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PERIODICITY IN IMPULSIVE PREDATOR-PREY SYSTEM WITH
HOLLING III FUNCTIONAL RESPONSE

DaN YE AND MENG Fant

Abstract

With the help of the continuation theorem in coincidence degree theory, we es-
tablish the existence of positive periodic solutions of impulsive predator-prey system with
Holling III functional response.

1 Introduction

Recently, many authors devoted themselves to investigate the dynamics of
nonautomous predator-prey system with periodic parameters and achieved many
results, see for example [3-6, 9, 11, 17, 19]. As we all know, the predator-prey
systems with Holling III functional response possess an important role in the
predator-prey theory. Some authors have shown great interest in such systems
with periodic parameters. For example, Jia [9] has investigated predator-prey
model with Holling III functional response [8].

Y0 = 11 () (al(t) —an(Oni () - %m)

a 2
»a(t) = y2() <_a2(t) — ax(0)y2(1) + %) :

and derived sufficient conditions for the persistence and the existence of periodic
solutions.

In 2002, following the idea and the method of [6], Zhang [19] derives suf-
ficient criteria for the existence of positive periodic solution of the discrete analogue
of (1.1) governed by nonautomous difference equation with periodic parameters.

(1.1)

Key Words: Positive periodic solution, predator-prey system, Holling III functional response,
coincidence degree, impulse.

MR (2000) Subject Classification: 34K45, 34K13, 92D25.

*Supported by the National Natural Science Foundation of P. R. China (No. 10171010 and
10201005), the Key Project on Science and Technology of the Education Ministry of P. R. China (No.
Key 01061) and the Science Foundation of Jilin Province of P. R. China for Distinguished Young
Scholars.

f Corresponding author.

Received April 7, 2003.

189



190 DAN YE AND MENG FAN

However, almost all the work on the predator-prey systems with Holling III
functional response neglect the practical effects of some important impulsive
factors existing in the real world. The birth of many populations is not con-
tinuous but happens at some regular time, for example, the birth of many wildlife
is secasonal. The birth of population at those time can be viewed as impulse to
the population. Another typical impulse is the harvest and stock of the pop-
ulation explored by human beings. If one incorporate such impulsive factors
into the mathematical models modelling the population interactions, those models
must be impulsive and governed by impulsive deferential equations [1, 2, 10, 12—
16, 18].

The principal aim of this paper is to incorporate impulsive factors into
system (1.1) and establish sufficient criteria for the existence of positive periodic
solution of the following system

() = J’l(f)(dl(f) —an () y1(1) 6112(l)t;/)>7 t# i, k=1,2...

2400 = 320 (=) (0200 + F2O

Ayl(l‘) = yi(l+> - yi(t_) = (bik +hik)yi(t)7 t =1, yl(o) = Yio, I = 1721

where by, hy stand for birth rate and harvesting (stocking) rate of y; at time 1,
respectively; d(z) is the death rate of the prey and d,(¢) is that of the predator.
Other parameters have the same meaning as that in (1.1). When Ay >0, it
stands for stocking, while /; < 0 means harvesting. y;(z) and y;(z;) represent
the right and the left limit of y; at f;, respectively. In this paper, it is assumed
that y; is left-continuous at 7.

Assume that

(A1) b =0, by +hy >0, and di(t),a;(t) (i=1,2;j=1,2,3.) are non-
negative continuous w-periodic functions

(A42) there exists a positive integer ¢, such that ;= tiiw, Digkiq =
bik, hi+q) = hi.  Without loss of generality, we also assume that if 7 # 0 and
[0,0] Nty =t1,t2- -y, then it follows that g =m

It is trivial to show that the solutions of (1.2) with positive initial value
remain positive too. So, we can make the change of variables

i) =", i=1.2,

), t#E e, k=1,2... (12)

and then (1.2) is reformulated as

an ([)e,¥7(t)+.Y] (1)

"(0) = —dy (1) — ary (1)e™ ) — (£, k=12...
xi (1) 1(8) —an (1) a13([) 4 e2x() ? 7 I ’
, a t 2Y1
x2(t):—d2(t)—a21(t) +Clz(2())62’” l‘?étk,kzl,z... (13)
13

AX,’(I) = Xi(l+) — X,’(li) = lIl( +b,'k +hik)7 t=t, xi(O) = ln{yio} > 0, = 1,2
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Lemma 1.1. If y(¢) = (31(2), y2(2)) is a positive w-periodic solution of (1.2),
then x;(t) = In{y;(¢)} is an w-periodic solutions of (1.3), and vice versa.

DerFINITION 1.1.  The mapping x : [0,w] — R? is called a solution of system
(1.3) in [0, ], if

(i) x(¢) is partly continuous, # N[0, w] is discontinuous point of the first kind
of x(#) and left continuous.

(i) x(f) satisfies system (1.3) on [0, w].

DEerFINITION 1.2.  The mapping x : R — R? is called an w-periodic solution of
system (1.3), if

(i) x(¢) is a solution of (1.3).

(i) x(#) satisfies x(t+w —0) =x(¢t—0), teR.

Obviously, if x(¢) is a solution of (1.3) satisfying x(0) = x(w) in [0, w|, then
from the periodicity of the vector field of (1.3), we know that the function
' x(t = jo),  teljo,(j+ Dol
x*(1) = s .
x*(¢) is left continuous at #.
is an w-periodic solution of (1.3). So, in order to achieve the existence of

periodic solution to (1.3), it is sufficient to find the solutions of (1.3) in [0, w)
satisfying x(0) = x(w). That is to find solutions of the following system in [0, w]

) alz([)exz(t)ﬂ](t)

X (6) = —dy (1) — ayy (H)e™) -2
1(1) 1(1) —an (1) 24(0) £ o0

t#t, k=1,2...

azz(t)ezx‘(’)
al (1) + e’

AX,‘(Z‘) = X,‘(l+) — X,‘(lﬁ) = ln(l + by —l—h,‘k), t=ty, x,«(O) = x,«(w) >0,i=1,2.

xh(t) = —do (1) — an (1)e™ + £, k=12, (1.4)

For simplicity and convenience in the following discussion, throughout this
paper, we will use the notation

where f is w-periodic.

2 Existence of periodic solution

In order to obtain the existence of positive periodic solution of (1.2), for
the readers’ convenience, we shall present below a few of concepts and results
from [7], which will be basic for this section.

Let X,Z be normed vector spaces, L:Dom L cX — Z be a linear
mapping, N : X — Z be a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero if dim Ker L = codimIm L < +o0 and Im L
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is closed in Z. If L is a Fredholm mapping of index zero and there exist
continuous projectors P: X — X and Q:Z — Z such that Im P = Ker L,
Im L = Ker Q = Im(I — Q), it follows that L| Dom LNKer P: (I — P)X — Im L
is invertible. We denote the inverse of that map by Kp. If Q is an open
bounded subset of X, the mapping N will be called L-compact on Q if QN (Q) is

bounded and Kp(I — Q)N : Q — X is compact. Since Im Q is isomorphic to
Ker L, there exists an isomorphism J : Im Q — Ker L.

LemMa 2.1 (Continuation Theorem). Let L be a Fredholm mapping of index
zero and N be L-compact on Q. Suppose

(@) For each 1€ (0,1), every solution x of Lx = ANx is such that x ¢ 0Q;

(b) ONx # 0 for each x e dQNKer L and

deg{JON,QNKer L,0} # 0.

Then the operator equation Lx = Nx has at least one solution lying in Dom LNQ.

Let

C[O,a); ll,lz,...l‘m]

x(t) is continuous with respect to ¢ # f1,..., ty;
={x:[0,0] = R*|x(t+0) and x(z—0) exist at 1,...,ty;
x(tp) =x(tx = 0), k=1,2,....,m

Define

=

Z In(1 + by + hi)
k=1 7.
)

Now we are ready to state and prove the main results of the present paper.

THEOREM 2.1. Assume that (A1)(A2) hold. Moreover, if ANy >0 and
Ay > (ap/aly)ef e where

A q
H, = ln{_—l} —|—2Zln(1 + b1k + M),
k=1

apl

— + A q
H, = h{b} +2 <Z In(1 + bo + har) + c‘zzzw> .

@21 =1

Then system (1.2) has at least one positive w-periodic solution.



PERIODICITY IN IMPULSIVE PREDATOR-PREY SYSTEM 193

Proof. Let
X ={x=(x1,x) €Cl0,w;t,...1,] | x(w) = x(0)}, Z=X x R™.
Define
Ixllc = sup [x()l, zllz = lIxllc +lI¥ll, xeX,yeR¥,

tel0,w
where |-| and || - || are norms of R? and R/, respectively. Then it is trivial to
show that X, Z are both Banach spaces when they are endowed with the above
norm || - || and || -||,, respectively.

Let
dom L ¢ X = {x = (x1,x2)" € Cl0,w;11,...1,]] x(w) = x(0)},
L:dom L — Z, Lx=x,Ax(t1),...,Ax(tm)),
N:X—Z,

Cllz(l)ex 2()+x1(2)

—di (1) — Hea) _ 2207
1( ) all( ) Cl13(l) 62‘Cl(t)

Nx = ,
2X|

—ds (1) — ax (1)e™) + %

<1n(1+b11+h11)> (1n(1+b1q+h1q))
In(1 4 by +ho1) )77 \Un(1 + by + hay)

Then
Ker L={x:x=AeR> te|0,wl},
&) q
Im L = z:(f,C1-~Cq)eZ:J f(s)ds+> Ci=0
0 k=1

and
dimKer L =2 = codimIm L.

Since Im L is closed in Z, L is a Fredholm mapping of index zero. Let
1

@ q
0z=0(f,C1---C) = <5“0 f(s)ds+> Ci ,0.-.o>.
k=1

It is easy to show that P,Q are continuous projectors such that
ImP=Ker L, ImL=KerQ=Im(Il- Q).

Furthermore, the generalized inverse (to L) Kp:Im L — Dom LNKer P exists.
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Now, we derive the explicit expression for K,. Letz= (f,Ci---C,)elm L,
then x e X satisfies

X'(t)=f(t), t#t,k=12...

AXx(t) |t:tk = (k.
Then

x() = Jw fs) ds+ 3" Ce + x(0). 2.1)

0 >

Note that x(¢) € Ker P, ie., 1/w [’ x(s) ds=0. From (2.1), we get

Jw J’ 7(s) dsdr + J S° G dr + wx(0) =0,

0 Jo 0 =i
and hence
[ 1@ t q
x(1) = J f(s)ds+> Cr— —J J f(s) dsdt =" Cp dt, (2.2)
0 >l @Jo Jo =1
that is
[0} [ q
KPZ_J f(s) ds+ZCk——J Jf(s) dsdt = " Cy dt (2.3)
0 >0 0 =1
Thus
1 @ a (s)ev2(3>+xl (S)
1 . B 1 (s) 12
w (Jo [ di(s) —anls)e azy(s) + e s
q
+ 3 In(1+ by + hlk)>
ONx = ! - 0,...0 |,
1 @ , an(s)e=1
— —d _ x2(s)
P (L [ 5 (s) — an(s)e +a123(s) o | &
q
+ In(1+ by + th)>
k=1
Kp(I — Q)Nx

(s) apy(s)e ()0 ()

q
—t 1\ d In(1 + by + hix
aty(s) + e S+ Z n(l+ bu + hue)

>

| [—dl (5) - an(s)e™

2x1(s) q
ds + Z ln(l + b + hzk)

>1

JI [_dz(s) — ay(s)e™") + an(s)e

)+
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(5)+31(5)
Cd(s) ) a(s)e™
dis) - an(s)e a%(s) + ()

t

|

1

w

J~(u
0

q
dsdt + Y " In(1+ by + )
k=1

|

leJ’ —dy(s) —a (s)e”(s)—kM dsdz+§q:1n(1+b + o)

@)y Jo 2 21 a123(s)+ez-"1<3) - 2k T N2k
| t ! a (S)ex2(5>+xl(5)

S _Z _ _ xi(s) _ G12\0)C "7

<w 2) (” A e e |

q

+ Z In(1 + by + hik)
=

)

l—aﬁ(s) — ay(s)e™V +

w

|

_|_

2x1(s)

r 1 an(s)e
(53 e

q
In(1 + by + hzk)>
k=1
Obviously, ON and Kp(I — Q)N are continuous. It is not difficult to show that

Kp(I — Q)N(Q) is compact for any open bounded set Q < X. Moreover,
ON(Q) is bounded. Thus, N is L-compact on Q with any open bounded set
QcX.

Now we reach the position to search for an appropriate open, bounded
subset Q for the application of the continuation theorem. Corresponding to the
operator equation Lx = ANx, € (0,1), we have

o an(nen

ay (1) + e

x{(t)/lldl(t)an(t)ex‘ ], t;étk,k:I,Z...

(2.4)

, N . o Xz([) -
x5(1) = /1[ dy(1) — an()e™" + (1) + e

2X|(I>
an(t)e ], t# b, k=1,2...

Axi(t) = xi(t7) = xi(t7) = Aln(1 + by + hi), ¢ = tx, x:(0) = x;(w), i = 1,2.

Suppose that x € X is a solution of system (2.4) for a certain 1€ (0,1). In-
tegrating on both sides of (2.4) from 0 to w, we obtain
® X2 (1)+x1(2)
wi , @2(te _
Jo [an(t)e +—a123(t)+€2‘“(’) dt = No,
« 2)(1([)
w( __an(e™ |,
Jo [am(l)e (0 + 20 dt = No. (2.5)

It follows from (2.4) and (2.5) that
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[0) [0} ‘ el
JO X1 ()] dr < J {d1(1)+a11(,)€x1<r>+0122( )e }

q
——————| dt In(1+5 h
ajy(t) + e * Z n(l+buc + hue)

0 k=1
q
= 22111(1 + bix + hik),
k=1
w w [)62)«1(1) q
() dr < | |da( N 4 420 T g S 4y
J, sl = [ ooy e o =IO e S+ b
q
=2 > In(1 + by + ha) + @nw | (2.6)
k=1
Since x € X, there exist & € [0,w] such that
X,‘(éi) = n’[lOlIl] X,’(l), i=1,2. (27)
te[0,w

On the other hand, note that sup,.fy ., Xi(#) exist and there exist #; € [0, @] such
that '

xi(nf) = sup x;(1), i=1,2. (2.8)

tel0,w]

If n;, # t, then x;(n;") = x;i(n;) while if #; =, we have x;(]") = x;(¢}).
From (2.5) and (2.7), we obtain

w
Ao = J arn (0)e" ) dt = aywe™ ),
0
Ao > J |:a21(l)€x2(62) - azz(l)} dt = d21ex2(52) — dan,
0
and hence,
A A 7]
() < 1n{—'}, () < 1n{ﬂ}. (29)
ap ar

From (2.6) and (2.9), we obtain

w A q
xl(t) < Xl(fl) +J |x;(t)| dt < ll‘l{d—l} + 2211‘1(1 + b1k +h1k)) = Hj,
0 11

k=1

w A —
x2(1) < x2(&,) +J x5 (2)| dt < ln{ﬂ}
0 as
q
+2( > In(1 + ba + hax)) + @nw | = Ha. (2.10)
k=1
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On the other hand from (2.5) and (2.8)

w ¢ x2(2)+x1 (1)
J lall(t)e““(’)+‘“2<)e— dt > Mo,

0 a]23(t)
that is
ane® ) 4 <a—122)eH1+H2 > Ay,
ais
then
Al _ (%) eH1+H2
X1 (7]?—) >In ﬁlfl )
and hence
Al _(a_]22>eH1+H2 g
(2]
a
() = xi(nf) - JO (6 df > In e — 23 In(1 + by + i)
k=1
= Hj. (2.11)

Similarly, one can derive that

(&) n t 2H3
J lazl(l)e’”(”z) _ e
0

then

2H:
aye=-
227 + Az
) a123 + e2H
x2(1) = x2(113) —J [x{(¢)] dt = In =

q
-2 <Z ln(l + by + th) + 6722(,0) = Hy, (212)
k=1

which, together with (2.10) and (2.11), implies
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sup |x1 (1) < max{|H|,|Hs[} := M,

tel0,w]

sup |x2(?)] < max{|Ha|, |Ha|} := M>. (2.13)

tel0,w]
1/2
Ixlle < (M7 +M3)'"? =M

Clearly, M| and M, are independent of A.
Now consider the following system of algebraic equations

B dlz(l) X1+Xx2
A —ape™ — -1 =0
1 11 ﬂ<a13()+62x1

t 2x
Ay —@ye™ + <7§m( A >:0

ap (1) + e

(2.14)

where x = (x;,x))" € R? and ue[0,1] is a parameter. Using the similar
technique and the previous estimates, we get Hi < x; < Hi, Hy4 < x; < H»,

where
_ A _ A 7
H, ln{_l}, H; ln{z_ﬂm},
an @)
-— 2H
AN & 81‘71+1‘72 Li A

= aty 7 aty + e
H3 =In s H4 =In

ap @)

Take M| = max{|H|,|H3|}, M, = max{|H,|,|H,4|}, it is easy to know that M,
i =1,2 is independent of u such that

x|l < (M + 35)"/? = M. (2.15)

so M is independent of x. It is proved that ||x||o < M for every solution x =
(x1,x2) of (2.14). Now, we take M* > max{M, M} such that ||x(t +0)|| < M*.
Let Q:={x= (x1,x2) € X |||x]|c < M*}. Tt is clear that Lx # ANx for x € 0Q
and 1€ (0,1), thus Q verifies the requirement (a) in Lemma 2.1. When xe
0QNKer L =0QNR?, x is a constant vector in R? with ||x|| = M. Then from

(2.15)
_ (Z) X1+x2
Ay — oo | Z212VF
1 ape ( (l) +82‘C1
azz(t

ONx =
) 2x1

Dy —are? + | 5—~F——

2 21 al}([) +62’C'

(0---0),,, [ #0.  (216)
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Now let us consider homotopy /,(x) = uONx + (1 — u)Gx, p e [0,1], where

Ay —ape™

Gx = _ azg([)ezx‘ s (0 s 0)2 e (2.17)
Ny — X2 R A X
2 aie + Cl123([) + e2X|

We know that 0 ¢ /1,(0QNKer L) for ue€ (0,1) and noting that J = I, hence
deg(JON,QNKer L,0) = deg(G,QNKer L,0) # 0

by the property of homotopy invariance of topological degree. By now we have
proved that Q verifies all requirements of Lemma 2.1, then Lx = Nx has at least
one solution in Dom LNQ, ie., (1.4) has at least one w-periodic solution in

Dom LNQ, say x= (xj(1),x5())". Set y*= (yi(1), y3(t)" = (X, e,
then y* = (¥ (1), y;(1)) T is one positive w-periodic solution of system (1.2). The
proof is complete. O
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