v,7' (@) = 0},
and define a linear map
N Ly — N:=N(ay) x - x N(aj_1) x N(aj11) x --- x N(ay)
by
N(Y) = (Y(ar),...,Y(aj-1), Y(aj1),..., Y(ax)).

Lemma 2.5. (1) A is a linear isomorphism of L, onto N;
(2) Define a map p : T,,,LQ,O(p,q) — Ly by setting

p(Y) =N (Y(ar),..., Y(ai-1), Y(aj1),.--, Y(a))
for Y e T} Q,(p,q). Then
L(Y,Y)>L(p(Y),p(Y)) for Y eT;Q,(p,q),

and the equality holds if and only if Y € L.
(3) (L") = i(L|L1), a(I)*) = a(L|Ly) and n(I**) = n(L,|Ly).

Lemma 2.1 and Lemma 2.5(3) imply Theorem 2.4. O

Proof of Lemma 2.5. (1) Suppose Y € L; and A (Y) =0 so that Y(a;) =0
fori=1,...,j—1,j+1,...,k. By our choice of @;, Y =0, proving that A" is
injective. To show that /" is surjective, it suffices to prove that, given vectors v;
at y(a;) and vy at p(a;41), there is a Jacobi field Y along y||a;,a;+1] which
extends v; and viyy fori=1,...,7—2,j+1,...,k—1, and given vectors v;_; at
7(aj-1) and vy at p(ajy1), there is a B-Jacobi field Y along y|[aj_1,a;+1] which
extends v;_; and v;;1. Since y(a;11) is not conjugate point to p(a;), ¥ +— (v;, vi41)
defines a linear isomorphism of the space of Jacobi fields along y|[a;, a;y1]
into the direct sum of the tangent spaces at y(a;) and y(a;q) fori=1,...,j—2,
j+1,...,k—1. Moreover since y(f) and y(a;;i) are not con]ugate points to
y(a_,»_l), Y (vj—1,vj41) defines a linear isomorphism of the space of B-Jacobi
fields along y|[aj-1,a;;1] into the direct sum of the tangent spaces at y(a;—;) and
7(aj+1). Since they are linear isomorphisms of a vector space into a vector space
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of the same dimension (cf. Lemma 1.5), it must be surjective. This completes the
proof of (1).
(2) With the notations in the Section 1, we have

Jj=2 k
I;,L(Yv Y) = yl[a,-‘am](Y? Y) + 17\ [@/717a/+1](Y’ Y) + Z IV\ [“i«,aiH](Y’ Y)
=0 =11
and
=2
IyL(p( Y)a/)( Y)) = Iy\ [af,a;+1](p( Y),p( Y)) + Iy\ [a,'fl.,a/-l](p( Y)a/)( Y))
i=0

k
+ Z INVH%“M](.D( Y),p( Y))

i=j+1

By Proposition 3.1 in [7], we have

iy\ [Uuawl](y’ Y) = iy‘ @i, aiy1] (p( Y)HO( Y))
fori=0,...,7—2,j+1,... .k and the equality holds if and only if Y is a Jacobi
field along y|[a;,ai+1]. By Lemma 1.7, we have

1,\ [aj,l,aj+1](Y7 Y) = Iy\[a/,l‘uj“](p( Y)7/)( Y))

and the equality holds if and only if Y is a B-Jacobi field along y|[aj_1,aj11].

(3) If U is a subspace of 7,-Q,,(p,q) on which Iyo'l is negative semi-definite,
then Iyo’L is negative semi-definite on p(U) by (2). Moreover, p|U : U — p(U)
(= L;) is a linear isomorphism. In fact, if ¥ € U and p(Y) = 0, then (2) implies

0> (Y, Y) = L(p(¥),p(¥)) =0,

and hence I,(Y,Y)=1IL(p(Y),p(Y)). Again by (2), we have Y =p(Y)=0.
Thus p|U is injective. It is clear that p|U is surjective and linear. Moreover
we have a(l}f)'i) <a(l|L;). The reverse inequality is obvious. The proof for
the index i(I)*) is similar. Finally, to prove n(I)*) =n(L|L;), let Y be an
element of L; such that Iyl(Y, W) =0 for all WelL,. Since Y is a Jacobi field
along y|[a;,air1] for i=0,...,7—2,j+1,...,k and a B-Jacobi field along
v|[aj-1,a;+1], we have that

Jj—=1

L(Y, W) = ZQI(Y/(%‘ —=0) — Y'(a; +0), W(a))
=1

k
+ 3 92(Y'(a; = 0) = Y'(a; +0), W(a))
i=j+1
from Lemma 1.2. In the same way as we prove Lemma 1.3, we conclude that
Y'(a;—0)=Y'(a;+0) fori=1,...,j—1,j+1,...,k so that Y is a B-Jacobi
field along y. This means that n(IyO"'l) >n(l,|Li). The reverse inequality is
obvious. O
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Proof of Theorem 2.2. Since dim L; < oo, (3) of Lemma 2.5 implies that
both a(IVO’L) and i(IyO‘L) are finite. The finiteness of B-conjugate points follows
from the next lemma.

LEMMA 2.6. For any finite number of conjugate points y(t1),...,
Ptm) (a <ty <--- <ty <ty) to y(a) along y|la,to] with multiplicity w,,. .., u,, as
conjugate points and B-conjugate points y(tm+1), .-, y(t) (to < typ1 < -+ < 1) < b)
to y(a) along y with multiplicity f,,.,,...,#&, we have

a(])?vl) Z)ul +'“+lum+ﬂm+l ++ldl

Proof. For simplicity, we put u,:=4; (i=m+1,...,[). For each i, let
Yi,..., f/ﬂii be a basis for the Jacobi fields along y|[a,#] or the B-Jacobi fields
along y which vanish at t=a and t=1¢. We put, j=1,...,4,

Yo {Ym on [a, 1]
0 on [t,b]

It suffices to prove that g + - - - + g vector fields Y/, ..., Y/f,, i=1,...,/ along y
are linearly independent and that /, is negative semi-definite on the space spanned
by them. Suppose

i
Y ri=o,
i=1

where

Yi=ciY{+ - +¢,Y,.
Since Y',...,Y'’"! vanish on y|[t_1,b], Y’ must vanish along y|[t_1,1].
Being a B-Jacobi field or a Jacobi field along y|[a,#], Y’ must vanish identically
along 7, since y(f) is not a conjugate point to p(a). Thus, ¢/ =--- = c;lq =0.
Continuing this argument, we obtain c{’l == L;ll =0, and so on. To prove
that 7, is negative semi-definite on the space spanned by Y/,..., Y/i-’ i=1,...,1
let

Y=Y'4+...+Y

where each Y’ is a linear combination of Y/,..., Y, as above. Then

LY, Y)=> LY, Y)+2 Y L(Y', Y.
i=1 l<s<i<l
For each pair (i,s) with s <i, we shall show that L,(Y' Y*)=0. Let y=
y|la,2]. Since Y' and Y* vanish beyond 7 = ¢;, we have I,(Y', Y*) = L;(Y', Y*).
As Y' is a B-Jacobi field or a Jacobi field along 7, I;(Y', Y*) =0 by Lemma
1.3. Thus, I,(Y,Y) =0, proving our assertion. O
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Let y, denote the restriction of y to the interval [a,b,], where b, =
rb+ (1 —r)a for 0<r<1. Thus y,:[a,b] — M is a B-geodesic from y(a) to
y(by) if (to —a)/(b—a) <r <1 and a geodesic in M, if 0 <r < (tp —a)/(b— a).
Let I, denote the index form associated with this B-geodesic or geodesic. Thus
i(f1) is the index which we are actually trying to compute. First note that:

Assertion (1). i(f;) =0 for small values of r. (cf. [8))

Assertion (2). i(l.) is a monotone function of r.

In fact, if r < ¢’ then there exists a i(/,) dimensional space 7~ of vector fields
along y, which vanish at @ and b, such that the index form I, is negative definite
on this vector space. Each vector field in ¥~ extends to a vector field along 7y,
which vanishes identically between b, to b,». Thus we obtain a i(,) dimensional
vector space of vector fields along y,, on which /- is negative definite. Hence

(L) <i(l). O

Now let us examine the discontinuity of the function i(Z,). First note that
i(1;) is continuous from the left:
Assertion (3). For all sufficiently small ¢ >0 we have i(I,_;) = i(I,).

Proof. According to (3) of Lemma 2.5 the number i(/;) can be interpreted
as the index of a quadratic form on a finite dimensional vector space L; =
L(ag,...,ary1). If b, # to, we may assume that the subdivision is chosen so that
say a; < b, < a;j;. Then the index i(I,) can be interpreted as the index of a
corresponding quadratic form I, on a corresponding vector space L, of broken B-
Jacobi fields or Jacobi fields along y,. This vector space L, is to be constructed
using the subdivision ¢ < a; < --- < a; < b, of [a,b;]. Since a broken B-Jacobi
field or a Jacobi field is uniquely determined by its values at the break points
y(am), this vector space L, is isomorphic to the direct sum

N — N(al)><~--><N(aj,1)><N(aj+1)><---><N(ai) ifbr>t0
a N(a1)><~-><N(a,~) ifb,~<[0’

by a map ./, : L, — N, defined to be

(Yl(al)a ceey Y(ajfl)v Y(ajJrl)""a Y(ai)) if br >l

Arl¥) = {(Yl(al),..., Y(a)) i b <ty

Note that this vector space N, is independent of r. Evidently, by Lemma 1.2,
the quadratic form B, := 1,0 A/,’l on N, varies continuously with r.

Now B, is negative definite on a subspace ¥~ = N, of dimension i(B,). For
all ' sufficiently close to r it follows that B, is negative definite on 7 .
Therefore i(B,) > i(B,). But if r' =r—& < r then we also have i(B,_;) < i(B;)
by Assertion (2). Hence i(B,_.) = i(B,). O

Assertion (4). For all sufficiently small ¢ >0 we have

i(lt‘+£) = i(lr) + n(lr)'
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Proof that i(l4.) <i(l,) +n(l;). Let B, and N, be as in the proof of
Assertion (3). Since dim N, < co we see that B, is positive definite on some
subspace ¥~ = N,. For all #' sufficiently close to r, it follows that B, is positive
definite on ¥"'. Hence

i(B,) <dim N, — dim v = a(B,) = i(B,) + n(B,). [

Proof that i(l,4.) > i(I,) + n(l,). Let V e N,, with V(a;) # 0, and denote by
Vy, € L, the broken B-Jacobi field or Jacobi field which coincides with V'(a,,) at
am, m=1,...,i, and which vanishes at the point b, € (@;,a;11). We claim that

B,(V, V) = Ir( wa I/hr) > Ir+£( mea I/])H»s) = Br+e( v, V)-
In fact, if we denote by W), the vector field defined along y,,, by

Vp, (1), te€la,b]
W, (1) = '
br( ) {07 te [br>br+sr
we have, from Lemma 1.6,

I"( Vbr7 Vbr) = "+5( Wbr? Wbr) > Ir+£( VbH»e’ Vbr+s )7

where the last inequality is strict, since W), |[a;,byy.] is neither a B-Jacobi field
nor Jacobi field. Therefore, if Ve N, and B.(V,V)=1(Vs,, Vi) <0, then
B (V. V) =11:(Vs,,, Vs, ) <0. Hence, if B, is negative definite on a sub-
space ¥~ < N,, B, will still be negative definite on the direct sum of ¥~ with the
null space of B,. Therefore

i(Byis) 2 i(B) +n(B,). O

The index Theorem 2.2 clearly follows from the Assertion (1), (2), (3) and
@. O

3. Comparison theorem

Let (M;,g;) (resp. (M,,3;)) be Riemannian manifold with Rieman-
nian submanifold B; (resp. B;) for A =1,2, and ¢ (resp. ) isometry from B;
to B, (resp. By to B,). Let (M,g)= (M, g1)Uy(Mz,92) and (M,g)=
(_Ml,gzl)Ul;_(Mz,éz) be glued Riemangian spaces. We put B:= By = B, and
B:=B; =B, and assume that dim B> 0 if dim B>0. Let yeQ, (resp.
7€Q,) be a B-geodesic (resp. B-geodesic) with y'(to+0) ¢ T, B (resp.
7'(to +0) ¢ T54,)B). We assume that y(#) (resp. 7(f)) is not conjugate point
to y(a) (resp. y(a)). For i =1,2, let R* (resp. R*) be the Riemannian curvature
tensor of Riemannian manifold M, (resp. M;). We define operators

RE: (0} — {0} and R < {7(0} — (7(0}F by
Riv= R0,y (0)'(1) for ve {y(n}*

Rio=R'5.7(0)7() for se {7 ()}

and
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where
{'(0} = {ve TyyM; | g:(v,7' (1) = 0}

(')} = {pe TyM;|3,(5,7' (1)) = 0}.
Similarly, a bar is used to distinguish objects in A/ from the correspond—
ing objects in M. We put I'y(y') := Ty, B ® Span{nor; y (to +0)}, Ty()) =
{veTa(y) [92(v,7'(t +0)) = 0} and A == Ay(s,-0) (1010 | T3 (7)-
We assume that dim M, > 2 and dim M 2 =2. Then the following assertion
holds:

and

PrROPOSITION 3.1. We assume that dim M; < dim M; (A=1,2) and the
following conditions hold:
(1) For any te€ la,bl,

(the maximal eigenvalue of R;) < (the minimal eigenvalue of R})
(2) If dim B> 0, then
(the minimal eigenvalue of A) > (the maximal eigenvalue of A).

Then 1(10 H< z( Y holds.  In particular, if one of two inequalities (1) and (2) is
strict, then a(I L) = i(I)") +n(I)) < i(fg’L) holds.

Proof. For Y e T;Q,(y(a),(D)), let e,... e, =7y'(to—0) be an or-
thonormal basis of T,y M, and ef,.. .,entz :=7'(tp + 0) an orthonormal basis of
T,y M3 such that e; = Y (20— 0)/||Y (2o — 0)||; and ef = Y (10 +0)/[| Y (20 +0)][,
if Y(zp—0)#0. Let ¢;(¢) (resp. ¢/ (7)) be the vector field along y|[a, 7] (resp.
7| [to,b]) obtained by parallel translation of e; (resp. e;) along y|[a, 1] (resp.

v|[to,b]) for i=1,...,my (resp. i=1,...,my). We can denote Y(¢) by

mlfl

Y() =y (e (1), tela i)
i=1

and
lefl .
Y(0) =Y yi(Def (1), te€]t,b].
i=1
Let e,...,e5 =7'(ty—0) (resp. ¢,...,¢; =7'(to +0)) be an orthonormal

basis of Ty M (resp. Ty,)M>) such that if e eT\(y') and & = Q(ey) if
Y(to — );é 0 Let e (t) (resp. e (¢)) be the vector field along 7|[a, ) (resp.
7| [t0,b]) obtained by parallel translation of ¢, (resp. &) along 7|la, ] (resp.
77|[t0, b)) for i=1,...,/my (resp. i=1,...,/m,). If we put

ml—l

= Z yi(l)é;([), te [av ZO]
i=1
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and

}’nzfl

= Z Y& (1), e t,b],

then it holds that Y e T73Q,(5(a),7(h)), since Y(to+0) = pi(t+0)e =
vty —0)0(e7) = O(Y (1o —0)) if Y(z) # 0. Furthermore, by the definition,
we have that | Y (7)||, = || Y(?)||, and || 17/(l)||/1 =||Y'(#)||,- From the assumption
(1) and (2), we get

gi (R} Y (1), Y (1)) < g,(R,
and

92(A(Y (8 +0)), Y (10 +0)) = g2 (A(¥ (29 +0)), Y (10 + 0)).
Then we have that
L(Y,Y)>I;(Y.Y). (3.1)
Let % be the subspace of T,°Q,(y(a),7(b)) on which " is negative definite and
U= {Y\Yeu}y If Ye?/ then 7;(Y,Y) <0. Hence, I, is negative definite

on % and we have i(L}') < l(lyl).
If one of two inequalities (1) and (2) is strict, then it holds that

L(Y,Y)>I;Y.Y). (3.2)
Let ¥~ be the subspace of T. LQ,O( (a),y(b)) on which I L is negative semi-definite

and 7 :={Y|Yev}. If Ye7, then I;(Y, Y)<0 Hence, I; is negative
definite on 7~ and we have a(I**) < i(I_;-)’L). m

The condition that dim M; < dim M; (A =1,2) is necessary. We give an
example which shows that:

ExaMpLE 3. Let S™(1) be the m-sphere of constant curvature 1 and y
a geodesic on S™(1). Let ei(2),ex(t),...,em—1(2),7'(¢) be a parallel orthonormal
frame along y. Let 7 be the geodesic through y(0) with '(0) = ¢;(0). We put
M, :=8"(1) (A=1,2), B:={t(t)|te R}, y =idg and M = MUy, M,. Then
y:[-n/2,n] — M is a B-geodesic. We set a:=—n/2, t,:=0 and b:=n/2.
Then y(b) is a B-conjugate point to y(a), its multiplicity is m — 1 and i(Iyi) =
m—1. For m < m, we set M, :=S"(1), B,yy, M = M, Uj M> and 7 as above.
Then, we have that i(I)*) > 1(10 .
In [11], the followmg assertion is given without the assumption that
dim M; <dim M; (.=1,2):

COROLLARY 3.2. We assume that dim M; < dim M, (A=1,2) and the
following conditions hold:
(1) For any t€ [a,b],

(the maximal eigenvalue of R/) < (the minimal eigenvalue of R})
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(2) If dim B> 0, then
(the minimal eigenvalue of A) > (the maximal eigenvalue of A).

(3) 7(¢) is not a conjugate point to y(a) for any t € (a, ty] and also 7(t) is not a
B-conjugate point to y(a) for any te (to,b).
Then y(t) is not a conjugate point to y(a) for any t € (a,ty] and also y(t) is not B-
conjugate point to y(a) for any te€ (ty,b].

Proof. By the assumption (3), i(I_;)’L) =0 holds. Hence we have that
i(L/OﬁL) =0 from Proposition 3.1. 1
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