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ISOSPECTRAL HYPERSURFACES IN EUCLIDEAN SPHERES
Jost N. B. BaRrRBOSA

Abstract

The aim of this work is to present a classification of some compact hypersurfaces
M" of a unit sphere S"*! provided the spectra of the Laplacian of p-forms of M",
which we denote by Spec”’(M), is equal to the spectra Spec”(My), of a given hy-
persurface M.

1 Introduction

Let M be a compact Riemannian manifold without boundary of dimension
n. We will denote the spectrum of the Laplacian of p-forms in M by

Spec’ (M) :={0<if <M <---1+w}, p=0,1,...,n

One hard problem in Riemannian Geometry is to decide whether two isospectral
Riemannian manifolds are isometric. The existence of flat tori which are iso-
spectral but are not isometric (see [3]) is a counterexample to the validity in
general of a positive answer to this question. The principal ingredient used to
deal with this problem is the asymptotic expansion formula of the heat kernel due
to Minakshisundaram-Pleijel (see [3] or [8]) which asserts

67%‘”)[ ~ (477:[)7n/2(a5,n + a‘f,nt + ag,ntz +-- ')7 L — 0+’
i=1

where af, are geometric constants depending on M.

However, if we consider an isometric immersion of M into the Euclidean
sphere S”*! with some geometric properties, this problem comes less dificult.
For instance, Q. Ding [7] proved that if M is a closed, orientable minimal
hypersurface of $* and Spec” (M) = Spec” (M), for a given p € {0,1,2,3}, where
M, is the totally geodesic sphere, or the Clifford torus S'(y/1/3) x S?(1/2/3),
or the Cartan minimal hypersurface, then M is isometric to My. On the other
hand, J. Wang [10] had shown that if M is a closed, orientable hypersurface in S*
with constant mean curvature H, My is an isoparametric hypersurface in S* with
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the same mean curvature H and Spec”(M) = Spec?(My), Vp € {0,1}, then M is
isometric to My.

We will denote by k;, i =1,...,n, the principal curvatures of an immersed
hypersurface M < S”*!. In that way, the symmetric functions of k; are defined
by

with m =1,... n. The square of the length of the second fundamental form is
given by

S = ikf.
i=1

Finally, dv stands for the element of volume of M.
Now, we are able to state the main theorem of this work:

Tueorem 1. Let M, My — S™', n > 3, be closed hypersurfaces of ™' with
mean curvatures H and Hy, and scalar curvatures p and p, respectively. We
require that one of the curvatures H and Hy is nonnull and p, is constant.
Suppose in addition that

(i) Spec?(M) = Spec?(My), Vpe{0,1}, if n=3;

(ii) Spec” (M) = Spec”(Mp), Vp € {0,1,2}, if n > 4.

Then p = py, i.e., M has also the same constant scalar curvature as My. Moreover
the following integral equalities hold.

J HJ3dU=J H()O'gdvo, if n>3,
M M,

J 04dv:J o) dvg, if n=4, (1)
M Mo

where ¢ and dvy denote the values of a,, and dv correspondent to My, respectively.
In particular, we have

n’H? — S = n*H} — Sy, (2)
where Sy is the square of the length of the second fundamental form of M.

A consequence of our calculations is the next result about the case
H = Hy = 0, whose proof follows closely techniques presented before by Q. Ding
in his paper [7].

THEOREM 2. Let M, My — S"*', n >3, be closed minimal hypersurfaces of
S"™ whose scalar curvatures are p and p,, respectively, with p, constant. Suppose
that
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(i) Spec?(M) = Spec? (M), for some pe{0,1,2,3}, if n=3;
(ii) Spec?(M) = Spec?(My), Vp e {0,1}, if n > 4.
Then p = p,. Moreover, for n >4, we have

J o4 dv = J 0'2 dvy.
M My

Given re (0,1) and me{l,...,n—1} we will denote by M, (H), the
hypersurface of S”*! with constant mean curvature H, obtained by considering
the standard immersions S”"(r) ¢ R""! §"(v/1 —r2) = R™! of spheres with
radius r and V1 — r? and dimensions n — m and m, respectively, and taking the

product immersion
S"M(r) x S™(V1 = r2) < R"" 5 R

Thus we have that M (H) is contained in S"*! and has principal curvatures

n—m,m . ¢
ki, i=1,...,n, and mean curvature, respectively, given by
V1—r2 r
ki = =kpm= P kn7m+1="'=kn=—7m,
and
gotm- nr?
V1 —r2

or the negative of these values when we choose the opposite orientation. The
hypersurface M_, . (H) is usually known as H(r)-torus or generalized Clifford
Totus. '

Let Zy be the set consisting of isoparametric hypersurfaces in S* with
constant mean curvature H. E. Cartan proved in [5] that if M € #y then M is
totally umbilical, or a H(r)-torus M3 , ,(H), or a Cartan hypersurface (that is,
the isoparametric hypersurface obtained from the Cartan minimal hypersurface).
Using Theorem 1 we will show that the assumption H = Hj is not necessary
in the theorem proved by J. Wang, above mentioned. More precisely, we will
prove the following result:

THEOREM 3. Let M — S* be a closed and orientable hypersurface with
constant mean curvature in S* and My e Fy,. If Spec’ (M) = Spec”(M,), for
ped0,1}, then H= Hy and M is isometric to M.

For dimension n >4, we will derive also from Theorem 1 the following
result:

TueOREM 4. Let M — S™', n >4, be a closed and orientable hypersurface
in S with the same constant mean curvature Hy of an isoparametric hypersurface
My in S™'. If Spec”(M) = Spec”(M,), Vpe{0,1,2}, then M is also iso-
parametric. Moreover,
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(i) if Mo is either totally umbilical or the Ho(r)-torus M, | (H,), with
1> < (n—1)/n, then M = M,.
(i) When n =4 the principal curvatures of M and My coincide.

Finally, we will prove the following theorem:

THEOREM 5. Let M — S™' a closed hypersurface of S"+' with nonnegative
sectional curvature and My — S™' a totally umbilical hypersurface or a Hy(ro)-
torus M, |(Ho), with ro < (n—2)/n. Suppose that

(i) Spec”(M) = Spec? (M), Vp e {0,1}, if n=3;

(i) Spec” (M) = Spec”(My), ¥p € {0,1,2}, if n > 4.

Then M is isometric to M.

2 Preliminaries

Let M < S™! be a closed hypersurface with mean curvature H. Choose
a local orthonormal frame field {e,...,¢,} and let {w,...,w,} be the corre-
sponding dual frame. We consider the second fundamental form

n
h = Z hg-,wia)j.
i,j=1

Let R and R be respectively the curvature and Ricci curvature tensors of M

and denote by Ry and Rij, i,j,k,l=1,... n, their respective components with
respect to the above frame. If we choose {ei,...,e,} such that h; = k;d;, then
1
H=- ; ki,
Rijr = (1 + kik;) (Gixdjt — Sudjc), (3)
Ry = [(n— 1) + nHk; — kikj)6;. (4)

Let p and S be, respectively, the scalar curvature of M and the square of the
length of the second fundamental form 4. The Gauss formula yields

p=nn—1)+n*H>—S (5)
and taking into account (3) and (4) we have
|R|> = 28 — 2fy 4+ 4n*H? — 4S8 + 2n(n — 1), (6)
|R|> = n®H*S + fy 4+ n(n—1)* = 2nHf3
+2n%(n— 1)H? = 2(n - 1)S, (7)



218 JOSE N. B. BARBOSA

where

n

S =Y K"

i1
The expressions of f,, can be calculated using the formulas (see e.g. [9], p. 101)
Ion = fn101 + fn202 — -+ (=1)" i1 4+ (=1)"ma,, =0, for m <n,
S — fmoror + -+ (=1)"fpuno, =0,  for m > n.
When n =3 we get

9 27
f3= EHS—7H3+303,
1 2 81 4

and for n >4,

o3
fi= 2nHS—7H3+3037
| 2072 nt o4
fa =58P+ HS — = H* + dnHos — 4oy, 9)

If H is constant, the Simons formula for M is given by
1
A8 = \Vh|* + S(n— S) — n®H?* + nHf;. (10)

Since M is compact, using Minakshisundaram-Pleijel’s asymptotic expansion
formula of the heat kernel stated in the introduction we can write

o0
Ze 47'[[ n/z(ag,l1+af,nt+a§,nt2+'“)) t_>0+’ (11)
i=1
where
ay <p> VO( )a ay, 6 p p—l Mp "
@b, = | (Eip*+ F{IR] + GJIRI) do
and

_l n—2 +1 n—4
p—1 p—2

p_ L (m 1 n—2 B n—4

b 18 (p>+2 p—1 2 p—2
1 n 1 (n—2 1/n-4

P — _

G =1g p) 1( —1)+ (p 2)
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where dv and vol(M) represent respectively the volume form and volume of M,
with respect to the induced Riemannian metric of S"*!.  We point out that these
coefficients were calculated in [8]. Moreover we will decree here that (é) =0 if
I<0org<Oorl<yg.

3 Proof of Theorems

We use the same notation for the geometric data of M as in the
previous section. We indicate with a subscript “0” the corresponding data for
M.

Proof of Theorem 1: By hypothesis, the asymptotic expansion formula of M
and M, coincide. Thus

vol(M) = vol(My), (12)

J pdv:J po dog (13)
M M,

and
jM<E,fp2 + FIIRP + GI|R?) dv = jM (EZpZ + F7\Rol> + GZ|R[2) dup. (14)
0

Therefore taking in account (5) and (13) we obtain

J [n(n — 1) +n*H?* — 8] dv:J [n(n — 1) +n*HE — So] dvo
M My
Since

J dv = vol(M) = vol(My) = J duvg
M My
we conclude that
J (n*H* - 8) dv = J (n*Hg — So) dup. (15)
M My
We first consider the case n > 4. Replacing the expressions of f3 and f4 in
(6) and (7) we obtain
IR|> = (n®H*— S)* +4(n*H* — S) — 8nHos + 2n(n — 1) + 84,  (16)

IR]> == (n*H*—S)* +2(n—1)(n*H?> = S) — 2nHos +n(n— 1)* —4ay.  (17)

N —

Therefore, for p € {0,1,2}, we can write
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| o+ pp1Re < Gy ao

= E”J [(R*H? = 8)* 4+ 2n(n — 1)(n®H* = S) + n*(n— 1)*] dv
M

n

+FP JM B(nsz — 82 42(n—1)(n*H* - S)

— 2nHos + n(n —1)* — 4oy | dv

+ G{:J [(PH? — S)? + 4(n*H? — S) — 8nHos + 2n(n — 1) + 8a4] dv.  (18)
M

Analogously, we have a similar identity for M,. Therefore considering this
equations in equality (14) and using (15) we derive the system of equations

alX +pIY +9PZ =0, p=0,1,2,

where

1
o = (E,i’ +5F+ G,f), BY = —2n(F} +4Gl), 7l = —4(F} - 2G))

2 n
and

X:=| (W*H?>-5)dv— J (n*H§ — So)* duo,
M My

Y = H0'3 dU—J H()O'g dU(),
M M,

7 = g4 dU—J 0'2 dUO.
M M,

Now a straightforward calculation, using the expressions for E?, F? and GZ,
yields

0
o0 By v
det| o! p Hl 0.
2
o0 By v

We conclude that X =Y =Z = 0. Therefore,

J (n*H? — S)? dvzj (n*HZ — Sp)” duy, (19)
M My

J HO'3 dv = J HQO'g dU() and J g4 dv = J 0'2 dl)().
M My M My
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Since p, is constant, we have n*HZ — S, constant. Then combining (15), (19)
and the Cauchy-Schwarz inequality, we obtain

W HZ — So| vol(Mp) = U (H? — S) dv
M

<[ -] o

= [n*H — S| vol(My).

Thus, n?H? — S = n*HJ — S,, which is equivalent to p = p,. This concludes the
proof of the theorem for n > 4.

In the case n =3, the calculations are entirely analogous. The similar
formula to (18) is given by

| o+ PRE < GtiR) ao
= E} JM[(9H2 —8)2 —12(9H? — 8) + 36] dv

1
+ F3PJ {5 (OH? — S)? +4(9H> — S) — 6Hos + 12| dv

M

+ Gg’J [(OH? — S)* + 4(9H?* — S) — 24H 3 + 12] dv, (20)
M

whereas the corresponding system of equations is
BX+/Y =0, p=0,1,

where

X := J (9H? — §)* dv — J (9H; — So)* duo,
M My

Y = J HO'3 dv — J H()O'g dU().
M M,

0 10
det “i ﬂf) # 0.
) B3

So, proceeding as in the case n >4, we complete the proof. O

It is easily checked that

Proof of Theorem 3: It follows from Theorem 1 that 9H? — S = 9H? — So.
Since H is constant, S is also constant and we can make use the theorems of S.
Almeida, F. Brito [2] and S. Chang [5] to conclude that M is isoparametric and
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belongs to . In particular o3 is also constant. Considering (1) and (12) we
conclude
HO'3 =H00'(3). (21)

We now analyze separatedly three cases.
Case 1) M, is a Cartan hypersurface.

It is known that Sy = 6 + 9HZ and o) = —3H, (see e.g. [4]). Thus, using (2)
we have S =6+ 9H? and, by E. Cartan [4], M is a Cartan hypersurface. By
using (21) we obtain —3H? = Hoy = Hyo) = —3H{, that is, H = +H),. We now
use the same theorem of Cartan [4] to conclude that M = M.

Case 2) M, is totally umbilical.

Since Sy =3H7 and o) = Hg, the expressions (2) and (21) yield
S =9H? - 6H{, (22)
Hosy = Hj. (23)

From case 1, it follows that M can not be a Cartan hypersurface, otherwise M
is also a Cartan hypersurface. Since M € Fy, M is either a H(r)-torus M} (H)
or totally umbilical. Suppose M = Mi](H), for some r. Then the principal
curvatures of M are
b — k V1—r2 i ¥
1=K = y K= ——,
r V1—r2

or the symmetric of these values for the opposite orientation. We can see now
that, independently of the orientation, H and S satisfy

2 _ 9t —127 14 3t —4r 42 (24)
9r2(1 —r2) r2(1—r2) 7
3r2 -2

By using (22) and (24) we conclude that r* = 1/3(H¢ +1) < 2/3. Hence (25)
guarantees Ho3 < 0. So, we have a contradiction with (23). Thus, M is
totally umbilical and S =3H? =9H? — 6H}. Therefore H =+H, and simi-
larly M = M,.

Case 3) M, is a Hy(rp)-torus.

Let us suppose My = M,’ (H,). From cases (1) and (2) M is neither totally
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umbilical nor Cartan hypersurface. Thus M is an H(r)-torus Mj (H). It
follows from (25) that '

322

3}’3—2
HU}—T .

2
3ry

and Hyo) =

Since H is constant, (1) and (12) yield Hosy = Hoo', from where we conclude that
r=ro. This finishes the proof of the theorem. O

Proof of Theorem 4. First we will consider Hy # 0. Using Theorem 1 for
n>4 and H = Hy we obtain that S =Sy,

J o3 dv = J a3 dvy, (26)
M Mo
J a4 dUZJ ) dug. (27)
M Mo
We use now formula (9) to obtain
. 3n n
= 7H050 - 71'13 + 303,
3 3
= 7”H030 - %HS + 300
From (26) and the fact that vol(M) = vol(M,) we conclude
J fido= J 17 duy. (28)
M My

Since H=Hy, S=Sy and Vhy =0 (/12- are constants, i,j=1,...,n) the re-
spective Simons formulae (10) for M and M, read as follows

1
0=7AS8) = \VA|* + So(n — So) — n*HZ + nHof3,

1
0= AS) = So(n — So) - n?Hg +nHofy,

from where we conclude that

JM Vh| = nH, (JMf3 dv — JMO 70 dvo> 0.

When Hy = 0 the Theorem 2 carries that S = Sy and the Simons formulae for M
and M still imply that [,, |Vh|2 = 0. Hence, whatever it is the value of Hj, we
have Vi =0, that is, i =0, for i, j,k=1,...,n. Since M is a hypersurface, it
follows from formula (2.10) of [6] that

n n n
Zhg/kwk = d/’l,/ — Zh,‘[&)j} — Zhljw,/
k=1 =1 =1
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Since hj = kidy and hy =0, i,j,k=1,...,n, we have
0 =dhy + (ki — kj) ;s

and setting i = j, we conclude dk; = dh; = 0. Thus, k; is constant, i =1,...,n,
and M is isoparametric.

On the other hand, the Theorem 1.5 of [1] due to H. Alencar and M. do
Carmo gives us that the totally umbilical hypersurfaces of S"*! as well as the
H(r)-torus M | (H) with r?> < (n—1)/n, are characterized by the constant
mean curvature and the square of the length of the second fundamental form.
Thus, since H = Hy and S = S, we can apply the Alencar-do Carmo Theorem
to conclude (i).

Let us suppose now that n =4 to prove (ii). Since M is isoparametric, o3
and o4 are both constants. Joining the expressions (26), (27) and the fact that
vol(M) = vol(M,) we have o3 =07 and o4 =g). On the other hand,

16H> —S 16H — Sy
3 = 3 = 0,.

0'1:4H:4H0:O'? and gy =

Therefore the four symmetric functions for M and M, agree and we conclude
that k; = k?, for i=1,...,4, which conclude the proof of (ii) of Theorem 4.
Ul

Proof of Theorem 5: 1t follows from Theorem 1 that p=p, If Mj is
totally umbilical, then p, = n(n — 1)(HZ + 1), whereas for My = M, | (Ho) we
have that

(n—1)(n-2)
Po = r(% :

It follows in both cases that p, >n(n—1), ie., the normalized scalar
curvature of My, and hence of M, is constant and greater than or equal to 1.
This fact and the assumption that M has nonnegative sectional curvature imply,
from Theorem 2 of [11], that M is either totally umbilical or a product of two
totally umbilical constantly curved submanifolds. In the last case, M is a H(r)-
torus. Hence, H,S and o3 are constant, as well as VA = 0. Therefore, Simons
formula (10) for M yields

0=S(n—=S)—n*H*+ nHf.

The relations (8) and (9) for M, allow us to rewrite this formula as
1
0=S(n—S)—n*H>+ %nszS - 5n“H“ + 3nHas. (29)

Since p = p,, the Gauss formula implies S — n>H? = Sy — n*H} = ¢p. Then, we
have S = co+n’H? and the equality (29) becomes

1
0:(n—C())C()-I-nz(I’l—I—ECO>H2+3I1HO'3. (30)
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Analogously, the Simons formula for M, give us
—(_ of, 1 2 0
0=m—co)co+n-{n—1 5 €0 Hy + 3nHyo3. (31)

On the other hand, it follows from Theorem 1 that [, Has dv= [, Hoo3 duo
and with the same argument contained in its proof we conclude vol(M) =
vol(M,). Since H and o3 are constant, we have that Hoy = Hyo). Therefore,
putting together the equalities (30) and (31) we obtain

(n 1 %co)(H2 — H}) =0.

We will show that n—1—(1/2)¢p #0. Indeed, otherwise p, = (n— 1)(n—2),
since

po=n(n—1)+n*H> —S=n(n—1) - c.

But if M, is totally umbilical, then py=n(n—1)(HZ +1)# (n—1)(n—2)
while for My = M, |(Hp), we have py = (n—1)(n—2)/r3 # (n—1)(n —2) for
0<ry<1. Hence, n—1—(1/2)co #0 and we can conclude that H = +H,.
Therefore, S =S). Now, we can make use of Alencar-do Carmo’s Theorem
mentioned above to finish the proof of theorem. O
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