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ISOSPECTRAL HYPERSURFACES IN EUCLIDEAN SPHERES

José N. B. Barbosa

Abstract

The aim of this work is to present a classification of some compact hypersurfaces

Mn of a unit sphere Snþ1 provided the spectra of the Laplacian of p-forms of Mn,

which we denote by SpecpðMÞ, is equal to the spectra SpecpðM0Þ, of a given hy-

persurface Mn
0 .

1 Introduction

Let M be a compact Riemannian manifold without boundary of dimension
n. We will denote the spectrum of the Laplacian of p-forms in M by

SpecpðMÞ :¼ f0a l
p
0 a l

p
1 a � � � " þyg; p ¼ 0; 1; . . . ; n:

One hard problem in Riemannian Geometry is to decide whether two isospectral
Riemannian manifolds are isometric. The existence of flat tori which are iso-
spectral but are not isometric (see [3]) is a counterexample to the validity in
general of a positive answer to this question. The principal ingredient used to
deal with this problem is the asymptotic expansion formula of the heat kernel due
to Minakshisundaram-Pleijel (see [3] or [8]) which asserts

Xy
i¼1

e�ðl p
i
Þt @ ð4ptÞ�n=2ðap

0;n þ a
p
1;ntþ a

p
2;nt

2 þ � � �Þ; t ! 0þ;

where a
p
i;n are geometric constants depending on M.

However, if we consider an isometric immersion of M into the Euclidean
sphere Snþ1 with some geometric properties, this problem comes less dificult.
For instance, Q. Ding [7] proved that if M is a closed, orientable minimal
hypersurface of S4 and SpecpðMÞ ¼ SpecpðM0Þ, for a given p A f0; 1; 2; 3g, where

M0 is the totally geodesic sphere, or the Cli¤ord torus S1ð
ffiffiffiffiffiffiffiffi
1=3

p
Þ � S2ð

ffiffiffiffiffiffiffiffi
2=3

p
Þ,

or the Cartan minimal hypersurface, then M is isometric to M0. On the other
hand, J. Wang [10] had shown that if M is a closed, orientable hypersurface in S4

with constant mean curvature H, MH is an isoparametric hypersurface in S4 with
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the same mean curvature H and SpecpðMÞ ¼ SpecpðMHÞ, Ep A f0; 1g, then M is
isometric to MH .

We will denote by ki, i ¼ 1; . . . ; n, the principal curvatures of an immersed
hypersurface M ,! Snþ1. In that way, the symmetric functions of ki are defined
by

sm ¼
Xn

i1;...; im¼1
i1<���<im

ki1 � � � kim ;

with m ¼ 1; . . . ; n. The square of the length of the second fundamental form is
given by

S ¼
Xn
i¼1

k2
i :

Finally, dv stands for the element of volume of M.
Now, we are able to state the main theorem of this work:

Theorem 1. Let M;M0 ,! Snþ1, nb 3, be closed hypersurfaces of Snþ1 with
mean curvatures H and H0, and scalar curvatures r and r0, respectively. We
require that one of the curvatures H and H0 is nonnull and r0 is constant.
Suppose in addition that

(i) SpecpðMÞ ¼ SpecpðM0Þ, Ep A f0; 1g, if n ¼ 3;
(ii) SpecpðMÞ ¼ SpecpðM0Þ, Ep A f0; 1; 2g, if nb 4.

Then r ¼ r0, i.e., M has also the same constant scalar curvature as M0. Moreover
the following integral equalities hold:ð

M

Hs3 dv ¼
ð
M0

H0s
0
3 dv0; if nb 3;

ð
M

s4 dv ¼
ð
M0

s0
4 dv0; if nb 4; ð1Þ

where s0
m and dv0 denote the values of sm and dv correspondent to M0, respectively.

In particular, we have

n2H 2 � S ¼ n2H 2
0 � S0; ð2Þ

where S0 is the square of the length of the second fundamental form of M0.

A consequence of our calculations is the next result about the case
H ¼ H0 ¼ 0, whose proof follows closely techniques presented before by Q. Ding
in his paper [7].

Theorem 2. Let M;M0 ,! Snþ1, nb 3, be closed minimal hypersurfaces of
Snþ1 whose scalar curvatures are r and r0, respectively, with r0 constant. Suppose
that
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(i) SpecpðMÞ ¼ SpecpðM0Þ, for some p A f0; 1; 2; 3g, if n ¼ 3;
(ii) SpecpðMÞ ¼ SpecpðM0Þ, Ep A f0; 1g, if nb 4.

Then r ¼ r0. Moreover, for nb 4, we haveð
M

s4 dv ¼
ð
M0

s0
4 dv0:

Given r A ð0; 1Þ and m A f1; . . . ; n� 1g we will denote by Mr
n�m;mðHÞ, the

hypersurface of Snþ1 with constant mean curvature H, obtained by considering

the standard immersions Sn�mðrÞHRn�mþ1, Smð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
ÞHRmþ1 of spheres with

radius r and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
and dimensions n�m and m, respectively, and taking the

product immersion

Sn�mðrÞ � Smð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
Þ ,! Rn�mþ1 � Rmþ1:

Thus we have that Mr
n�m;mðHÞ is contained in Snþ1 and has principal curvatures

ki, i ¼ 1; . . . ; n, and mean curvature, respectively, given by

k1 ¼ � � � ¼ kn�m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p

r
; kn�mþ1 ¼ � � � ¼ kn ¼ � rffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p ;

and

H ¼ n�m� nr2

nr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p ;

or the negative of these values when we choose the opposite orientation. The
hypersurface Mr

n�m;mðHÞ is usually known as HðrÞ-torus or generalized Cli¤ord
Totus.

Let FH be the set consisting of isoparametric hypersurfaces in S4 with
constant mean curvature H. E. Cartan proved in [5] that if M A FH then M is
totally umbilical, or a HðrÞ-torus Mr

3�k;kðHÞ, or a Cartan hypersurface (that is,
the isoparametric hypersurface obtained from the Cartan minimal hypersurface).
Using Theorem 1 we will show that the assumption H ¼ H0 is not necessary
in the theorem proved by J. Wang, above mentioned. More precisely, we will
prove the following result:

Theorem 3. Let M ,! S4 be a closed and orientable hypersurface with
constant mean curvature in S4 and M0 A FH0

. If SpecpðMÞ ¼ SpecpðM0Þ, for
p A f0; 1g, then H ¼ H0 and M is isometric to M0.

For dimension nb 4, we will derive also from Theorem 1 the following
result:

Theorem 4. Let M ,! Snþ1, nb 4, be a closed and orientable hypersurface
in Snþ1 with the same constant mean curvature H0 of an isoparametric hypersurface
M0 in Snþ1. If SpecpðMÞ ¼ SpecpðM0Þ, Ep A f0; 1; 2g, then M is also iso-
parametric. Moreover,
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(i) if M0 is either totally umbilical or the H0ðrÞ-torus M r
n�1;1ðH0Þ, with

r2 a ðn� 1Þ=n, then M ¼ M0.
(ii) When n ¼ 4 the principal curvatures of M and M0 coincide.

Finally, we will prove the following theorem:

Theorem 5. Let M ,! Snþ1 a closed hypersurface of Snþ1 with nonnegative
sectional curvature and M0 ,! Snþ1 a totally umbilical hypersurface or a H0ðr0Þ-
torus M r0

n�1;1ðH0Þ, with r0 a ðn� 2Þ=n. Suppose that
(i) SpecpðMÞ ¼ SpecpðM0Þ, Ep A f0; 1g, if n ¼ 3;
(ii) SpecpðMÞ ¼ SpecpðM0Þ, Ep A f0; 1; 2g, if nb 4.

Then M is isometric to M0.

2 Preliminaries

Let MHSnþ1 be a closed hypersurface with mean curvature H. Choose
a local orthonormal frame field fe1; . . . ; eng and let fo1; . . . ;ong be the corre-
sponding dual frame. We consider the second fundamental form

h ¼
Xn
i; j¼1

hijoioj:

Let R and ~RR be respectively the curvature and Ricci curvature tensors of M
and denote by Rijkl and ~RRij , i; j; k; l ¼ 1; . . . ; n, their respective components with
respect to the above frame. If we choose fe1; . . . ; eng such that hij ¼ kidij , then

H ¼ 1

n

Xn
i¼1

ki;

Rijkl ¼ ð1 þ kikjÞðdikdjl � dildjkÞ; ð3Þ
~RRij ¼ ½ðn� 1Þ þ nHki � kikj�dij : ð4Þ

Let r and S be, respectively, the scalar curvature of M and the square of the
length of the second fundamental form h. The Gauss formula yields

r ¼ nðn� 1Þ þ n2H 2 � S ð5Þ

and taking into account (3) and (4) we have

jRj2 ¼ 2S2 � 2f4 þ 4n2H 2 � 4S þ 2nðn� 1Þ; ð6Þ

j ~RRj2 ¼ n2H 2S þ f4 þ nðn� 1Þ2 � 2nHf3

þ 2n2ðn� 1ÞH 2 � 2ðn� 1ÞS; ð7Þ
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where

fm ¼
Xn
i¼1

km
i :

The expressions of fm can be calculated using the formulas (see e.g. [9], p. 101)

fm � fm�1s1 þ fm�2s2 � � � � þ ð�1Þm�1
f1sm�1 þ ð�1Þmmsm ¼ 0; for ma n;

fm � fm�1s1 þ � � � þ ð�1Þnfm�nsn ¼ 0; for m > n:

When n ¼ 3 we get

f3 ¼ 9

2
HS � 27

2
H 3 þ 3s3;

f4 ¼ 1

2
S2 þ 9H 2S � 81

2
H 4 þ 12Hs3; ð8Þ

and for nb 4,

f3 ¼ 3n

2
HS � n3

2
H 3 þ 3s3;

f4 ¼ 1

2
S2 þ n2H 2S � n4

2
H 4 þ 4nHs3 � 4s4: ð9Þ

If H is constant, the Simons formula for M is given by

1

2
DS ¼ j‘hj2 þ Sðn� SÞ � n2H 2 þ nHf3: ð10Þ

Since M is compact, using Minakshisundaram-Pleijel’s asymptotic expansion
formula of the heat kernel stated in the introduction we can write

Xy
i¼1

e�ðl p
i
Þt @ ð4ptÞ�n=2ðap

0;n þ a
p
1;ntþ a

p
2;nt

2 þ � � �Þ; t ! 0þ; ð11Þ

where

a
p
0;n ¼

n

p

� �
volðMÞ; a

p
1;n ¼

1

6

n

p

� �
� n� 2

p� 1

� �� �ð
M

r dv;

a
p
2;n ¼

ð
M

ðEp
n r

2 þ F p
n j ~RRj

2 þ Gp
n jRj

2Þ dv;

and

Ep
n ¼ 1

72

n

p

� �
� 1

6

n� 2

p� 1

� �
þ 1

2

n� 4

p� 2

� �

F p
n ¼ � 1

180

n

p

� �
þ 1

2

n� 2

p� 1

� �
� 2

n� 4

p� 2

� �

Gp
n ¼ 1

180

n

p

� �
� 1

12

n� 2

p� 1

� �
þ 1

2

n� 4

p� 2

� �
;
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where dv and volðMÞ represent respectively the volume form and volume of M,
with respect to the induced Riemannian metric of Snþ1. We point out that these

coe‰cients were calculated in [8]. Moreover we will decree here that l
q

� �
¼ 0 if

l < 0 or q < 0 or l < q.

3 Proof of Theorems

We use the same notation for the geometric data of M as in the
previous section. We indicate with a subscript ‘‘0’’ the corresponding data for
M0.

Proof of Theorem 1: By hypothesis, the asymptotic expansion formula of M
and M0 coincide. Thus

volðMÞ ¼ volðM0Þ; ð12Þð
M

r dv ¼
ð
M0

r0 dv0 ð13Þ

and ð
M

ðEp
n r

2 þ F p
n j ~RRj

2 þ Gp
n jRj

2Þ dv ¼
ð
M0

ðEp
n r

2
0 þ F p

n j ~RR0j2 þ Gp
n jR0j2Þ dv0: ð14Þ

Therefore taking in account (5) and (13) we obtainð
M

½nðn� 1Þ þ n2H 2 � S� dv ¼
ð
M0

½nðn� 1Þ þ n2H 2
0 � S0� dv0

Since ð
M

dv ¼ volðMÞ ¼ volðM0Þ ¼
ð
M0

dv0

we conclude that ð
M

ðn2H 2 � SÞ dv ¼
ð
M0

ðn2H 2
0 � S0Þ dv0: ð15Þ

We first consider the case nb 4. Replacing the expressions of f3 and f4 in
(6) and (7) we obtain

jRj2 ¼ ðn2H 2 � SÞ2 þ 4ðn2H 2 � SÞ � 8nHs3 þ 2nðn� 1Þ þ 8s4; ð16Þ

j ~RRj2 ¼ 1

2
ðn2H 2 �SÞ2 þ 2ðn� 1Þðn2H 2 �SÞ� 2nHs3 þ nðn� 1Þ2 � 4s4: ð17Þ

Therefore, for p A f0; 1; 2g, we can write
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ð
M

ðEp
n r

2 þ F p
n j ~RRj

2 þ Gp
n jRj

2Þ dv

¼ Ep
n

ð
M

½ðn2H 2 � SÞ2 þ 2nðn� 1Þðn2H 2 � SÞ þ n2ðn� 1Þ2� dv

þ F p
n

ð
M

�
1

2
ðn2H 2 � SÞ2 þ 2ðn� 1Þðn2H 2 � SÞ

� 2nHs3 þ nðn� 1Þ2 � 4s4

�
dv

þ Gp
n

ð
M

½ðn2H 2 � SÞ2 þ 4ðn2H 2 � SÞ � 8nHs3 þ 2nðn� 1Þ þ 8s4� dv: ð18Þ

Analogously, we have a similar identity for M0. Therefore considering this
equations in equality (14) and using (15) we derive the system of equations

ap
nXþ b p

nYþ gpnZ ¼ 0; p ¼ 0; 1; 2;

where

ap
n ¼ Ep

n þ 1

2
F p
n þ Gp

n

� �
; bp

n ¼ �2nðF p
n þ 4Gp

n Þ; gpn ¼ �4ðF p
n � 2Gp

n Þ

and

X :¼
ð
M

ðn2H 2 � SÞ2 dv�
ð
M0

ðn2H 2
0 � S0Þ2 dv0;

Y :¼
ð
M

Hs3 dv�
ð
M0

H0s
0
3 dv0;

Z :¼
ð
M

s4 dv�
ð
M0

s0
4 dv0:

Now a straightforward calculation, using the expressions for Ep
n ;F

p
n and Gp

n ,
yields

det

a0
n b0

n g0
n

a1
n b1

n g1
n

a2
n b2

n g2
n

0
B@

1
CA0 0:

We conclude that X ¼ Y ¼ Z ¼ 0. Therefore,ð
M

ðn2H 2 � SÞ2 dv ¼
ð
M0

ðn2H 2
0 � S0Þ2 dv0; ð19Þ

ð
M

Hs3 dv ¼
ð
M0

H0s
0
3 dv0 and

ð
M

s4 dv ¼
ð
M0

s0
4 dv0:
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Since r0 is constant, we have n2H 2
0 � S0 constant. Then combining (15), (19)

and the Cauchy-Schwarz inequality, we obtain

jn2H 2
0 � S0j volðM0Þ ¼

ð
M

ðn2H 2 � SÞ dv

����
����

a

ð
M

ðn2H 2 � SÞ2 dv

� �1=2 ð
M

dv

� �1=2

¼ jn2H 2
0 � S0j volðM0Þ:

Thus, n2H 2 � S ¼ n2H 2
0 � S0, which is equivalent to r ¼ r0. This concludes the

proof of the theorem for nb 4.
In the case n ¼ 3, the calculations are entirely analogous. The similar

formula to (18) is given byð
M

ðEp
3 r

2 þ F
p

3 j ~RRj
2 þ G

p
3 jRj

2Þ dv

¼ E
p
3

ð
M

½ð9H 2 � SÞ2 � 12ð9H 2 � SÞ þ 36� dv

þ F
p

3

ð
M

1

2
ð9H 2 � SÞ2 þ 4ð9H 2 � SÞ � 6Hs3 þ 12

� �
dv

þ G
p
3

ð
M

½ð9H 2 � SÞ2 þ 4ð9H 2 � SÞ � 24Hs3 þ 12� dv; ð20Þ

whereas the corresponding system of equations is

a
p
3
~XXþ b

p
3
~YY ¼ 0; p ¼ 0; 1;

where

~XX :¼
ð
M

ð9H 2 � SÞ2 dv�
ð
M0

ð9H 2
0 � S0Þ2 dv0;

~YY :¼
ð
M

Hs3 dv�
ð
M0

H0s
0
3 dv0:

It is easily checked that

det
a0

3 b0
3

a1
3 b0

3

 !
0 0:

So, proceeding as in the case nb 4, we complete the proof. r

Proof of Theorem 3: It follows from Theorem 1 that 9H 2 � S ¼ 9H 2
0 � S0.

Since H is constant, S is also constant and we can make use the theorems of S.
Almeida, F. Brito [2] and S. Chang [5] to conclude that M is isoparametric and
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belongs to FH . In particular s3 is also constant. Considering (1) and (12) we
conclude

Hs3 ¼ H0s
0
3 : ð21Þ

We now analyze separatedly three cases.

Case 1) M0 is a Cartan hypersurface.

It is known that S0 ¼ 6 þ 9H 2
0 and s0

3 ¼ �3H0 (see e.g. [4]). Thus, using (2)
we have S ¼ 6 þ 9H 2 and, by E. Cartan [4], M is a Cartan hypersurface. By
using (21) we obtain �3H 2 ¼ Hs3 ¼ H0s

0
3 ¼ �3H 2

0 , that is, H ¼GH0. We now
use the same theorem of Cartan [4] to conclude that M ¼ M0.

Case 2) M0 is totally umbilical.

Since S0 ¼ 3H 2
0 and s0

3 ¼ H 3
0 , the expressions (2) and (21) yield

S ¼ 9H 2 � 6H 2
0 ; ð22Þ

Hs3 ¼ H 4
0 : ð23Þ

From case 1, it follows that M can not be a Cartan hypersurface, otherwise M0

is also a Cartan hypersurface. Since M A FH , M is either a HðrÞ-torus Mr
2;1ðHÞ

or totally umbilical. Suppose M ¼ Mr
2;1ðHÞ, for some r. Then the principal

curvatures of M are

k1 ¼ k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p

r
; k3 ¼ � rffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p ;

or the symmetric of these values for the opposite orientation. We can see now
that, independently of the orientation, H and S satisfy

H 2 ¼ 9r4 � 12r2 þ 4

9r2ð1 � r2Þ ; S ¼ 3r4 � 4r2 þ 2

r2ð1 � r2Þ ; ð24Þ

Hs3 ¼ 3r2 � 2

3r2
: ð25Þ

By using (22) and (24) we conclude that r2 ¼ 1=3ðH 2
0 þ 1Þ < 2=3. Hence (25)

guarantees Hs3 < 0. So, we have a contradiction with (23). Thus, M is
totally umbilical and S ¼ 3H 2 ¼ 9H 2 � 6H 2

0 . Therefore H ¼GH0 and simi-
larly M ¼ M0.

Case 3) M0 is a H0ðr0Þ-torus.

Let us suppose M0 ¼ Mr0

2;1ðH0Þ. From cases (1) and (2) M is neither totally
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umbilical nor Cartan hypersurface. Thus M is an HðrÞ-torus Mr
2;1ðHÞ. It

follows from (25) that

Hs3 ¼ 3r2 � 2

3r2
and H0s

0
3 ¼ 3r2

0 � 2

3r2
0

:

Since H is constant, (1) and (12) yield Hs3 ¼ H0s
0
3 , from where we conclude that

r ¼ r0. This finishes the proof of the theorem. r

Proof of Theorem 4: First we will consider H0 0 0. Using Theorem 1 for
nb 4 and H ¼ H0 we obtain that S ¼ S0,ð

M

s3 dv ¼
ð
M0

s0
3 dv0; ð26Þ

ð
M

s4 dv ¼
ð
M0

s0
4 dv0: ð27Þ

We use now formula (9) to obtain

f3 ¼ 3n

2
H0S0 �

n3

2
H 3

0 þ 3s3;

f 0
3 ¼ 3n

2
H0S0 �

n3

2
H 3

0 þ 3s0
3 :

From (26) and the fact that volðMÞ ¼ volðM0Þ we concludeð
M

f3 dv ¼
ð
M0

f 0
3 dv0: ð28Þ

Since H ¼ H0, S ¼ S0 and ‘h0 ¼ 0 (h0
ij are constants, i; j ¼ 1; . . . ; n) the re-

spective Simons formulae (10) for M and M0 read as follows

0 ¼ 1

2
DS0 ¼ j‘hj2 þ S0ðn� S0Þ � n2H 2

0 þ nH0 f3;

0 ¼ 1

2
DS0 ¼ S0ðn� S0Þ � n2H 2

0 þ nH0 f
0

3 ;

from where we conclude thatð
M

j‘hj2 ¼ nH0

ð
M

f3 dv�
ð
M0

f 0
3 dv0

� �
¼ 0:

When H0 ¼ 0 the Theorem 2 carries that S ¼ S0 and the Simons formulae for M
and M0 still imply that

Ð
M
j‘hj2 ¼ 0. Hence, whatever it is the value of H0, we

have ‘h ¼ 0, that is, hijk ¼ 0, for i; j; k ¼ 1; . . . ; n. Since M is a hypersurface, it
follows from formula (2.10) of [6] that

Xn
k¼1

hijkok ¼ dhij �
Xn
l¼1

hilojl �
Xn
l¼1

hljoil :
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Since hij ¼ kidij and hijk ¼ 0, i; j; k ¼ 1; . . . ; n, we have

0 ¼ dhij þ ðki � kjÞoij

and setting i ¼ j, we conclude dki ¼ dhii ¼ 0. Thus, ki is constant, i ¼ 1; . . . ; n,
and M is isoparametric.

On the other hand, the Theorem 1.5 of [1] due to H. Alencar and M. do
Carmo gives us that the totally umbilical hypersurfaces of Snþ1 as well as the
HðrÞ-torus Mr

n�1;1ðHÞ with r2 a ðn� 1Þ=n, are characterized by the constant
mean curvature and the square of the length of the second fundamental form.
Thus, since H ¼ H0 and S ¼ S0, we can apply the Alencar-do Carmo Theorem
to conclude (i).

Let us suppose now that n ¼ 4 to prove (ii). Since M is isoparametric, s3

and s4 are both constants. Joining the expressions (26), (27) and the fact that
volðMÞ ¼ volðM0Þ we have s3 ¼ s0

3 and s4 ¼ s0
4 . On the other hand,

s1 ¼ 4H ¼ 4H0 ¼ s0
1 and s2 ¼ 16H 2 � S

2
¼ 16H 2

0 � S0

2
¼ s0

2 :

Therefore the four symmetric functions for M and M0 agree and we conclude
that ki ¼ k0

i , for i ¼ 1; . . . ; 4, which conclude the proof of (ii) of Theorem 4.
r

Proof of Theorem 5: It follows from Theorem 1 that r ¼ r0. If M0 is
totally umbilical, then r0 ¼ nðn� 1ÞðH 2

0 þ 1Þ, whereas for M0 ¼ Mr0

n�1;1ðH0Þ we
have that

r0 ¼ ðn� 1Þðn� 2Þ
r2

0

:

It follows in both cases that r0 b nðn� 1Þ, i.e., the normalized scalar
curvature of M0, and hence of M, is constant and greater than or equal to 1.
This fact and the assumption that M has nonnegative sectional curvature imply,
from Theorem 2 of [11], that M is either totally umbilical or a product of two
totally umbilical constantly curved submanifolds. In the last case, M is a HðrÞ-
torus. Hence, H;S and s3 are constant, as well as ‘h ¼ 0. Therefore, Simons
formula (10) for M yields

0 ¼ Sðn� SÞ � n2H 2 þ nHf3:

The relations (8) and (9) for M, allow us to rewrite this formula as

0 ¼ Sðn� SÞ � n2H 2 þ 3

2
n2H 2S � 1

2
n4H 4 þ 3nHs3: ð29Þ

Since r ¼ r0, the Gauss formula implies S � n2H 2 ¼ S0 � n2H 2
0 ¼ c0. Then, we

have S ¼ c0 þ n2H 2 and the equality (29) becomes

0 ¼ ðn� c0Þc0 þ n2 n� 1 � 1

2
c0

� �
H 2 þ 3nHs3: ð30Þ
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Analogously, the Simons formula for M0 give us

0 ¼ ðn� c0Þc0 þ n2 n� 1 � 1

2
c0

� �
H 2

0 þ 3nH0s
0
3 : ð31Þ

On the other hand, it follows from Theorem 1 that
Ð
M
Hs3 dv ¼

Ð
M0

H0s
0
3 dv0

and with the same argument contained in its proof we conclude volðMÞ ¼
volðM0Þ. Since H and s3 are constant, we have that Hs3 ¼ H0s

0
3 . Therefore,

putting together the equalities (30) and (31) we obtain

n� 1 � 1

2
c0

� �
ðH 2 �H 2

0 Þ ¼ 0:

We will show that n� 1 � ð1=2Þc0 0 0. Indeed, otherwise r0 ¼ ðn� 1Þðn� 2Þ,
since

r0 ¼ nðn� 1Þ þ n2H 2 � S ¼ nðn� 1Þ � c0:

But if M0 is totally umbilical, then r0 ¼ nðn� 1ÞðH 2
0 þ 1Þ0 ðn� 1Þðn� 2Þ

while for M0 ¼ Mr0

n�1;1ðH0Þ, we have r0 ¼ ðn� 1Þðn� 2Þ=r2
0 0 ðn� 1Þðn� 2Þ for

0 < r0 < 1. Hence, n� 1 � ð1=2Þc0 0 0 and we can conclude that H ¼GH0.
Therefore, S ¼ S0. Now, we can make use of Alencar-do Carmo’s Theorem
mentioned above to finish the proof of theorem. r
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