A MORSE INDEX THEOREM FOR GEODESICS ON A GLUED RIEMANNIAN SPACE

Masakazu Takiguchi

Abstract

A glued Riemannian space is obtained from Riemannian manifolds M_{1} and M_{2} by identifying their isometric submanifolds B_{1} and B_{2}. A curve on a glued Riemannian space which is a geodesic on each Riemannian manifold and satisfies certain passage law on the identified submanifold $B:=B_{1} \cong B_{2}$ is called a B-geodesic. Considering the variational problem with respect to arclength L of piecewise smooth curves through B, a critical point of L is a B-geodesic. A B-Jacobi field is a Jacobi field on each Riemannian manifold and satisfies certain passage condition on B. In this paper, we extend the Morse index theorem for geodesics in Riemannian manifolds to the case of a glued Riemannian space.

0. Introduction

In Riemannian manifolds, various results have been given on geodesics by many authors. Recently, N. Innami studied a geodesic reflecting at a boundary point of a Riemannian manifold with boundary in [5]. Let M be a Riemannian manifold with boundary B which is a union of smooth hypersurfaces. A curve on M is said to be a reflecting geodesic if it is a geodesic except at reflecting points and satisfies the reflection law. He dealt with the index form, conjugate points and so on, as in the case of a usual geodesic. Moreover, in [6], he generalized these to the case of a glued Riemannian manifold which is a space obtained from Riemannian manifolds with boundary by identifying their isometric boundary hypersurfaces. Some collapsing Riemannian manifolds are considered to be a kind of glued Riemannian manifolds. In [10] the author gave the definition of a glued Riemannian space which is obtained from Riemannian manifolds by identifying their isometric submanifolds B_{1} and B_{2} and is a generalization of a glued Riemannian manifold. A curve on a glued Riemannian space which is a geodesic on each Riemannian manifold and satisfies certain passage law on the identified submanifold $B:=B_{1} \cong B_{2}$ was called a B-geodesic. Considering the variational problem with respect to arclength L of piecewise smooth curves through B, a critical point of L is a B-geodesic. Also, the definitions of the index form of B-geodesics, B-Jacobi fields and B-conjugate
points were given. A B-Jacobi field is a Jacobi field on each Riemannian manifold and satisfies certain passage condition on B. The purpose of this paper is to generalize the Morse index theorem for geodesics to the case of a glued Riemannian space. In Section 1, we review fundamental definitions, and results ([10]) on a glued Riemannian space. In Section 2, we give a precise statement of a Morse index theorem for B-geodesics, which relates the number of B-conjugate points on a B-geodesic γ, counted with their multiplicities, to the index of γ, and prove this theorem. Moreover, we make a comparison of the indices of B geodesics in different glued Riemannian spaces, in Section 3.

The author would like to express his sincere gratitude to Professor N. Abe for suggesting this problem and his helpful advice.

1. Preliminaries

Let N_{μ} and M_{λ} be manifolds (possibly with boundary) for $\mu=1, \ldots, k$ and $\lambda=1, \ldots, l$. We allow the case where $\operatorname{dim} N_{\mu} \neq \operatorname{dim} N_{v}$ and $\operatorname{dim} M_{\kappa} \neq \operatorname{dim} M_{\lambda}$ for $\mu \neq v$ and $\kappa \neq \lambda$. A map $\bar{\varphi}: \bar{N} \rightarrow \bar{M}$ from the topological direct sum $\bar{N}:=$ $N_{1} \amalg \cdots \amalg N_{k}$ to $\bar{M}:=M_{1} \amalg \cdots \amalg M_{l}$ is smooth if $\bar{\varphi} \mid N_{\mu}$ is smooth. A tangent bundle $T \bar{M}$ of \bar{M} is the direct sum $T \bar{M}=T M_{1} \amalg \cdots \amalg T M_{l}$, where $T M_{\lambda}$ denotes the tangent bundle of M_{λ}. We note that a tangent bundle $T \bar{M}$ on \bar{M} is not constant rank vector bundle on \bar{M}. We put $T_{p} \bar{M}:=T_{p} M_{\lambda}$ for $p \in M_{\lambda}$. We define a map $\pi_{\bar{M}}: T \bar{M} \rightarrow \bar{M}$ by

$$
\pi_{\bar{M}}\left(v_{p}\right):=p \quad \text { for } v_{p} \in T_{p} M_{\lambda} .
$$

A vector field \bar{V} on \bar{M} is a map $\bar{V}: \bar{M} \rightarrow T \bar{M}$ such that $\pi_{\bar{M}} \circ \bar{V}=\operatorname{id}_{\bar{M}}$, where $\operatorname{id}_{\bar{M}}$ is the identity map on \bar{M}. If $\bar{V} \mid M_{\lambda}: M_{\lambda} \rightarrow T M_{\lambda}$ is smooth vector field on each M_{λ}, then \bar{V} is smooth. Let I_{μ} be a closed interval in \boldsymbol{R} which is a manifold with boundary, for $\mu=1, \ldots, k$. A map $\bar{\alpha}: \bar{I}:=I_{1} \amalg \cdots \amalg I_{k} \rightarrow \bar{M}$ is called a curve on \bar{M} if $\bar{\alpha}$ is smooth.

Let M_{λ} be a manifold (possibly with boundary) with a submanifold B_{λ} for $\lambda=1,2$ and ψ a diffeomorphism from B_{1} to B_{2}. A glued space $M=M_{1} \cup_{\psi} M_{2}$ is defined as follows: M is the quotient topological space obtained from the topological direct sum $\bar{M}=M_{1} \coprod M_{2}$ of M_{1} and M_{2} by identifying $p \in B_{1}$ with $\psi(p) \in B_{2}$. We allow the case where $B_{1}=B_{2}=\emptyset, M_{1}=\emptyset$ or $M_{2}=\emptyset$, where ψ is the empty map. Let $\pi: \bar{M} \rightarrow M$ be the natural projection which is defined by $\pi(p)=[p]$, where $[p]$ is the equivalence class of p. Let N_{λ} be a manifold with a submanifold $C_{\lambda}(\lambda=1,2), \tau: C_{1} \rightarrow C_{2}$ a diffeomorphism and $N=N_{1} \cup_{\tau} N_{2}$ a glued space. A glued smooth map $\varphi: \bar{N} \rightarrow M$ on \bar{N} derived from a smooth map $\bar{p}: \bar{N} \rightarrow \bar{M}$ or, simply, a smooth map on N is defined by $\varphi=\pi \circ \bar{\varphi}$. We note that a glued smooth map on \bar{N} is considered as a map on N which, possibly, take two values at $[p]\left(p \in C_{\lambda}\right)$. A glued smooth map φ is continuous if $\varphi(p)=\varphi(\tau(p))$ holds for any $p \in C_{1}$.

A glued tangent bundle $T M$ of M is the glued space $T M_{1} \cup_{\psi_{*}} T M_{2}$, where $\psi_{*}: T B_{1} \rightarrow T B_{2}$ is the differential map of ψ. Let $\hat{\pi}: T \bar{M} \rightarrow T M$ be the natural projection which is defined by $\hat{\pi}(v)=[v]$, where $[v]$ is the equivalence class of v.

For $p \in \bar{M}$, we set $T_{p} M:=\left\{\hat{\pi}\left(T_{p} \bar{M}\right)=[v] \in T M \mid v \in T_{p} \bar{M}\right\}$. We define a map $\pi_{M}: T M \rightarrow M$ by

$$
\pi_{M}\left(\left[v_{p}\right]\right):=[p] \quad \text { for } v_{p} \in T_{p} \bar{M} .
$$

We note that $\pi \circ \pi_{\bar{M}}=\pi_{M} \circ \hat{\pi}$ holds. A glued vector field $V: \bar{M} \rightarrow T M$ on \bar{M} derived from a vector field \bar{V} on \bar{M} or, simply, a vector field on M is defined by $V=\hat{\pi} \circ \bar{V}$. A glued vector field V is called a smooth glued vector field provide V is glued smooth. If a glued vector field V on \bar{M} is continuous, then we can regard it as a cross section of $T M$ over M; that is $\pi_{M} \circ V=\mathrm{id}_{M}$. Similarly, we can define a glued vector field (or vector field) along a curve $\bar{\alpha}: \bar{I}:=I_{1} \amalg I_{2} \rightarrow \bar{M}$.

Let $T_{p}^{*} \bar{M}$ be the dual vector space of $T_{p} \bar{M}$. We put $T^{*} \bar{M}=$ $T^{*} M_{1} \amalg T^{*} M_{2}$, where $T^{*} M_{\lambda}$ is the cotangent bundle of M_{λ}. For $\bar{\theta}_{p}\left(\in T_{p}^{*} \bar{M}\right)$, $\bar{\omega}_{q}\left(\in T_{q}^{*} \bar{M}\right) \in T^{*} \bar{M}$, we define an equivalence relation \sim as follows: $\bar{\theta}_{p} \sim \bar{\omega}_{q}$ if and only if $\bar{\theta}_{p}=\bar{\omega}_{q}(p=q)$ or $\left.\bar{\theta}_{p}\right|_{T_{p} B_{1}}=\psi^{*}\left(\bar{\omega}_{q}\right)\left(p \in B_{1}, q=\psi(p)\right)$ or $\left.\bar{\omega}_{q}\right|_{T_{q} B_{1}}=$ $\psi^{*}\left(\bar{\theta}_{p}\right) \quad\left(q \in B_{1}, p=\psi(q)\right)$, where ψ^{*} is the dual map of ψ_{*}. The quotient space obtained from $T^{*} \bar{M}$ by this equivalence relation is denoted by $T^{*} M$. Let $\hat{\pi}: T^{*} \bar{M} \rightarrow T^{*} M$ be the natural projection, that is, $\hat{\pi}(\bar{\theta}):=[\bar{\theta}]$, where $[\bar{\theta}]$ is the equivalence class of $\bar{\theta}$. For $p \in \bar{M}$, we set $T_{p}^{*} M:=\hat{\pi}\left(T_{p}^{*} \bar{M}\right)$ and define a map $[\bar{\theta}]: T_{p} M \rightarrow \boldsymbol{R}$ by $[\bar{\theta}]([\bar{v}]):=\bar{\theta}(\bar{v})$ for $\bar{\theta} \in T_{p}^{*} \bar{M}$ and $\bar{v} \in T_{p} \bar{M}$. Then we can regard $T_{p}^{*} M$ as the dual of $T_{p} M$. We put $T^{r, s}(\bar{M}):=T^{r, s}\left(M_{1}\right) \amalg T^{r, s}\left(M_{2}\right)$, where $T^{r, s}\left(M_{\lambda}\right)$ is the (r, s)-tensor bundle of M_{λ}. An (r, s)-tensor field on \bar{M} is a cross section of $T^{r, s}(\bar{M})$. The definition of the smoothness of a tensor field on \bar{M} is similar to that of a vector field on \bar{M}. Similarly, we can define the equivalence relation on $T^{r, s}(\bar{M})$ induced from those on $T \bar{M}$ and $T^{*} \bar{M}$, and denote the quotient space by $T^{r, s}(M)$. Let $\hat{\pi}: T^{r, s}(\bar{M}) \rightarrow T^{r, s}(M)$ be the natural projection. A glued tensor field T derived from a tensor field \bar{T} on \bar{M} is defined by $T=\hat{\pi} \circ \bar{T}$. A glued tensor field T derived from a tensor field \bar{T} on \bar{M} is (glued) smooth if \bar{T} is smooth.

Definition 1.1. Let $\left(M_{\lambda}, g_{\lambda}\right)$ be a Riemannian manifold with a Riemannian submanifold B_{λ} for $\lambda=1,2$ and ψ an isometry from B_{1} to B_{2}. Let \bar{g} be the metric on \bar{M} which is defined to be $\bar{g}_{p}=\left(g_{\lambda}\right)_{p}$ for $p \in M_{\lambda}$. A glued Riemannian space $(M, g)=\left(M_{1}, g_{1}\right) \cup_{\psi}\left(M_{2}, g_{2}\right)$ is a pair of a glued space $M=M_{1} \cup_{\psi} M_{2}$ and a glued metric g on M derived from \bar{g} which is a glued tensor field derived from the $(0,2)$-tensor field \bar{g}.

We note that, for any glued smooth vector fields V and W on \bar{M} derived from smooth vector fields \bar{V} and \bar{W} on \bar{M}, respectively, a map $g(V, W): \bar{M} \rightarrow \boldsymbol{R}$ defined by

$$
g(V, W)(p):=\bar{g}\left(\bar{V}_{p}, \bar{W}_{p}\right)
$$

is glued smooth on \bar{M} derived from a smooth map $\bar{g}(\bar{V}, \bar{W}): \bar{M} \rightarrow \boldsymbol{R}$.
From now on, identifying B_{1} with B_{2} by ψ, we put $B:=B_{1} \cong B_{2}$ and $T_{p} B:=T_{p} B_{1} \cong T_{p} B_{2}$ for $p \in B$ and omit the symbol [.] of the equivalence
class. In particular, $\left[M_{\lambda}\right]:=\pi\left(M_{\lambda}\right)$ will be denoted by M_{λ}. We call a map $\alpha:\left[a, t_{0}\right] \amalg\left[t_{0}, b\right] \rightarrow M$ a glued curve derived from a curve $\bar{\alpha}:\left[a, t_{0}\right] \amalg\left[t_{0}, b\right] \rightarrow \bar{M}$ or, simply, a curve on M if $\alpha:\left[a, t_{0}\right] \amalg\left[t_{0}, b\right] \rightarrow M$ is a continuous glued smooth map derived from $\bar{\alpha}$. Let $\alpha:\left[a, t_{0}\right] \amalg\left[t_{0}, b\right] \rightarrow M$ be a glued curve derived from a curve $\bar{\alpha}:\left[a, t_{0}\right] \amalg\left[t_{0}, b\right] \rightarrow \bar{M}$. The (glued) velocity vector field of α is $\alpha^{\prime}:=\hat{\pi} \circ \bar{\alpha}^{\prime}$. We put $\alpha^{\prime}\left(t_{0}-0\right):=\hat{\pi} \circ \bar{\alpha}_{1}^{\prime}\left(t_{0}\right)$ and $\alpha^{\prime}\left(t_{0}+0\right):=\hat{\pi} \circ \bar{\alpha}_{2}^{\prime}\left(t_{0}\right)$, where $\bar{\alpha}_{1}:=\bar{\alpha} \mid\left[a, t_{0}\right]:$ $\left[a, t_{0}\right] \rightarrow \bar{M}$ and $\bar{\alpha}_{2}:=\bar{\alpha} \mid\left[t_{0}, b\right]:\left[t_{0}, b\right] \rightarrow \bar{M}$. We note that a glued velocity vector field is considered as a glued vector field along $\bar{\alpha}$ and not generally continuous. We call $\alpha:[a, b] \rightarrow M$ a piecewise smooth curve on M provided there is a partition $a=a_{0}<a_{1}<\cdots<a_{k}<a_{k+1}=b$ of $[a, b]$ such that $\alpha \mid\left[a_{i-1}, a_{i+1}\right]$: $\left[a_{i-1}, a_{i}\right] \amalg\left[a_{i}, a_{i+1}\right] \rightarrow M$ is a glued curve. We call $a_{j}(j=1, \ldots, k)$ the break. A function $\lambda:\left[a, t_{0}\right] \amalg\left[t_{0}, b\right] \rightarrow\{1,2\}$ is defined by

$$
\lambda(t):=\left\{\begin{array}{ll}
1 & \text { on }\left[a, t_{0}\right] \\
2 & \text { on }\left[t_{0}, b\right]
\end{array} .\right.
$$

For simplicity, we put $\lambda:=\lambda(t)$.
If M is a glued Riemannian space such that $(M, g)=\left(M_{1}, g_{1}\right) \cup_{\psi}\left(M_{2}, g_{2}\right)$, then, for $t_{0} \in(a, b)$, let $\Omega_{t_{0}}\left(M_{1}, M_{2} ; B\right)=: \Omega_{t_{0}}$ be the set of all piecewise smooth curves $\alpha:[a, b] \rightarrow M$ such that $\alpha\left(t_{0}\right) \in B, \alpha\left(\left[a, t_{0}\right]\right) \subset M_{1}$ and $\alpha\left(\left[t_{0}, b\right]\right) \subset M_{2}$. Moreover, if p and q are points of M_{1} and M_{2}, respectively. Then let $\Omega_{t_{0}}(p, q) \subset \Omega_{t_{0}}$ be the set of all piecewise smooth curves $\alpha \in \Omega_{t_{0}}$ such that $\alpha(a)=p$ and $\alpha(b)=q$. The projection from $T_{p} M_{\lambda}$ to $T_{p} B$ is denoted by tan. Let D^{λ} be Levi-Civita connection of Riemannian manifold M_{λ} for $\lambda=1,2$. A curve $\gamma \in \Omega_{t_{0}}$ is a B-geodesic if γ satisfies the following conditions:

$$
\begin{equation*}
D_{\gamma^{\prime} \gamma^{\prime}}^{\lambda}=0 \quad \text { on } M_{\lambda}, \tag{1.1}
\end{equation*}
$$

that is, $\gamma \mid\left[a, t_{0}\right]$ and $\gamma \mid\left[t_{0}, b\right]$ are geodesics on M_{1} and M_{2}, respectively,

$$
\begin{align*}
\tan \gamma^{\prime}\left(t_{0}-0\right) & =\tan \gamma^{\prime}\left(t_{0}+0\right), \tag{1.2}\\
g_{1}\left(\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}-0\right)\right) & =g_{2}\left(\gamma^{\prime}\left(t_{0}+0\right), \gamma^{\prime}\left(t_{0}+0\right)\right) . \tag{1.3}
\end{align*}
$$

We assume that geodesics and B-geodesics are parametrized by arclength.
Let $q \in B, \quad u \in T_{q} M_{1}$ and $v \in T_{q} M_{2}$ with $\|u\|_{1}=\|v\|_{2}, \quad \tan u=\tan v$ and $v \notin T_{q} B$. We define a linear map $Q_{u, v}: T_{q} B \oplus \operatorname{Span}\left\{\right.$ nor $\left._{1} u\right\} \rightarrow T_{q} B \oplus$ $\operatorname{Span}\left\{\operatorname{nor}_{2} v\right\}$ as

$$
Q_{u, v}(w)=\left\{w-\frac{g_{1}\left(w, \operatorname{nor}_{1} u\right)}{g_{1}\left(u, \operatorname{nor}_{1} u\right)} \operatorname{nor}_{1} u\right\}+\frac{g_{1}\left(w, \operatorname{nor}_{1} u\right)}{g_{1}\left(u, \operatorname{nor}_{1} u\right)} \text { nor }_{2} v
$$

for any $w \in T_{q} B \oplus \operatorname{Span}\left\{\right.$ nor $\left._{1} u\right\}$, where nor $_{\lambda}: T_{q} M_{\lambda} \rightarrow T_{q} B^{\perp}$ is the projection. The following hold:

$$
\begin{gathered}
Q_{u, v}(x)=x \text { for any } x \in T_{q} B . \\
Q_{u, v}\left(\operatorname{nor}_{1} u\right)=\operatorname{nor}_{2} v . \\
g_{2}\left(Q_{u, v}(w), x\right)=g_{1}(w, x)
\end{gathered}
$$

for any $x \in T_{q} B$ and $w \in T_{q} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{1} u\right\}$.

$$
g_{2}\left(Q_{u, v}(w), Q_{u, v}(w)\right)=g_{1}(w, w)
$$

for any $w \in T_{q} B \oplus \operatorname{Span}\left\{\right.$ nor $\left._{1} u\right\}$. Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin$ $T_{\gamma\left(t_{0}\right)} B$. Then we have

$$
Q_{\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}+0\right)}\left(\gamma^{\prime}\left(t_{0}-0\right)\right)=\gamma^{\prime}\left(t_{0}+0\right)
$$

Remark. Let $q \in B, u \in T_{q} M_{1}$ and $v \in T_{q} M_{2}$ with $\|u\|_{1}=\|v\|_{2}$, $\tan u=\tan v$ and $v \notin T_{q} B$. If we define a linear map $Q_{v, u}: T_{q} B \oplus \operatorname{Span}\left\{\right.$ nor $\left._{2} v\right\} \rightarrow T_{q} B \oplus$ $\operatorname{Span}\left\{\operatorname{nor}_{1} u\right\}$ as

$$
Q_{v, u}(z)=\left\{z-\frac{g_{2}\left(z, \operatorname{nor}_{2} v\right)}{g_{2}\left(v, \operatorname{nor}_{2} v\right)} \operatorname{nor}_{2} v\right\}+\frac{g_{2}\left(z, \operatorname{nor}_{2} v\right)}{g_{2}\left(v, \operatorname{nor}_{2} v\right)} \operatorname{nor}_{1} u
$$

for any $z \in T_{q} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{2} v\right\}$. The following hold:

$$
\begin{gathered}
Q_{u, v} \circ Q_{v, u}=\mathrm{id}, \quad Q_{v, u} \circ Q_{u, v}=\mathrm{id} \\
g_{2}\left(Q_{u, v}(w), z\right)=g_{1}\left(w, Q_{v, u}(z)\right)
\end{gathered}
$$

for $w \in T_{q} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{1} u\right\}$ and $z \in T_{q} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{2} v\right\}$.
If $\gamma \in \Omega_{t_{0}}(p, q)$ is a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$, the set $T_{\gamma} \Omega_{t_{0}}$ consists of all vector fields Y along γ which satisfy the following condition:

$$
\begin{equation*}
Q_{\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}+0\right)}\left(Y\left(t_{0}-0\right)\right)=Y\left(t_{0}+0\right) \tag{1.4}
\end{equation*}
$$

A subspace $T_{\gamma} \boldsymbol{\Omega}_{t_{0}}(p, q)$ in $T_{\gamma} \boldsymbol{\Omega}_{t_{0}}$ is defined by

$$
T_{\gamma} \Omega_{t_{0}}(p, q):=\left\{Y \in T_{\gamma} \Omega_{t_{0}} \mid Y(a)=0, Y(b)=0\right\}
$$

For $\lambda=1,2$, let R^{λ} be the Riemannian curvature tensor of a Riemannian manifold M_{λ} defined as

$$
R^{\lambda}(X, Y) W:=D_{X}^{\lambda} D_{Y}^{\lambda} W-D_{Y}^{\lambda} D_{X}^{\lambda} W-D_{[X, Y]}^{\lambda} W
$$

for any vector field X, Y and W on M_{λ}, and S_{Z}^{λ} the shape operator of $B \subset M_{\lambda}$ defined as

$$
S_{Z}^{\lambda}(V):=-\tan D_{V}^{\lambda} Z
$$

for any vector field V tangent to B and Z normal to B. Especially, if $B=\{p\}$, we have that $S_{Z}^{\lambda}=0$ for $Z \in T_{p} M_{\lambda}$. A vector field Y along a piecewise smooth curve $\alpha \in \Omega_{t_{0}}$ is a tangent to α if $Y=f \alpha^{\prime}$ for some function f on $[a, b]$ and perpendicular to α if $g_{\lambda}\left(Y, \alpha^{\prime}\right)=0$. If $\left\|\alpha^{\prime}\right\|_{\lambda} \neq 0$, then each tangent space $T_{\alpha \cdot(t)} M_{\lambda}$ has a direct sum decomposition $\operatorname{Span}\left\{\alpha^{\prime}(t)\right\}+\left\{\alpha^{\prime}(t)\right\}^{\perp}$. Hence each vector field Y along α has a unique expression $Y=Y^{T}+Y^{\perp}$, where Y^{T} is tangent to α and Y^{\perp} is perpendicular to α, that is,

$$
Y^{\perp}=Y-\frac{g_{\lambda}\left(Y, \alpha^{\prime}\right)}{g_{\lambda}\left(\alpha^{\prime}, \alpha^{\prime}\right)} \alpha^{\prime}
$$

If α is a B-geodesic, then $\left(Y^{T}\right)^{\prime}=\left(Y^{\prime}\right)^{T}$ and $\left(Y^{\perp}\right)^{\prime}=\left(Y^{\prime}\right)^{\perp}$.

Let $q \in B$ and $v \in T_{q} M_{\lambda}(\lambda=1,2)$ is not tangent to B. A linear operator $P_{\lambda}^{v}: T_{q} B \oplus \operatorname{Span}\left\{\right.$ nor $\left._{\lambda} v\right\} \rightarrow T_{q} B$ is defined by

$$
P_{\lambda}^{v}(w):=w-\frac{g_{\lambda}\left(w, \operatorname{nor}_{\lambda} v\right)}{g_{\lambda}\left(v, \operatorname{nor}_{\lambda} v\right)} v
$$

for any $w \in T_{q} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{\lambda} v\right\}\left(\subset T_{q} M_{\lambda}\right)$. We note that P_{λ}^{v} is surjective and $P_{\lambda}^{v}(v)=0$.

Let $\quad q \in B, \quad u \in T_{q} M_{1} \quad$ and $\quad v \in T_{q} M_{2} \quad$ with $\quad\|u\|_{1}=\|v\|_{2}, \quad \tan u=\tan v$ and $v \notin T_{q} B$. We define a symmetric linear map $A_{u, v}: T_{q} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{2} v\right\} \rightarrow$ $T_{q} B \oplus \operatorname{Span}\left\{\right.$ nor $\left._{2} v\right\}$ as

$$
A_{u, v}(w)=\left(S_{\operatorname{nor}_{1} u}^{1}-S_{\mathrm{nor}_{2} v}^{2}\right)\left(P_{2}^{v}(w)\right)-\frac{g_{2}\left(\left(S_{\mathrm{nor}_{1} u}^{1}-S_{\mathrm{nor}_{2} v}^{2}\right)\left(P_{2}^{v}(w)\right), v\right)}{g_{2}\left(v, \operatorname{nor}_{2} v\right)} \operatorname{nor}_{2} v
$$

for any $w \in T_{q} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{2} v\right\}$. We call this map $A_{u, v}$ a passage endomorphism. The following hold:

$$
A_{u, v}(w) \perp v \quad \text { and } \quad A_{u, v}(v)=0
$$

The index form $I_{\gamma}: T_{\gamma} \Omega_{t_{0}} \times T_{\gamma} \Omega_{t_{0}} \rightarrow \boldsymbol{R}$ of a B-geodesic $\gamma \in \Omega_{t_{0}}$ with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$ is the symmetric bilinear form defined as

$$
\begin{aligned}
I_{\gamma}(Y, W)= & \int_{a}^{t_{0}}\left\{g_{1}\left(Y^{\perp^{\prime}}, W^{\perp^{\prime}}\right)-g_{1}\left(R^{1}\left(Y, \gamma^{\prime}\right) \gamma^{\prime}, W\right)\right\} d t \\
& +\int_{t_{0}}^{b}\left\{g_{2}\left(Y^{\perp^{\prime}}, W^{\perp^{\prime}}\right)-g_{2}\left(R^{2}\left(Y, \gamma^{\prime}\right) \gamma^{\prime}, W\right)\right\} d t \\
& +g_{2}\left(A_{\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}+0\right)}\left(Y\left(t_{0}+0\right)\right), W\left(t_{0}+0\right)\right)
\end{aligned}
$$

for all $Y, W \in T_{\gamma} \Omega_{t_{0}}$. It follows that

$$
I_{\gamma}(Y, W)=I_{\gamma}\left(Y^{\perp}, W^{\perp}\right) \quad \text { for all } Y, W \in T_{\gamma} \Omega_{t_{0}}
$$

Thus there is no loss of information in restricting the index form I_{γ} to

$$
T_{\gamma}^{\perp} \boldsymbol{\Omega}_{t_{0}}:=\left\{Y \in T_{\gamma} \boldsymbol{\Omega}_{t_{0}} \mid Y \perp \gamma^{\prime}\right\}
$$

We write I_{γ}^{\perp} for this restriction. For $\gamma \in \Omega_{t_{0}}(p, q)$, we put

$$
T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q):=\left\{Y \in T_{\gamma} \Omega_{t_{0}}(p, q) \mid Y \perp \gamma^{\prime}\right\}
$$

and write $I_{\gamma}^{0, \perp}$ for the restriction of the index form I_{γ} to this.
Let $\operatorname{pr}_{1}: T_{\gamma\left(t_{0}\right)} M_{1} \rightarrow T_{\gamma\left(t_{0}\right)} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{1} \gamma^{\prime}\left(t_{0}-0\right)\right\} \quad$ and $\quad \operatorname{pr}_{2}: T_{\gamma\left(t_{0}\right)} M_{2} \rightarrow$ $T_{\gamma\left(t_{0}\right)} B \oplus \operatorname{Span}\left\{\right.$ nor $\left._{2} \gamma^{\prime}\left(t_{0}+0\right)\right\}$ be orthogonal projections. For proofs of Lemmas without the proof in this section we refer the reader to [10]. The following holds:

Lemma 1.2. Let $\gamma \in \Omega_{t_{0}}(p, q)$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. If Y and $W \in T_{\gamma} \Omega_{t_{0}}(p, q)$ have breaks $a_{1}<\cdots<t_{0}=a_{j}<\cdots<a_{k}$, then we have that
$I_{\gamma}(Y, W)$

$$
\begin{aligned}
= & -\left\{\int_{a}^{t_{0}} g_{1}\left(Y^{\perp^{\prime \prime}}+R^{1}\left(Y, \gamma^{\prime}\right) \gamma^{\prime}, W^{\perp}\right) d t+\int_{t_{0}}^{b} g_{2}\left(Y^{\perp^{\prime \prime}}+R^{2}\left(Y, \gamma^{\prime}\right) \gamma^{\prime}, W^{\perp}\right) d t\right\} \\
& +g_{2}\left(A_{\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}+0\right)}\left(Y\left(t_{0}+0\right)\right), W\left(t_{0}+0\right)\right) \\
& +g_{1}\left(\operatorname{pr}_{1}\left(Y^{\perp^{\prime}}\left(t_{0}-0\right)\right), W^{\perp}\left(t_{0}-0\right)\right)-g_{2}\left(\operatorname{pr}_{2}\left(Y^{\perp^{\prime}}\left(t_{0}+0\right)\right), W^{\perp}\left(t_{0}+0\right)\right) \\
& +\sum_{i=1}^{j-1} g_{1}\left(Y^{\perp^{\prime}}\left(a_{i}-0\right)-Y^{\perp^{\prime}}\left(a_{i}+0\right), W^{\perp}\left(a_{i}\right)\right) \\
& +\sum_{i=j+1}^{k} g_{2}\left(Y^{\perp^{\prime}}\left(a_{i}-0\right)-Y^{\perp^{\prime}}\left(a_{i}+0\right), W^{\perp}\left(a_{i}\right)\right) \\
& +g_{2}\left(Y^{\perp^{\prime}}(b), W^{\perp}(b)\right)-g_{1}\left(Y^{\perp^{\prime}}(a), W^{\perp}(a)\right) .
\end{aligned}
$$

Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic. If it holds $a \leq t_{1}<t_{2} \leq t_{0}$, we set $T_{\gamma \mid\left[t_{1}, t_{2}\right]} \Omega=$ $\left\{Y \mid\right.$ vector fields along $\left.\gamma \mid\left[t_{1}, t_{2}\right]\right\}$. Then we define the map $\tilde{I}_{\gamma \mid\left[t_{1}, t_{2}\right]}: T_{\gamma \mid\left[t_{1}, t_{2}\right]} \Omega \times$ $T_{\gamma \mid\left[t_{1}, t_{2}\right]} \boldsymbol{\Omega} \rightarrow \boldsymbol{R}$ by

$$
\tilde{I}_{\gamma \mid\left[t_{1}, t_{2}\right]}(Y, W)=\int_{t_{1}}^{t_{2}}\left\{g_{1}\left(Y^{\perp^{\prime}}, W^{\perp^{\prime}}\right)-g_{1}\left(R^{1}\left(Y, \gamma^{\prime}\right) \gamma^{\prime}, W\right)\right\} d t
$$

for all $Y, W \in T_{\gamma \mid\left[t_{1}, t_{2}\right]} \Omega$. If it holds $t_{0}<t_{1}<t_{2} \leq b$, we set $T_{\gamma \mid\left[t_{1}, t_{2}\right]} \Omega=$ $\left\{Y \mid\right.$ vector fields along $\left.\gamma \mid\left[t_{1}, t_{2}\right]\right\}$. Then we define the map $\tilde{I}_{\gamma \mid\left[t_{1}, t_{2}\right]}: T_{\gamma \mid\left[t_{1}, t_{2}\right]} \Omega \times$ $T_{\gamma \mid\left[t_{1}, t_{2}\right]} \boldsymbol{\Omega} \rightarrow \boldsymbol{R}$ by

$$
\tilde{I}_{\gamma \mid\left[t_{1}, t_{2}\right]}(Y, W)=\int_{t_{1}}^{t_{2}}\left\{g_{2}\left(Y^{\perp^{\prime}}, W^{\perp^{\prime}}\right)-g_{2}\left(R^{2}\left(Y, \gamma^{\prime}\right) \gamma^{\prime}, W\right)\right\} d t
$$

for all $Y, W \in T_{\gamma \mid\left[t_{1}, t_{2}\right]} \Omega$.
Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. If $Y \in T_{\gamma} \Omega_{t_{0}}$ satisfies

$$
\begin{align*}
& \quad Y^{\prime \prime}+R^{\lambda}\left(Y, \gamma^{\prime}\right) \gamma^{\prime}=0 \quad \text { on } M_{\lambda}(\lambda=1,2) \tag{1.5}\\
& -A_{\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}+0\right)}\left(Y\left(t_{0}+0\right)\right) \\
& =Q_{\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}+0\right)}\left(\operatorname{pr}_{1}\left(Y^{\prime}\left(t_{0}-0\right)\right)\right)-\operatorname{pr}_{2}\left(Y^{\prime}\left(t_{0}+0\right)\right) \tag{1.6}
\end{align*}
$$

and

$$
\begin{equation*}
g_{1}\left(Y^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}-0\right)\right)=g_{2}\left(Y^{\prime}\left(t_{0}+0\right), \gamma^{\prime}\left(t_{0}+0\right)\right) \tag{1.7}
\end{equation*}
$$

then Y is called a B-Jacobi field along γ. Let \mathscr{J}_{γ} be the set of all B-Jacobi fields along γ. A B-Jacobi field Y along γ is perpendicular if Y is perpendicular to γ. Let $\mathscr{J}_{\gamma}^{\perp}$ be the set of all perpendicular B-Jacobi fields along γ. Let \mathscr{J}_{γ}^{0} be the set of all B-Jacobi field $Y \in \mathscr{J}_{\gamma}$ such that $Y(a)=0$.

If Y is a B-Jacobi field along γ, then we have that

$$
\begin{equation*}
I_{\gamma}(Y, Y)=g_{2}\left(Y^{\perp^{\prime}}(b), Y^{\perp}(b)\right)-g_{1}\left(Y^{\perp^{\prime}}(a), Y^{\perp}(a)\right) \tag{1.8}
\end{equation*}
$$

Lemma 1.3. Let $\gamma \in \Omega_{t_{0}}(p, q)$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. Then $Y \in T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q)$ is an element of the nullspace of $I_{\gamma}^{0, \perp}$ if and only if Y is a B Jacobi field along γ.

Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. We say that $\gamma\left(t_{2}\right)$ $\left(t_{2} \in(a, b]\right)$ is a B-conjugate point to $\gamma\left(t_{1}\right)\left(t_{1} \in[a, b), t_{1}<t_{2}\right)$ along γ if there exists a B-Jacobi field Y along γ such that $Y\left(t_{1}\right)=0, \quad Y\left(t_{2}\right)=0$ and $Y \mid\left[t_{1}, t_{2}\right]$ is nontrivial.
B-conjugate points in M_{1} are always usual ones but the converse is not true in general. We give an example which shows this:

Example 1. Let $M=M_{1} \cup_{i d} M_{2}$ be a glued Riemannian space which consists of the following M_{λ} and B a submanifold of $M_{\lambda}(\lambda=1,2)$:

$$
M_{1}=S^{2}(1)=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}, \quad M_{2}=\boldsymbol{E}^{3}, \quad B=\{(0,-1,0)\},
$$

and g_{1} is a Riemannian metric induced from the natural Euclidean metric of \boldsymbol{E}^{3} and g_{2} is the natural Euclidean metric of \boldsymbol{E}^{3}. We defined a B-geodesic $\gamma:[-\pi / 2,+\infty) \rightarrow M$ by

$$
\gamma(t)= \begin{cases}(0, \cos t, \sin t) & \text { on }[-\pi / 2, \pi] \\ (0,-t+\pi-1,0) & \text { on }[\pi,+\infty)\end{cases}
$$

Then, $T_{\gamma} \Omega_{t_{0}}$ is the set of all vector fields Y along γ such that $Y \mid\left[a, t_{0}\right]$ and $Y \mid\left[t_{0}, b\right]$ are piecewise smooth vector fields on M_{1} and M_{2}, respectively, and, $Y\left(t_{0}-0\right)=d \gamma^{\prime}\left(t_{0}-0\right)$ and $Y\left(t_{0}+0\right)=d \gamma^{\prime}\left(t_{0}+0\right)$ for some $d \in \boldsymbol{R}$. Hence, $\gamma(\pi / 2)$ is a conjugate point to $\gamma(-\pi / 2)$ but not a B-conjugate point.

We define the function $\rho_{K}:[a, b] \rightarrow \boldsymbol{R}$ and $f_{K}:[a, b] \rightarrow \boldsymbol{R}$ by

$$
\rho_{K}(t)= \begin{cases}t & \text { if } K=0 \\ \frac{1}{\sqrt{K}} \tan \sqrt{K} t & \text { if } K>0 \\ \frac{1}{\sqrt{-K}} \tanh \sqrt{-K} t & \text { if } K<0\end{cases}
$$

and

$$
f_{K}(t)=\left\{\begin{array}{ll}
t & \text { if } K=0 \\
\frac{1}{\sqrt{K}} \sin \sqrt{K} t & \text { if } K>0 \\
\frac{1}{\sqrt{-K}} \sinh \sqrt{-K} t & \text { if } K<0
\end{array},\right.
$$

respectively.
Lemma 1.4. Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. Then there are \tilde{a} and $\tilde{b}\left(a \leq \tilde{a}<t_{0}<\tilde{b} \leq b\right)$ such that $\gamma(t)$ is not a conjugate point to $\gamma(\tilde{a})$ for any $t \in\left(\tilde{a}, t_{0}\right]$ and $\gamma(t)$ is not a B-conjugate point to $\gamma(\tilde{a})$ for any $t \in\left(t_{0}, \tilde{b}\right]$.

To show this lemma it is necessary to use the following proposition:

Proposition ([11]). Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. Let K_{1} be any real number such that $f_{K_{1}}(t-a)>0$ for any $t \in\left(a, t_{0}\right]$. Let δ be any real number. We assume that $K_{2}:=K_{1}$ if $\delta=0$ and K_{2} is any real number if $\delta \neq 0$. Let $b_{1}\left(>t_{0}\right)$ be the smallest value which satisfies

$$
\delta=\frac{-1}{\rho_{K_{1}}\left(t_{0}-a\right)}+\frac{-1}{\rho_{K_{2}}\left(t-t_{0}\right)},
$$

and $b_{2}\left(>t_{0}\right)$ the smallest value which satisfies $f_{K_{2}}\left(t-t_{0}\right)=0$, where $b_{i}:=\infty$ $(i=1,2)$ if there are no such b_{i}. Moreover, we put $\tilde{b}:=\min \left\{b, b_{1}, b_{2}\right\}$. Assume that $\operatorname{dim} B>0$,
(the maximal eigenvalue of R_{t}^{λ}) $\leq K_{\lambda}$ for any $t \in[a, b]$
and
(the minimal eigenvalue of A) $\geq \delta$.
Then there are no conjugate points along $\gamma \mid\left[a, t_{0}\right]$ and no B-conjugate points along $\gamma \mid[a, \tilde{b})$ to $\gamma(a)$.

Proof of Lemma 1.4. In case where $\operatorname{dim} B=0$, the assertion is trivial. We assume that $\operatorname{dim} B>0$. Choose a real number K and δ such that
(the maximal eigenvalue of R_{t}^{λ}) $\leq K$ for any $t \in[a, b]$
and
(the minimal eigenvalue of A) $\geq \delta$.
Moreover, choose $\tilde{a}\left(a \leq \tilde{a}<t_{0}\right)$ such that

$$
f_{K}(t-\tilde{a})>0 \quad \text { for any } t \in\left(\tilde{a}, t_{0}\right] .
$$

Let $b_{1}\left(>t_{0}\right)$ be the smallest value which satisfies

$$
\delta=\frac{-1}{\rho_{K}\left(t_{0}-\tilde{a}\right)}+\frac{-1}{\rho_{K}\left(t-t_{0}\right)},
$$

and $b_{2}\left(>t_{0}\right)$ the smallest value which satisfies $f_{K}\left(t-t_{0}\right)=0$, where $b_{i}:=\infty$ $(i=1,2)$ if there are no such b_{i}. Moreover, we put $b_{0}:=\min \left\{b, b_{1}, b_{2}\right\}$. Then, by taking \tilde{b} as $t_{0}<\tilde{b}<b_{0}$ the assertion holds from the above proposition.

Lemma 1.5. Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. We assume that $\gamma\left(t_{0}\right)$ and $\gamma(b)$ are not B-conjugate points to $\gamma(a)$. Then, for any $v_{1} \in T_{\gamma(a)} M_{1}$ and $v_{2} \in T_{\gamma(b)} M_{2}$, there is a unique $Y \in \mathscr{J}_{\gamma}$ with $Y(a)=v_{1}$ and $Y(b)=v_{2}$.

Lemma 1.6. Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. If $\gamma(t)$ is not a conjugate point to $\gamma(a)$ for any $t \in\left(a, t_{0}\right]$ and $\gamma(t)$ is not a B-conjugate point
to $\gamma(a)$ for any $t \in\left(t_{0}, b\right]$, then, for any $Y \in T_{\gamma} \Omega_{t_{0}}$ with $Y(a)=0$, there exist a unique B-Jacobi field $J \in \mathscr{J}_{\gamma}^{0}$ such that $J(b)=Y(b)$ and

$$
I_{\gamma}(J, J) \leq I_{\gamma}(Y, Y)
$$

In particular, the equality holds if and only if $J^{\perp}=Y^{\perp}$.
Lemma 1.7. Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. If $\gamma(t)$ is not a conjugate point to $\gamma(a)$ for any $t \in\left(a, t_{0}\right]$ and $\gamma(t)$ is not a B-conjugate point to $\gamma($ a $)$ for any $t \in\left(t_{0}, b\right]$, then, for any $Y \in T_{\gamma} \boldsymbol{\Omega}_{t_{0}}$, there exist a unique B-Jacobi field $J \in \mathscr{F}_{\gamma}$ such that $J(a)=Y(a), J(b)=Y(b)$ and

$$
I_{\gamma}(J, J) \leq I_{\gamma}(Y, Y) .
$$

In particular, the equality holds if and only if $J^{\perp}=Y^{\perp}$.
Proof. By Lemma 1.6, we obtain that

$$
\begin{equation*}
0 \leq I_{\gamma}(J-Y, J-Y)=I_{\gamma}(J, J)-2 I_{\gamma}(J, Y)+I_{\gamma}(Y, Y) \tag{1.9}
\end{equation*}
$$

Moreover, from (1.8), we get

$$
\begin{aligned}
I_{\gamma}(J, Y) & =g_{2}\left(J^{\perp^{\prime}}(b), Y^{\perp}(b)\right)-g_{1}\left(J^{\perp^{\prime}}(a), Y^{\perp}(a)\right) \\
& =g_{2}\left(J^{\perp^{\prime}}(b), J^{\perp}(b)\right)-g_{1}\left(J^{\perp^{\prime}}(a), J^{\perp}(a)\right)=I_{\gamma}(J, J) .
\end{aligned}
$$

It follows that $I_{\gamma}(J, J) \leq I_{\gamma}(Y, Y)$, and the equality of (1.9) holds if and only if $J^{\perp}-Y^{\perp}=(J-Y)^{\perp}=0$.

2. Index theorem

Let $\gamma \in \Omega_{t_{0}}$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. Given a B-conjugate point $\gamma(c), a<c \leq b$, to $\gamma(a)$, its multiplicity (or order) $\tilde{\mu}$ is defined to be the dimension of the space of all B-Jacobi fields along γ which vanish at a and c. We note that if $\gamma(c)$ is not B-conjugate point to $\gamma(a)$, the multiplicity of $\gamma(c)$ is zero. Moreover, we note that, for B-conjugate point $\gamma(c)\left(a<c<t_{0}\right)$ to $\gamma(a)$, (the multiplicity of $\gamma(c)) \leq$ (the multiplicity of $\gamma(c)$ as a conjugate point), since B-conjugate points in M_{1} are always usual ones but the converse is not true. We assume that $\gamma\left(t_{0}\right)$ is not conjugate point to $\gamma(a)$, then $\tilde{\mu} \leq m_{2}-1$ since $\operatorname{dim} \mathscr{J}_{\gamma}^{0, \perp}=m_{2}-1$ where $\mathscr{J}_{\gamma}^{0, \perp}:=\mathscr{J}_{\gamma}^{0} \cap \mathscr{J}_{\gamma}^{\perp}$ and $m_{2}=\operatorname{dim} M_{2}$ (see [10]).

In general, given a symmetric bilinear form I on a vector space V, the index $i(I)$, the augmented index $a(I)$ and the nullity $n(I)$ of I are defined by
$i(I):=$ the maximum dimension of those subspaces of V on which I is negative definite;
$a(I):=$ the maximum dimension of those subspaces of V on which I is negative semi-definite;

$$
n(I):=\operatorname{dim}\{v \in V \mid I(v, w)=0 \text { for all } w \in V\} .
$$

Lemma 2.1 ([7]). If I is a symmetric bilinear form on a finite-dimensional vector space V, then $a(I)=i(I)+n(I)$.

For a B-geodesic $\gamma \in \Omega_{t_{0}}(p, q)$ with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$, we put

$$
L:=\left\{Y \in T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q) \mid I_{\gamma}^{\perp}(Y, W)=0 \text { for all } W \in T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q)\right\}
$$

We consider the index, the augmented index and the nullity of the index form $I_{\gamma}^{0, \perp}$ restricted I_{γ} to $T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q)$. The purpose of this section is to give a proof of the index theorem:

Theorem 2.2 (Index theorem). Let $\gamma \in \Omega_{t_{0}}(p, q)$ be a B-geodesic such that $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$ and $\gamma\left(t_{0}\right)$ is not conjugate point to $\gamma(a)$. Then there are only finitely many points $\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{m}\right)\left(a<t_{1}<\cdots<t_{m}<t_{0}\right)$ which are conjugate to $\gamma(a)$ along $\gamma \mid\left[a, t_{0}\right]$ and finitely many points $\gamma\left(t_{m+1}\right), \ldots, \gamma\left(t_{l}\right)$ $\left(t_{0}<t_{m+1}<\cdots<t_{l}<b\right)$ other than $\gamma(b)$ which are B-conjugate to $\gamma(a)$ along γ. Let μ_{i} be the multiplicity of $\gamma\left(t_{i}\right)(i=1, \ldots, m)$ as a conjugate point to $\gamma(a)$ and $\tilde{\mu}_{i}(i=1, \ldots, l)$ the multiplicity of $\gamma\left(t_{i}\right)$. Then it holds that

$$
i\left(I_{\gamma}^{0, \perp}\right)=\mu_{1}+\cdots+\mu_{m}+\tilde{\mu}_{m+1}+\cdots+\tilde{\mu}_{l} \geq \tilde{\mu}_{1}+\cdots+\tilde{\mu}_{l}
$$

We give an example where $\mu_{1}+\cdots+\mu_{m}+\tilde{\mu}_{m+1}+\cdots+\tilde{\mu}_{l} \neq \tilde{\mu}_{1}+\cdots+\tilde{\mu}_{l}$ holds.

EXAMPLE 2. In example $1, \gamma(\pi / 2)$ is a conjugate point to $\gamma(-\pi / 2)$ but not a B-conjugate point. Let μ_{1} be the multiplicity of $\gamma(\pi / 2)$ as a conjugate point to $\gamma(-\pi / 2)$ and $\tilde{\mu}_{1}$ the multiplicity of $\gamma(\pi / 2)$. Then it holds that

$$
i\left(I_{\gamma}^{0, \perp}\right)=\mu_{1}=1>\tilde{\mu}_{1}=0
$$

Theorem 2.3. Let $\gamma \in \Omega_{t_{0}}(p, q)$ be a B-geodesic with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$. Then
(1) $n\left(I_{\gamma}^{0, \perp}\right)=0$ if $\gamma(b)$ is not B-conjugate point to $\gamma(a)$,
(2) $n\left(I_{\gamma}^{0, \perp}\right)=$ the multiplicity of $\gamma(b)$ if $\gamma(b)$ is B-conjugate point to $\gamma(a)$.

Proof. By Lemma 1.3, we have

$$
n\left(I_{\gamma}^{0, \perp}\right)=\operatorname{dim} L=\operatorname{dim}\left\{Y \in T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q) \mid Y \in \mathscr{J}_{\gamma}\right\}
$$

This proves (1) and (2).
Theorem 2.4. Let $\gamma \in \Omega_{t_{0}}(p, q)$ be a B-geodesic such that $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$ and $\gamma\left(t_{0}\right)$ is not conjugate point to $\gamma(a)$. Then

$$
a\left(I_{\gamma}^{0, \perp}\right)=i\left(I_{\gamma}^{0, \perp}\right)+n\left(I_{\gamma}^{0, \perp}\right)
$$

Proof. We will construct a finite-dimensional subspace L_{1} of $T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q)$ such that $i\left(I_{\gamma}^{0, \perp}\right)=i\left(I_{\gamma} \mid L_{1}\right), \quad a\left(I_{\gamma}^{0, \perp}\right)=a\left(I_{\gamma} \mid L_{1}\right) \quad$ and $\quad n\left(I_{\gamma}^{0, \perp}\right)=n\left(I_{\gamma} \mid L_{1}\right) . \quad$ By

Lemma 1.4, we can take a subdivision $a=a_{0}<a_{1}<\cdots<a_{j}=t_{0}<a_{j+1}<\cdots<$ $a_{k}<a_{k+1}=b$ of the interval $[a, b]$ such that $\gamma(t)$ is not a conjugate point to $\gamma\left(a_{i}\right)$ for any $t \in\left(a_{i}, a_{i+1}\right](i=0,1, \ldots, j-2, j+1, \ldots, k), \gamma(t)$ is not a conjugate point to $\gamma\left(a_{j-1}\right)$ for any $t \in\left(a_{j-1}, t_{0}\right]$ and $\gamma(t)$ is not a B-conjugate point to $\gamma\left(a_{j-1}\right)$ for any $t \in\left(t_{0}, a_{j+1}\right]$. We set

$$
\begin{aligned}
L_{1}:= & L\left(a_{0}, \ldots, a_{k+1}\right) \\
:= & \left\{Y \in T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q) \mid Y \text { is a Jacobi field along } \gamma \mid\left[a_{i}, a_{i+1}\right]\right. \text { for } \\
& \left.i=0, \ldots, j-2, j+1, \ldots, k \text { and a } B \text {-Jacobi field along } \gamma \mid\left[a_{j-1}, a_{j+1}\right]\right\} .
\end{aligned}
$$

Let $N\left(a_{i}\right)$ be the normal space to γ at $\gamma\left(a_{i}\right)$, that is,

$$
N\left(a_{i}\right)=\left\{\gamma^{\prime}\left(a_{i}\right)\right\}^{\perp}:=\left\{v \in T_{\gamma\left(t_{0}\right)} M_{\lambda} \mid g_{\lambda}\left(v, \gamma^{\prime}\left(a_{i}\right)\right)=0\right\},
$$

and define a linear map

$$
\mathcal{N}: L_{1} \rightarrow N:=N\left(a_{1}\right) \times \cdots \times N\left(a_{j-1}\right) \times N\left(a_{j+1}\right) \times \cdots \times N\left(a_{k}\right)
$$

by

$$
\mathscr{N}(Y):=\left(Y\left(a_{1}\right), \ldots, Y\left(a_{j-1}\right), Y\left(a_{j+1}\right), \ldots, Y\left(a_{k}\right)\right) .
$$

Lemma 2.5. (1) \mathcal{N} is a linear isomorphism of L_{1} onto N;
(2) Define a map $\rho: T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q) \rightarrow L_{1}$ by setting

$$
\rho(Y):=\mathscr{N}^{-1}\left(Y\left(a_{1}\right), \ldots, Y\left(a_{j-1}\right), Y\left(a_{j+1}\right), \ldots, Y\left(a_{k}\right)\right)
$$

for $Y \in T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q)$. Then

$$
I_{\gamma}(Y, Y) \geq I_{\gamma}(\rho(Y), \rho(Y)) \quad \text { for } \quad Y \in T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q) \text {, }
$$

and the equality holds if and only if $Y \in L_{1}$.
(3) $i\left(I_{\gamma}^{0, \perp}\right)=i\left(I_{\gamma} \mid L_{1}\right), a\left(I_{\gamma}^{0, \perp}\right)=a\left(I_{\gamma} \mid L_{1}\right)$ and $n\left(I_{\gamma}^{0, \perp}\right)=n\left(I_{\gamma} \mid L_{1}\right)$.

Lemma 2.1 and Lemma 2.5(3) imply Theorem 2.4.
Proof of Lemma 2.5. (1) Suppose $Y \in L_{1}$ and $\mathscr{N}(Y)=0$ so that $Y\left(a_{i}\right)=0$ for $i=1, \ldots, j-1, j+1, \ldots, k$. By our choice of $a_{i}, Y=0$, proving that \mathcal{N} is injective. To show that \mathcal{N} is surjective, it suffices to prove that, given vectors v_{i} at $\gamma\left(a_{i}\right)$ and v_{i+1} at $\gamma\left(a_{i+1}\right)$, there is a Jacobi field Y along $\gamma \mid\left[a_{i}, a_{i+1}\right]$ which extends v_{i} and v_{i+1} for $i=1, \ldots, j-2, j+1, \ldots, k-1$, and given vectors v_{j-1} at $\gamma\left(a_{j-1}\right)$ and v_{j+1} at $\gamma\left(a_{j+1}\right)$, there is a B-Jacobi field Y along $\gamma \mid\left[a_{j-1}, a_{j+1}\right]$ which extends v_{j-1} and v_{j+1}. Since $\gamma\left(a_{i+1}\right)$ is not conjugate point to $\gamma\left(a_{i}\right), Y \mapsto\left(v_{i}, v_{i+1}\right)$ defines a linear isomorphism of the space of Jacobi fields along $\gamma \mid\left[a_{i}, a_{i+1}\right]$ into the direct sum of the tangent spaces at $\gamma\left(a_{i}\right)$ and $\gamma\left(a_{i+1}\right)$ for $i=1, \ldots, j-2$, $j+1, \ldots, k-1$. Moreover since $\gamma\left(t_{0}\right)$ and $\gamma\left(a_{j+1}\right)$ are not conjugate points to $\gamma\left(a_{j-1}\right), \quad Y \mapsto\left(v_{j-1}, v_{j+1}\right)$ defines a linear isomorphism of the space of B-Jacobi fields along $\gamma \mid\left[a_{j-1}, a_{j+1}\right]$ into the direct sum of the tangent spaces at $\gamma\left(a_{j-1}\right)$ and $\gamma\left(a_{j+1}\right)$. Since they are linear isomorphisms of a vector space into a vector space
of the same dimension (cf. Lemma 1.5), it must be surjective. This completes the proof of (1).
(2) With the notations in the Section 1, we have

$$
I_{\gamma}^{\perp}(Y, Y)=\sum_{i=0}^{j-2} \tilde{I}_{\gamma \mid\left[a_{i}, a_{i+1}\right]}(Y, Y)+I_{\gamma \backslash\left[a_{j-1}, a_{j+1}\right]}(Y, Y)+\sum_{i=j+1}^{k} \tilde{I}_{\gamma \backslash\left[a_{i}, a_{i+1}\right]}(Y, Y)
$$

and

$$
\begin{aligned}
I_{\gamma}^{\perp}(\rho(Y), \rho(Y))= & \sum_{i=0}^{j-2} \tilde{I}_{\gamma \backslash\left[a_{i}, a_{i+1}\right]}(\rho(Y), \rho(Y))+I_{\gamma \backslash\left[a_{j-1}, a_{j+1}\right]}(\rho(Y), \rho(Y)) \\
& +\sum_{i=j+1}^{k} \tilde{I}_{\gamma \backslash\left[a_{i}, a_{i+1}\right]}(\rho(Y), \rho(Y)) .
\end{aligned}
$$

By Proposition 3.1 in [7], we have

$$
\tilde{I}_{\gamma \backslash\left[a_{i}, a_{i+1}\right]}(Y, Y) \geq \tilde{I}_{\gamma \backslash\left[a_{i}, a_{i+1}\right]}(\rho(Y), \rho(Y))
$$

for $i=0, \ldots, j-2, j+1, \ldots, k$ and the equality holds if and only if Y is a Jacobi field along $\gamma \mid\left[a_{i}, a_{i+1}\right]$. By Lemma 1.7, we have

$$
I_{\gamma \backslash\left[a_{j-1}, a_{j+1}\right]}(Y, Y) \geq I_{\gamma \backslash\left[a_{j-1}, a_{j+1}\right]}(\rho(Y), \rho(Y))
$$

and the equality holds if and only if Y is a B-Jacobi field along $\gamma \mid\left[a_{j-1}, a_{j+1}\right]$.
(3) If U is a subspace of $T_{\gamma}^{\perp} \Omega_{t_{0}}(p, q)$ on which $I_{\gamma}^{0, \perp}$ is negative semi-definite, then $I_{\gamma}^{0, \perp}$ is negative semi-definite on $\rho(U)$ by (2). Moreover, $\rho \mid U: U \rightarrow \rho(U)$ $\left(\subset L_{1}\right)$ is a linear isomorphism. In fact, if $Y \in U$ and $\rho(Y)=0$, then (2) implies

$$
0 \geq I_{\gamma}(Y, Y) \geq I_{\gamma}(\rho(Y), \rho(Y))=0
$$

and hence $I_{\gamma}(Y, Y)=I_{\gamma}(\rho(Y), \rho(Y))$. Again by (2), we have $Y=\rho(Y)=0$. Thus $\rho \mid U$ is injective. It is clear that $\rho \mid U$ is surjective and linear. Moreover we have $a\left(I_{\gamma}^{0, \perp}\right) \leq a\left(I_{\gamma} \mid L_{1}\right)$. The reverse inequality is obvious. The proof for the index $i\left(I_{\gamma}^{0, \perp}\right)$ is similar. Finally, to prove $n\left(I_{\gamma}^{0, \perp}\right)=n\left(I_{\gamma} \mid L_{1}\right)$, let Y be an element of L_{1} such that $I_{\gamma}^{\perp}(Y, W)=0$ for all $W \in L_{1}$. Since Y is a Jacobi field along $\gamma \mid\left[a_{i}, a_{i+1}\right]$ for $i=0, \ldots, j-2, j+1, \ldots, k$ and a B-Jacobi field along $\gamma \mid\left[a_{j-1}, a_{j+1}\right]$, we have that

$$
\begin{aligned}
I_{\gamma}(Y, W)= & \sum_{i=1}^{j-1} g_{1}\left(Y^{\prime}\left(a_{i}-0\right)-Y^{\prime}\left(a_{i}+0\right), W\left(a_{i}\right)\right) \\
& +\sum_{i=j+1}^{k} g_{2}\left(Y^{\prime}\left(a_{i}-0\right)-Y^{\prime}\left(a_{i}+0\right), W\left(a_{i}\right)\right)
\end{aligned}
$$

from Lemma 1.2. In the same way as we prove Lemma 1.3, we conclude that $Y^{\prime}\left(a_{i}-0\right)=Y^{\prime}\left(a_{i}+0\right)$ for $i=1, \ldots, j-1, j+1, \ldots, k$ so that Y is a B-Jacobi field along γ. This means that $n\left(I_{\gamma}^{0, \perp}\right) \geq n\left(I_{\gamma} \mid L_{1}\right)$. The reverse inequality is obvious.

Proof of Theorem 2.2. Since $\operatorname{dim} L_{1}<\infty$, (3) of Lemma 2.5 implies that both $a\left(I_{\gamma}^{0, \perp}\right)$ and $i\left(I_{\gamma}^{0, \perp}\right)$ are finite. The finiteness of B-conjugate points follows from the next lemma.

Lemma 2.6. For any finite number of conjugate points $\gamma\left(t_{1}\right), \ldots$, $\gamma\left(t_{m}\right)\left(a<t_{1}<\cdots<t_{m}<t_{0}\right)$ to $\gamma(a)$ along $\gamma \mid\left[a, t_{0}\right]$ with multiplicity μ_{1}, \ldots, μ_{m} as conjugate points and B-conjugate points $\gamma\left(t_{m+1}\right), \ldots, \gamma\left(t_{l}\right)\left(t_{0}<t_{m+1}<\cdots<t_{l}<b\right)$ to $\gamma(a)$ along γ with multiplicity $\tilde{\mu}_{m+1}, \ldots, \tilde{\mu}_{l}$, we have

$$
a\left(I_{\gamma}^{0, \perp}\right) \geq \mu_{1}+\cdots+\mu_{m}+\tilde{\mu}_{m+1}+\cdots+\tilde{\mu}_{l}
$$

Proof. For simplicity, we put $\mu_{i}:=\tilde{\mu}_{i}(i=m+1, \ldots, l)$. For each i, let $\tilde{Y}_{1}^{i}, \ldots, \tilde{Y}_{\mu_{i}}^{i}$ be a basis for the Jacobi fields along $\gamma \mid\left[a, t_{0}\right]$ or the B-Jacobi fields along γ which vanish at $t=a$ and $t=t_{i}$. We put, $j=1, \ldots, \mu_{i}$,

$$
Y_{m}^{i}:= \begin{cases}\tilde{Y}_{m}^{i} & \text { on }\left[a, t_{i}\right] \\ 0 & \text { on }\left[t_{i}, b\right]\end{cases}
$$

It suffices to prove that $\mu_{1}+\cdots+\mu_{l}$ vector fields $Y_{1}^{i}, \ldots, Y_{\mu_{i}}^{i}, i=1, \ldots, l$, along γ are linearly independent and that I_{γ} is negative semi-definite on the space spanned by them. Suppose

$$
\sum_{i=1}^{l} Y^{i}=0
$$

where

$$
Y^{i}=c_{1}^{i} Y_{1}^{i}+\cdots+c_{\mu_{i}}^{i} Y_{\mu_{i}}^{i} .
$$

Since Y^{1}, \ldots, Y^{l-1} vanish on $\gamma \mid\left[t_{l-1}, b\right], \quad Y^{l}$ must vanish along $\gamma \mid\left[t_{l-1}, t_{l}\right]$. Being a B-Jacobi field or a Jacobi field along $\gamma \mid\left[a, t_{l}\right], Y^{l}$ must vanish identically along γ, since $\gamma\left(t_{0}\right)$ is not a conjugate point to $\gamma(a)$. Thus, $c_{1}^{l}=\cdots=c_{\mu_{l}}^{l}=0$. Continuing this argument, we obtain $c_{1}^{l-1}=\cdots=c_{\mu_{l-1}}^{l-1}=0$, and so on. To prove that I_{γ} is negative semi-definite on the space spanned by $Y_{1}^{i}, \ldots, Y_{\mu_{i}}^{i}, i=1, \ldots, l$, let

$$
Y=Y^{1}+\cdots+Y^{l}
$$

where each Y^{i} is a linear combination of $Y_{1}^{i}, \ldots, Y_{\mu_{i}}^{i}$ as above. Then

$$
I_{\gamma}(Y, Y)=\sum_{i=1}^{l} I_{\gamma}\left(Y^{i}, Y^{i}\right)+2 \sum_{1 \leq s<i \leq l} I_{\gamma}\left(Y^{i}, Y^{s}\right)
$$

For each pair (i, s) with $s \leq i$, we shall show that $I_{\gamma}\left(Y^{i}, Y^{s}\right)=0$. Let $\bar{\gamma}=$ $\gamma \mid\left[a, t_{i}\right]$. Since Y^{i} and Y^{s} vanish beyond $t=t_{i}$, we have $I_{\gamma}\left(Y^{i}, Y^{s}\right)=I_{\bar{\gamma}}\left(Y^{i}, Y^{s}\right)$. As Y^{i} is a B-Jacobi field or a Jacobi field along $\bar{\gamma}, I_{\bar{\gamma}}\left(Y^{i}, Y^{s}\right)=0$ by Lemma 1.3. Thus, $I_{\gamma}(Y, Y)=0$, proving our assertion.

Let γ_{r} denote the restriction of γ to the interval $\left[a, b_{r}\right]$, where $b_{r}=$ $r b+(1-r) a$ for $0<r \leq 1$. Thus $\gamma_{r}:\left[a, b_{r}\right] \rightarrow M$ is a B-geodesic from $\gamma(a)$ to $\gamma\left(b_{r}\right)$ if $\left(t_{0}-a\right) /(b-a)<r \leq 1$ and a geodesic in M_{1} if $0<r \leq\left(t_{0}-a\right) /(b-a)$. Let I_{r} denote the index form associated with this B-geodesic or geodesic. Thus $i\left(I_{1}\right)$ is the index which we are actually trying to compute. First note that:

Assertion (1). $\quad i\left(I_{r}\right)=0$ for small values of r. (cf. [8])
Assertion (2). $i\left(I_{r}\right)$ is a monotone function of r.
In fact, if $r<r^{\prime}$ then there exists a $i\left(I_{r}\right)$ dimensional space \mathscr{V} of vector fields along γ_{r} which vanish at a and b_{r} such that the index form I_{r} is negative definite on this vector space. Each vector field in \mathscr{V} extends to a vector field along $\gamma_{r^{\prime}}$ which vanishes identically between b_{r} to $b_{r^{\prime}}$. Thus we obtain a $i\left(I_{r}\right)$ dimensional vector space of vector fields along $\gamma_{r^{\prime}}$ on which $I_{r^{\prime}}$ is negative definite. Hence $i\left(I_{r}\right) \leq i\left(I_{r^{\prime}}\right)$.

Now let us examine the discontinuity of the function $i\left(I_{r}\right)$. First note that $i\left(I_{r}\right)$ is continuous from the left:

Assertion (3). For all sufficiently small $\varepsilon>0$ we have $i\left(I_{r-\varepsilon}\right)=i\left(I_{r}\right)$.
Proof. According to (3) of Lemma 2.5 the number $i\left(I_{1}\right)$ can be interpreted as the index of a quadratic form on a finite dimensional vector space $L_{1}=$ $L\left(a_{0}, \ldots, a_{k+1}\right)$. If $b_{r} \neq t_{0}$, we may assume that the subdivision is chosen so that say $a_{i}<b_{r}<a_{i+1}$. Then the index $i\left(I_{r}\right)$ can be interpreted as the index of a corresponding quadratic form I_{r} on a corresponding vector space L_{r} of broken B Jacobi fields or Jacobi fields along γ_{r}. This vector space L_{r} is to be constructed using the subdivision $a<a_{1}<\cdots<a_{i}<b_{r}$ of $\left[a, b_{r}\right]$. Since a broken B-Jacobi field or a Jacobi field is uniquely determined by its values at the break points $\gamma\left(a_{m}\right)$, this vector space L_{r} is isomorphic to the direct sum

$$
N_{r}= \begin{cases}N\left(a_{1}\right) \times \cdots \times N\left(a_{j-1}\right) \times N\left(a_{j+1}\right) \times \cdots \times N\left(a_{i}\right) & \text { if } b_{r}>t_{0} \\ N\left(a_{1}\right) \times \cdots \times N\left(a_{i}\right) & \text { if } b_{r}<t_{0}\end{cases}
$$

by a map $\mathscr{N}_{r}: L_{r} \rightarrow N_{r}$ defined to be

$$
\mathscr{N}_{r}(Y):= \begin{cases}\left(Y_{1}\left(a_{1}\right), \ldots, Y\left(a_{j-1}\right), Y\left(a_{j+1}\right), \ldots, Y\left(a_{i}\right)\right) & \text { if } b_{r}>t_{0} \\ \left(Y_{1}\left(a_{1}\right), \ldots, Y\left(a_{i}\right)\right) & \text { if } b_{r}<t_{0}\end{cases}
$$

Note that this vector space N_{r} is independent of r. Evidently, by Lemma 1.2, the quadratic form $B_{r}:=I_{r} \circ \mathcal{N}_{r}^{-1}$ on N_{r} varies continuously with r.

Now B_{r} is negative definite on a subspace $\mathscr{V} \subset N_{r}$ of dimension $i\left(B_{r}\right)$. For all r^{\prime} sufficiently close to r it follows that $B_{r^{\prime}}$ is negative definite on \mathscr{V}. Therefore $i\left(B_{r^{\prime}}\right) \geq i\left(B_{r}\right)$. But if $r^{\prime}=r-\varepsilon<r$ then we also have $i\left(B_{r-\varepsilon}\right) \leq i\left(B_{r}\right)$ by Assertion (2). Hence $i\left(B_{r-\varepsilon}\right)=i\left(B_{r}\right)$.

Assertion (4). For all sufficiently small $\varepsilon>0$ we have

$$
i\left(I_{r+\varepsilon}\right)=i\left(I_{r}\right)+n\left(I_{r}\right)
$$

Proof that $i\left(I_{r+\varepsilon}\right) \leq i\left(I_{r}\right)+n\left(I_{r}\right)$. Let B_{r} and N_{r} be as in the proof of Assertion (3). Since $\operatorname{dim} N_{r}<\infty$ we see that B_{r} is positive definite on some subspace $\mathscr{V}^{\prime} \subset N_{r}$. For all r^{\prime} sufficiently close to r, it follows that $B_{r^{\prime}}$ is positive definite on \mathscr{V}^{\prime}. Hence

$$
i\left(B_{r^{\prime}}\right) \leq \operatorname{dim} N_{r}-\operatorname{dim} \mathscr{V}^{\prime}=a\left(B_{r}\right)=i\left(B_{r}\right)+n\left(B_{r}\right)
$$

Proof that $i\left(I_{r+\varepsilon}\right) \geq i\left(I_{r}\right)+n\left(I_{r}\right)$. Let $V \in N_{r}$, with $V\left(a_{i}\right) \neq 0$, and denote by $V_{b_{r}} \in L_{r}$ the broken B-Jacobi field or Jacobi field which coincides with $V\left(a_{m}\right)$ at $a_{m}, m=1, \ldots, i$, and which vanishes at the point $b_{r} \in\left(a_{i}, a_{i+1}\right)$. We claim that

$$
B_{r}(V, V)=I_{r}\left(V_{b_{r}}, V_{b_{r}}\right)>I_{r+\varepsilon}\left(V_{b_{r+\varepsilon}}, V_{b_{r+\varepsilon}}\right)=B_{r+\varepsilon}(V, V) .
$$

In fact, if we denote by $W_{b_{r}}$ the vector field defined along $\gamma_{r+\varepsilon}$ by

$$
W_{b_{r}}(t)=\left\{\begin{array}{ll}
V_{b_{r}}(t), & t \in\left[a, b_{r}\right] \\
0, & t \in\left[b_{r}, b_{r+\varepsilon}\right]^{\prime}
\end{array},\right.
$$

we have, from Lemma 1.6,

$$
I_{r}\left(V_{b_{r}}, V_{b_{r}}\right)=I_{r+\varepsilon}\left(W_{b_{r}}, W_{b_{r}}\right)>I_{r+\varepsilon}\left(V_{b_{r+\varepsilon}}, V_{b_{r+\varepsilon}}\right)
$$

where the last inequality is strict, since $W_{b_{r}} \mid\left[a_{i}, b_{r+\varepsilon}\right]$ is neither a B-Jacobi field nor Jacobi field. Therefore, if $V \in N_{r}$ and $B_{r}(V, V)=I_{r}\left(V_{b_{r}}, V_{b_{r}}\right) \leq 0$, then $B_{r+\varepsilon}(V, V)=I_{r+\varepsilon}\left(V_{b_{r+\varepsilon}}, V_{b_{r+\varepsilon}}\right)<0$. Hence, if B_{r} is negative definite on a subspace $\mathscr{V} \subset N_{r}, B_{r+\varepsilon}$ will still be negative definite on the direct sum of \mathscr{V} with the null space of B_{r}. Therefore

$$
i\left(B_{r+\varepsilon}\right) \geq i\left(B_{r}\right)+n\left(B_{r}\right)
$$

The index Theorem 2.2 clearly follows from the Assertion (1), (2), (3) and (4).

3. Comparison theorem

Let $\left(M_{\lambda}, g_{\lambda}\right)$ (resp. $\left.\left(\bar{M}_{\lambda}, \bar{g}_{\lambda}\right)\right)$ be Riemannian manifold with Riemannian submanifold B_{λ} (resp. \bar{B}_{λ}) for $\lambda=1,2$, and ψ (resp. $\bar{\psi}$) isometry from B_{1} to B_{2} (resp. \bar{B}_{1} to \bar{B}_{2}). Let $(M, g)=\left(M_{1}, g_{1}\right) \cup_{\psi}\left(M_{2}, g_{2}\right)$ and $(\bar{M}, \bar{g})=$ $\left(\bar{M}_{1}, \bar{g}_{1}\right) \cup_{\bar{\psi}}\left(\bar{M}_{2}, \bar{g}_{2}\right)$ be glued Riemannian spaces. We put $B:=B_{1} \cong B_{2}$ and $\bar{B}:=\bar{B}_{1} \cong \bar{B}_{2}$ and assume that $\operatorname{dim} \bar{B}>0$ if $\operatorname{dim} B>0$. Let $\gamma \in \Omega_{t_{0}}$ (resp. $\bar{\gamma} \in \bar{\Omega}_{t_{0}}$) be a B-geodesic (resp. \bar{B}-geodesic) with $\gamma^{\prime}\left(t_{0}+0\right) \notin T_{\gamma\left(t_{0}\right)} B$ (resp. $\left.\bar{\gamma}^{\prime}\left(t_{0}+0\right) \notin T_{\bar{\gamma}\left(t_{0}\right)} \bar{B}\right)$. We assume that $\gamma\left(t_{0}\right)$ (resp. $\left.\bar{\gamma}\left(t_{0}\right)\right)$ is not conjugate point to $\gamma(a)$ (resp. $\bar{\gamma}(a))$. For $\lambda=1,2$, let $R^{\lambda}\left(\right.$ resp. $\left.\bar{R}^{\lambda}\right)$ be the Riemannian curvature tensor of Riemannian manifold M_{λ} (resp. \bar{M}_{λ}). We define operators $R_{t}^{\lambda}:\left\{\gamma^{\prime}(t)\right\}^{\perp} \rightarrow\left\{\gamma^{\prime}(t)\right\}^{\perp}$ and $\bar{R}_{t}^{\lambda}:\left\{\bar{\gamma}^{\prime}(t)\right\}^{\perp} \rightarrow\left\{\bar{\gamma}^{\prime}(t)\right\}^{\perp}$ by

$$
R_{t}^{\lambda} v=R^{\lambda}\left(v, \gamma^{\prime}(t)\right) \gamma^{\prime}(t) \quad \text { for } v \in\left\{\gamma^{\prime}(t)\right\}^{\perp}
$$

and

$$
\bar{R}_{t}^{\lambda} \bar{v}=\bar{R}^{\lambda}\left(\bar{v}, \bar{\gamma}^{\prime}(t)\right) \bar{\gamma}^{\prime}(t) \quad \text { for } \bar{v} \in\left\{\bar{\gamma}^{\prime}(t)\right\}^{\perp}
$$

where

$$
\left\{\gamma^{\prime}(t)\right\}^{\perp}:=\left\{v \in T_{\gamma(t)} M_{\lambda} \mid g_{\lambda}\left(v, \gamma^{\prime}(t)\right)=0\right\}
$$

and

$$
\left\{\bar{\gamma}^{\prime}(t)\right\}^{\perp}:=\left\{\bar{v} \in T_{\bar{\gamma}(t)} \bar{M}_{\lambda} \mid \bar{g}_{\lambda}\left(\bar{v}, \bar{\gamma}^{\prime}(t)\right)=0\right\} .
$$

Similarly, a bar is used to distinguish objects in \bar{M} from the corresponding objects in M. We put $\Gamma_{2}\left(\gamma^{\prime}\right):=T_{\gamma\left(t_{0}\right)} B \oplus \operatorname{Span}\left\{\operatorname{nor}_{2} \gamma^{\prime}\left(t_{0}+0\right)\right\}, \Gamma_{2}^{\perp}\left(\gamma^{\prime}\right):=$ $\left\{v \in \Gamma_{2}\left(\gamma^{\prime}\right) \mid g_{2}\left(v, \gamma^{\prime}\left(t_{0}+0\right)\right)=0\right\}$ and $A:=A_{\gamma^{\prime}\left(t_{0}-0\right), \gamma^{\prime}\left(t_{0}+0\right)} \mid \Gamma_{2}^{\perp}\left(\gamma^{\prime}\right)$.

We assume that $\operatorname{dim} M_{\lambda} \geq 2$ and $\operatorname{dim} \bar{M}_{\lambda} \geq 2$. Then the following assertion holds:

Proposition 3.1. We assume that $\operatorname{dim} M_{\lambda} \leq \operatorname{dim} \bar{M}_{\lambda}(\lambda=1,2)$ and the following conditions hold:
(1) For any $t \in[a, b]$,
(the maximal eigenvalue of R_{t}^{λ}) $\leq\left(\right.$ the minimal eigenvalue of $\left.\bar{R}_{t}^{\lambda}\right)$
(2) If $\operatorname{dim} B>0$, then
(the minimal eigenvalue of $A) \geq$ (the maximal eigenvalue of $\bar{A})$.
Then $i\left(I_{\gamma}^{0, \perp}\right) \leq i\left(\overline{\bar{Y}}_{\vec{\gamma}}^{0, \perp}\right)$ holds. In particular, if one of two inequalities (1) and (2) is strict, then $a\left(I_{\gamma}^{0, \perp}\right)=i\left(I_{\gamma}^{0, \perp}\right)+n\left(I_{\gamma}^{0, \perp}\right) \leq i\left(\bar{I}_{\bar{\gamma}}^{0, \perp}\right)$ holds.

Proof. For $Y \in T_{\gamma}^{\perp} \Omega_{t_{0}}(\gamma(a), \gamma(b))$, let $e_{1}^{-}, \ldots, e_{m_{1}}^{-}:=\gamma^{\prime}\left(t_{0}-0\right)$ be an orthonormal basis of $T_{\gamma\left(t_{0}\right)} M_{1}$ and $e_{1}^{+}, \ldots, e_{m_{2}}^{+}:=\gamma^{\prime}\left(t_{0}+0\right)$ an orthonormal basis of $T_{\gamma\left(t_{0}\right)} M_{2}$ such that $e_{1}^{-}=Y\left(t_{0}-0\right) /\left\|Y\left(t_{0}-0\right)\right\|_{1}$ and $e_{1}^{+}=Y\left(t_{0}+0\right) /\left\|Y\left(t_{0}+0\right)\right\|_{2}$ if $Y\left(t_{0}-0\right) \neq 0$. Let $e_{i}^{-}(t)$ (resp. $\left.e_{i}^{+}(t)\right)$ be the vector field along $\gamma \mid\left[a, t_{0}\right]$ (resp. $\left.\gamma \mid\left[t_{0}, b\right]\right)$ obtained by parallel translation of e_{i}^{-}(resp. e_{i}^{+}) along $\gamma \mid\left[a, t_{0}\right]$ (resp. $\left.\gamma \mid\left[t_{0}, b\right]\right)$ for $i=1, \ldots, m_{1}$ (resp. $i=1, \ldots, m_{2}$). We can denote $Y(t)$ by

$$
Y(t)=\sum_{i=1}^{m_{1}-1} y_{-}^{i}(t) e_{i}^{-}(t), \quad t \in\left[a, t_{0}\right]
$$

and

$$
Y(t)=\sum_{i=1}^{m_{2}-1} y_{+}^{i}(t) e_{i}^{+}(t), \quad t \in\left[t_{0}, b\right] .
$$

Let $\bar{e}_{1}^{-}, \ldots, \bar{e}_{\bar{m}_{1}}^{-}:=\bar{\gamma}^{\prime}\left(t_{0}-0\right)$ (resp. $\bar{e}_{1}^{+}, \ldots, \bar{e}_{\bar{m}_{2}}^{+}:=\bar{\gamma}^{\prime}\left(t_{0}+0\right)$) be an orthonormal basis of $T_{\bar{\gamma}\left(t_{0}\right)} \bar{M}_{1}$ (resp. $\left.T_{\bar{\gamma}\left(t_{0}\right)} \bar{M}_{2}\right)$ such that if $\bar{e}_{1}^{-} \in \bar{\Gamma}_{1}\left(\gamma^{\prime}\right)$ and $\bar{e}_{1}^{+}=\bar{Q}\left(\bar{e}_{1}^{-}\right)$if $Y\left(t_{0}-0\right) \neq 0$. Let $\bar{e}_{i}^{-}(t)\left(\right.$ resp. $\left.\bar{e}_{i}^{+}(t)\right)$ be the vector field along $\bar{\gamma} \mid\left[a, t_{0}\right]$ (resp. $\left.\bar{\gamma} \mid\left[t_{0}, b\right]\right)$ obtained by parallel translation of \bar{e}_{i}^{-}(resp. \bar{e}_{i}^{+}) along $\bar{\gamma} \mid\left[a, t_{0}\right]$ (resp. $\left.\bar{\gamma} \mid\left[t_{0}, b\right]\right)$ for $i=1, \ldots, \bar{m}_{1}$ (resp. $i=1, \ldots, \bar{m}_{2}$). If we put

$$
\bar{Y}(t)=\sum_{i=1}^{m_{1}-1} y_{-}^{i}(t) \bar{e}_{i}^{-}(t), \quad t \in\left[a, t_{0}\right]
$$

and

$$
\bar{Y}(t)=\sum_{i=1}^{m_{2}-1} y_{+}^{i}(t) \bar{e}_{i}^{+}(t), \quad t \in\left[t_{0}, b\right]
$$

then it holds that $\bar{Y} \in T_{\bar{\gamma}}^{\perp} \bar{\Omega}_{t_{0}}(\bar{\gamma}(a), \bar{\gamma}(b))$, since $\bar{Y}\left(t_{0}+0\right)=y_{+}^{1}\left(t_{0}+0\right) \bar{e}_{1}^{+}=$ $y_{-}^{1}\left(t_{0}-0\right) \bar{Q}\left(\bar{e}_{1}^{-}\right)=\bar{Q}\left(\bar{Y}\left(t_{0}-0\right)\right)$ if $Y\left(t_{0}\right) \neq 0$. Furthermore, by the definition, we have that $\|\bar{Y}(t)\|_{\lambda}=\|Y(t)\|_{\lambda}$ and $\left\|\bar{Y}^{\prime}(t)\right\|_{\lambda}=\left\|Y^{\prime}(t)\right\|_{\lambda}$. From the assumption (1) and (2), we get

$$
g_{\lambda}\left(R_{t}^{\lambda} Y(t), Y(t)\right) \leq \bar{g}_{\lambda}\left(\bar{R}_{t}^{\lambda} \bar{Y}(t), \bar{Y}(t)\right)
$$

and

$$
g_{2}\left(A\left(Y\left(t_{0}+0\right)\right), Y\left(t_{0}+0\right)\right) \geq \bar{g}_{2}\left(\bar{A}\left(\bar{Y}\left(t_{0}+0\right)\right), \bar{Y}\left(t_{0}+0\right)\right)
$$

Then we have that

$$
\begin{equation*}
I_{\gamma}(Y, Y) \geq \bar{I}_{\bar{\gamma}}(\bar{Y}, \bar{Y}) \tag{3.1}
\end{equation*}
$$

Let \mathscr{U} be the subspace of $T_{\gamma}^{\perp} \Omega_{t_{0}}(\gamma(a), \gamma(b))$ on which I_{γ}^{\perp} is negative definite and $\overline{\mathscr{U}}:=\{\bar{Y} \mid Y \in \mathscr{U}\}$. If $Y \in \mathscr{U}$, then $\bar{I}_{\bar{\gamma}}(\bar{Y}, \bar{Y})<0$. Hence, \bar{I}_{γ} is negative definite on $\overline{\mathscr{U}}$ and we have $i\left(I_{\gamma}^{\perp}\right) \leq i\left(\bar{I}_{\bar{\gamma}}^{\perp}\right)$.

If one of two inequalities (1) and (2) is strict, then it holds that

$$
\begin{equation*}
I_{\gamma}(Y, Y)>\bar{I}_{\bar{\gamma}}(\bar{Y}, \bar{Y}) \tag{3.2}
\end{equation*}
$$

Let \mathscr{V} be the subspace of $T_{\gamma}^{\perp} \Omega_{t_{0}}(\gamma(a), \gamma(b))$ on which I_{γ}^{\perp} is negative semi-definite and $\overline{\mathscr{V}}:=\{\bar{Y} \mid Y \in \mathscr{V}\}$. If $Y \in \mathscr{V}$, then $\bar{I}_{\bar{\gamma}}(\bar{Y}, \bar{Y})<0$. Hence, $\bar{I}_{\bar{\gamma}}$ is negative definite on $\overline{\mathscr{V}}$ and we have $a\left(I_{\gamma}^{0, \perp}\right) \leq i\left(\bar{I}_{\bar{\gamma}}^{0, \perp}\right)$.

The condition that $\operatorname{dim} M_{\lambda} \leq \operatorname{dim} \bar{M}_{\lambda}(\lambda=1,2)$ is necessary. We give an example which shows that:

Example 3. Let $S^{m}(1)$ be the m-sphere of constant curvature 1 and γ a geodesic on $S^{m}(1)$. Let $e_{1}(t), e_{2}(t), \ldots, e_{m-1}(t), \gamma^{\prime}(t)$ be a parallel orthonormal frame along γ. Let τ be the geodesic through $\gamma(0)$ with $\tau^{\prime}(0)=e_{1}(0)$. We put $M_{\lambda}:=S^{m}(1) \quad(\lambda=1,2), B:=\{\tau(t) \mid t \in \boldsymbol{R}\}, \psi=\operatorname{id}_{B}$ and $M=M_{1} \cup_{\psi} M_{2}$. Then $\gamma:[-\pi / 2, \pi] \rightarrow M$ is a B-geodesic. We set $a:=-\pi / 2, t_{0}:=0$ and $b:=\pi / 2$. Then $\gamma(b)$ is a B-conjugate point to $\gamma(a)$, its multiplicity is $m-1$ and $i\left(I_{\gamma}^{\perp}\right)=$ $m-1$. For $\bar{m}<m$, we set $\bar{M}_{\lambda}:=S^{\bar{m}}(1), \bar{B}, \bar{\psi}, \bar{M}=\bar{M}_{1} \cup_{\bar{\psi}} \bar{M}_{2}$ and $\bar{\gamma}$ as above. Then, we have that $i\left(I_{\gamma}^{0, \perp}\right)>i\left(\bar{I}_{\bar{\gamma}}^{0, \perp}\right)$.

In [11], the following assertion is given without the assumption that $\operatorname{dim} M_{\lambda} \leq \operatorname{dim} \bar{M}_{\lambda}(\lambda=1,2):$

COROLLARY 3.2. We assume that $\operatorname{dim} M_{\lambda} \leq \operatorname{dim} \bar{M}_{\lambda}(\lambda=1,2)$ and the following conditions hold:
(1) For any $t \in[a, b]$,
(the maximal eigenvalue of $\left.R_{t}^{\lambda}\right) \leq\left(\right.$ the minimal eigenvalue of \bar{R}_{t}^{λ})
(2) If $\operatorname{dim} B>0$, then
(the minimal eigenvalue of $A) \geq($ the maximal eigenvalue of $\bar{A})$.
(3) $\bar{\gamma}(t)$ is not a conjugate point to $\bar{\gamma}(a)$ for any $t \in\left(a, t_{0}\right]$ and also $\bar{\gamma}(t)$ is not a \bar{B}-conjugate point to $\bar{\gamma}(a)$ for any $t \in\left(t_{0}, b\right]$.
Then $\gamma(t)$ is not a conjugate point to $\gamma(a)$ for any $t \in\left(a, t_{0}\right]$ and also $\gamma(t)$ is not B conjugate point to $\gamma(a)$ for any $t \in\left(t_{0}, b\right]$.

Proof. By the assumption (3), $i\left(\bar{I}_{\bar{\gamma}}^{0, \perp}\right)=0$ holds. Hence we have that $i\left(I_{\gamma}^{0, \perp}\right)=0$ from Proposition 3.1.

References

[1] N. Abe and M. Takiguchi, Geodesics reflecting on a pseudo-Riemannian submanifold, SUT J. Math., 34, No. 2, (1998), 139-168.
[2] T. Hasegawa, The index theorem of geodesics on a Riemannian manifold with boundary, Kodai Math. J., 1 (1978), 285-288.
[3] T. Hasegawa, On the position of a conjugate point of a reflected geodesic in E^{2} and E^{3}, Yokohama Math. J., 32 (1984), 233-237.
[4] N. Innami, Convex curves whose points are vertices of billiard triangles, Kodai Math. J., 11, (1988), 17-24.
[5] N. Innami, Integral formulas for polyhedral and spherical billiards, J. Math. Soc. Japan, 50, No. 2, (1998), 339-357.
[6] N. Innami, Jacobi vector fields along geodesics in glued Riemannian manifolds, Nihonkai Math. J., 12, No. 1, (2001), 101-112.
[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley (Interscience), New York, Vol. 2 (1969).
[8] J. Milnor, Morse Theory, Princeton University Press (1963).
[9] T. SakaI, Riemannian Geometry, Mathematical Monograph, Amer. Math. Soc. (1997).
[10] M. Takiguchi, The index form of a geodesic on a glued Riemannian space, Nihonkai Math. J., 11, No. 2, (2000), 167-202.
[11] M. Takiguchi, An extension of Rauch comparison theorem to glued Riemannian spaces, Tsukuba J. Math., 26, No. 2, (2002), 313-338.

9-20-6 Kamitsurumahoncho, Sagamihara-shi
Kanagawa 228-0818 Japan
E-mail address: taki@med.toho-u.ac.jp

