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ON MODEL MUTATION FOR REDUCTIVE CARTAN GEOMETRIES

AND NON-EXISTENCE OF CARTAN SPACE FORMS

Antonio Lotta

Abstract

Reductive models ððg; hÞ;HÞ for Cartan geometries are showed to fall into two

classes, symmetric and non symmetric type, according to the existence or non existence

of a mutation g 0 ¼ hlm where the H-module m is an abelian subalgebra. Sasakian

structures are showed to be Cartan geometries having a model of non symmetric type

and other examples of models of this type are exhibited. Reductive models for which

no Cartan space forms exist are constructed. The phenomenon of non-existence of

Cartan space forms pertains to models of non symmetric type.

1 Introduction

The notion of Cartan geometry originates from Élie Cartan’s concept of
‘‘espace géneralisé’’. In Cartan’s approach, a geometric structure on a manifold
is regarded as a ‘‘deformation’’ of a standard model, which is always a homo-
geneous space. For example, a Riemannian manifold can be considered as a
deformation (a non-homogeneous version) of the ordinary flat Euclidean space.
So Cartan’s theory appears as a natural generalization of Klein’s Erlangen
program. From this point of view a new concept of curvature arises (more
general than the classic one), which measures how much the manifold under
consideration di¤ers from the standard model.

After Cartan, these ideas have been rigorously founded by C. Ehresmann [3]
and S. Kobayashi ([4], [5]), and developed further by several authors.

In his monograph [12], R. W. Sharpe investigated some general aspects
of Cartan geometries. One of the features of Sharpe’s treatment is that the
standard model of a Cartan geometry is not necessarily a homogeneous space
G=H, but more generally is given by the following data of local nature:

i) An infinitesimal e¤ective Klein pair ðg; hÞ;
ii) A Lie group H with Lie algebra h;
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iii) A representation Ad : H ! AutðgÞ, which extends the adjoint representa-
tion H ! AutðhÞ.

Let M be a real n-dimensional di¤erentiable manifold and assume that
n ¼ dimR g=h. Then, by definition, a Cartan geometry on M modeled on
ððg; hÞ;H;AdÞ is a pair ðF ;oÞ consisting of an H-principal bundle F and a
Cartan connection o : TF ! g on it. For more details we refer the reader to
section 2.

A relevant kind of Cartan geometries are the Cartan space forms. The
latter generalize the space forms of Riemannian geometry in a natural manner.
One of the most important results in [12] states that all Cartan space forms are
locally Klein geometries, up to model mutation (cf. Theorem 2.3). Mutation is
an alteration of the model which may change the curvature without losing infor-
mation about the original geometry. The precise definition of model mutation is
rehearsed in section 2.

Among Cartan geometries, the simplest are the reductive ones: these are
characterized by the existence of a decomposition

g ¼ hlm ð1Þ
of the Lie algebra g, such that AdðHÞm ¼ m. This condition implies that the h-
component of the Cartan connection o is a principal connection on F , and the
manifold M can be endowed in a natural way with a linear connection. Such
a linear connection depends on the choice of a reductive decomposition (1), see
Lemma 3.2. Actually, if the representation Adm : H ! GLðmÞ induced by Ad is
faithful, a Cartan geometry on M is equivalent to an AdmðHÞ-structure and a
linear connection on it (cf. [12], App. A or [1]).

About model mutation in the reductive case, the following result is given in
[12], p. 220 (see also [13], Remark 4.6):

Lemma. Let ðg; hÞ be a reductive model pair with group H. Write the H-
module decomposition as g ¼ hl p. Then, there is, up to isomorphism, a unique
mutant ðg 0; hÞ with g 0 ¼ hl p 0 and ½p 0; p 0� ¼ 0.

Hence, Sharpe’s conclusion is that ‘‘for a reductive Cartan geometry we
exclude nothing if we assume that ½p 0; p 0� ¼ 0. This allows us to completely
forget the large Lie algebra g and retain only the subalgebra h and the H-module
p’’.

In this paper we examine carefully this point about mutation of reductive
models. Namely, we show that there do exist reductive models for which the Lie
bracket p� p ! g is essential, i.e. they do not admit any mutation ðg 0; hÞ such
that ½p 0; p 0� ¼ 0. This is the content of section 4.

The reductive models having this feature will be called of non symmetric
type, while those for which Sharpe’s lemma is true will be called of symmetric
type. This terminology is motivated by Proposition 4.1.

As a relevant example of Cartan geometries having a model of non sym-
metric type, we discuss CR-integrable contact metric structures, which include

on model mutation for reductive cartan geometries 175



Sasakian structures. See Example 2 in §4. Moreover, we show that any com-
pact semisimple Lie algebra q naturally gives rise to a model of non symmetric
type by choosing as H any Lie subgroup of AutðqÞ (Theorem 4.4).

In section 5 we prove that a model of non symmetric type is characterized by
the property that for any torsion free Cartan geometry modeled on it, the linear
connection induced on the base manifold M by any reductive decomposition
g ¼ hlm has non vanishing torsion.

In the last paper of the paper we show that there are reductive models for
which no Cartan space forms exist and that this can happen in any dimension
nb 3 (cf. Corollaries 6.3 and 6.4).

This phenomenon is typical of models of non symmetric type since we prove
in Theorem 6.1 that a necessary condition for a model to be of symmetric type is
that there exists a Cartan space form modeled on it. In Theorem 6.2, we prove
that for a class of first-order models, this condition is also su‰cient.

2 Cartan geometries

In this section we collect the basic terminology about Cartan geometries
following [12]. For this material, see also [13], [8] or [1].

An infinitesimal Klein pair is a pair ðg; hÞ consisting of a finite-dimensional
Lie algebra g and a subalgebra h of g. ðg; hÞ is called e¤ective if h does not
contain any non-trivial ideal of g.

A model for a Cartan geometry (cf. [12], p. 174), consists of a triple ððg; hÞ;
H;AdÞ, denoted by xAd

H ðg; hÞ, where ðg; hÞ is an infinitesimal e¤ective Klein pair
ðg; hÞ, H is a Lie group with Lie algebra h and Ad : H ! AutðgÞ is a smooth
representation extending the adjoint representation H ! AutðhÞ.

The group H is called the structure group of the model. When the rep-
resentation Ad is faithful, xAd

H ðg; hÞ is called e¤ective. The dimension of xAd
H ðg; hÞ

is dimR g=h.
To each homogeneous space G=H there is associated in a canonical way a

model for a Cartan geometry with g ¼ LieðGÞ, h ¼ LieðHÞ; Ad : H ! AutðgÞ is
the restriction to H of the adjoint representation of G.

Fix a model for a Cartan geometry xAd
H ðg; hÞ, and let M be a real di¤er-

entiable manifold such that dimR M ¼ dimR g=h.

A Cartan geometry on M modeled on xAd
H ðg; hÞ is a pair ðF ;oÞ consisting of

an H-principal bundle F and a Cartan connection o on it with model xAd
H ðg; hÞ.

We shall also refer to the triple ðM; ðF ;oÞÞ as a Cartan geometry modeled on
xAd
H ðg; hÞ. We recall that, by definition, o is an H-invariant smooth g-valued

one form on F which reproduces the fundamental vertical vector fields A�, A A h,
and such that for each u A F , ou : TuF ! g is a linear isomorphism.

Let ðM1; ðF1;o1ÞÞ and ðM2; ðF2;o2ÞÞ be two Cartan geometries having the

same model xAd
H ðg; hÞ. A di¤eomorphism f : M1 ! M2 is called a geometric

isomorphism between ðF1;o1Þ and ðF2;o2Þ, if there exists a bundle isomorphism
b : F1 ! F2 covering f , such that b�ðo2Þ ¼ o1.
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A Cartan geometry is called:. e¤ective if the corresponding model is e¤ective.. first-order if Adg=h : H ! GLðg=hÞ is injective.. connected if F is connected.. complete if the o-constant vector fields on F are all complete.. reductive if g admits an AdðHÞ-module decomposition

g ¼ hlm:

A Cartan geometry on a manifold M can be constructed from local data,
called Cartan gauges. Let M be a smooth manifold and let xAd

H ðg; hÞ be a model

for a Cartan geometry. A (Cartan) gauge over M modeled on xAd
H ðg; hÞ is a pair

ðU ; yÞ where U is an open subset of M, and y is a g-valued 1-form defined on
U , such that for each x A U , the composition p � yx : TxU ! g=h is a linear
isomorphism. Here p : g ! g=h is the canonical map.

Proposition 2.1. Let M be a manifold. Let CM be the set of Cartan
connections on the trivial bundle M �H over M, modeled on xAd

H ðg; hÞ. There is
a bijective correspondence between CM and the set GM consisting of all Cartan
gauges ðM; yÞ. Each y A GM determines the Cartan connection oy A CM defined
by

oyðx; hÞ ¼ Adðh�1Þyx þ oH

When oH is the Maurer-Cartan form of H.
Let xAd

H ðg; hÞ be a model for a Cartan geometry. A Cartan atlas on a
manifold M is a collection fðUa; yaÞg of gauges with the following properties:

1) The Ua’s form a covering of M;
2) For each a; b, there exists a smooth map k : Ua VUb ! H, such that

yb ¼ Adðk�1Þya þ k �oH .
Two Cartan atlases are called equivalent if their union is also a Cartan atlas;

a Cartan structure is an equivalence class of Cartan atlases on M.
To each Cartan geometry ðM; ðF ;oÞÞ there is associated a Cartan structure

on the base manifold M in a canonical manner: a representative atlas consists
of the gauges of the form ya ¼ a�o, where a : U ! F is a local section of F .
Any gauge ðU ; yÞ belonging to this structure is called an admissible gauge.
Conversely, when the model xAd

H ðg; hÞ is e¤ective, a unique (up to gauge equiva-
lence) Cartan geometry can be reconstructed from a given Cartan structure on
a manifold M (see [12]). Gauge equivalence means that Id : M ! M is a
geometrical isomorphism.

Next we recall the concept of curvature. Let ðF ;oÞ be a Cartan geometry
on a manifold M with model xAd

H ðg; hÞ. The curvature of ðF ;oÞ is the g-valued
2-form Wo on F defined by Wo :¼ doþ ð1=2Þ½o;o�. A Cartan geometry ðF ;oÞ
is called flat if Wo ¼ 0; it is called torsion free if Wo takes values in h.

The curvature function of ðF ;oÞ is a smooth map

K : F ! C2ðg=h; gÞ
where C2ðg=h; gÞ is the linear space of all the bilinear alternating maps j : g=h�
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g=h ! g. K is defined as follows: let ~XX ; ~YY A g=h, and let X ;Y A g be such that
pðXÞ ¼ ~XX , pðYÞ ¼ ~YY . Then we set

KðuÞð ~XX ; ~YY Þ :¼ Wuðo�1
u X ;o�1

u Y Þ:

The definition is well-posed because the curvature form W of a Cartan connection
is horizontal; this means that for each u A P, and x; h A TuF , we have Wuðx; hÞ ¼ 0
whenever x or h is vertical, i.e. tangent to the fiber of F containing u (see [12],
Corollary 3.10, p. 187).

Given an admissible gauge y, one can consider the local versions Wy A
L2ðU ; gÞ and K y : U ! C2ðg=h; gÞ of W and K : they are defined by

Wy :¼ dyþ 1

2
½y; y�; K yðxÞð ~XX ; ~YYÞ :¼ Wy

xððpyxÞ
�1 ~XX ; ðpyxÞ�1 ~YY Þ; x A U :

We remark that, when the geometry is reductive, with a fixed reductive decom-
position g ¼ hlm, then K and K y can be interpreted as maps taking values in
C 2ðm; gÞ.

The structure group H acts on C2ðg=h; gÞ by a representation AdC induced
by Ad in a natural manner. We denote by C2

Hðg=h; gÞ the subset of C2ðg=h; gÞ
consisting of all AdCðHÞ-invariant elements. The proof of the following lemma
is standard:

Lemma 2.2. Consider a Cartan geometry ðM; ðF ;oÞÞ with model xAd
H ðg; hÞ

and the corresponding Cartan structure C. Let K0 A C2ðg=h; gÞ be fixed. Then
the following are equivalent:

a) ðF ;oÞ has constant curvature K0;
b) K0 belongs to C2

Hðg=h; gÞ, and for each point x A M we can find a gauge y

of C at x, such that K yðxÞ ¼ K0.
c) For every gauge y of the Cartan structure C we have K y ¼ const ¼ K0.

A Cartan space form modeled on xAd
H ðg; hÞ is a connected, complete, torsion

free, geometrically oriented Cartan geometry whose curvature function is con-
stant.

Geometrically oriented means that each h A H preserves the orientation in
the sense that, fixed u0 A F , there exists a path l in F from u0 to u0h whose

development ~ll via ado : TF ! EndðgÞ ([12], p. 120) is a path joining Id and
AdðhÞ in AutðgÞ. For a connected geometry, this condition does not depend on
the choice of u0 ([12], p. 204).

Cartan space forms generalize in a natural manner the space forms of Rie-
mannian geometry. One of the main results of this paper states the non ex-
istence of Cartan space forms for a class of reductive models xAd

H ðg; hÞ.
Let xAd

H ðg; hÞ and xAd 0

H ðg 0; hÞ be two models for a Cartan geometry with the
same structure group H. Then xAd 0

H ðg 0; hÞ is called a mutation of xAd
H ðg; hÞ if

there exists a map l : g ! g 0 which is an isomorphism between the AdðHÞ-
module g and the Ad 0ðHÞ-module g 0 satisfying the following conditions:
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i) ljh ¼ idh
ii) ½lðXÞ; lðYÞ� � l½X ;Y � A h for all X ;Y A g.

Such a map l is called a mutation map.
It is proved in [12], p. 218, that given a Cartan geometry C ¼ ðM; ðF ;oÞÞ

modeled on xAd
H ðg; hÞ, and given a mutation xAd 0

H ðg 0; hÞ of xAd
H ðg; hÞ, with muta-

tion map l : g ! g 0, then C 0 ¼ ðM; ðF ; loÞÞ is a Cartan geometry modeled on
xAd 0

H ðg 0; hÞ. Moreover, if C is torsion free, C 0 is also torsion free. We shall refer
to C 0 as a Cartan geometry obtained from C by mutation.

Mutation is a key notion involved in the classification of Cartan space forms.
For the proof of the following result, see [12], Ch. 5.

Theorem 2.3. 1) Let C ¼ ðM; ðF ;oÞÞ be a flat Cartan space form modeled
on xAd

H ðg; hÞ. Then there is a connected Lie group G with Lie algebra g, con-
taining H as a closed subgroup, and a subgroup GHG such that ðGnG;oGnGÞ is
a locally Klein Cartan geometry on the double coset space GnG=H and such that C
is geometrically isomorphic to it.

2) Let C ¼ ðM; ðF ;oÞÞ be a Cartan space form modeled on xAd
H ðg; hÞ and

assume that either H is connected or M is simply connected. Then C is a mutation
of a locally Klein geometry ðGnG 0;oGnG 0 Þ where xAd 0

H ðg 0; hÞ is a suitable mutation
of xAd

H ðg; hÞ.

3 Reductive models for a Cartan geometry

Let ðF ;oÞ be a reductive Cartan geometry on a manifold M modeled on
xAd
H ðg; hÞ. Fix a reductive decomposition

g ¼ hlm

of g and let prm : g ! m, prh : g ! h be the linear projections determined by this
decomposition. The Cartan connection o determines in a natural manner a
linear connection (covariant di¤erentiation) ‘m on M, depending on the choice of
m (cf. [12], p. 197). ‘m is determined locally as follows

ymð‘m
X YÞ ¼ X ðymðYÞÞ þ ½yhðX Þ; ymðYÞ�; X ;Y A XðUÞ ð2Þ

where ðU ; yÞ is an admissible gauge and yh : TU ! h, ym : TU ! m are the 1-
forms on the open set U given by yh ¼ prh � y and ym ¼ prm � y. We recall that,
according to the definition of gauge, ymðxÞ : TxM ! m is a linear isomorphism
for each x A U .

Lemma 3.1. Let xAd
H ðg; hÞ be a reductive model for a Cartan geometry. Fix

a reductive decomposition g ¼ hlm. Let ðM; ðF ;oÞÞ be a Cartan geometry
modeled on xAd

H ðg; hÞ and let ‘ the corresponding linear connection with torsion
T. Let y : TU ! g be an admissible Cartan gauge at x. Then we have the
following formula

K y
mðxÞðZ;WÞ ¼ ymðTxðX ;YÞÞ þ ½Z;W �m; x A U ð3Þ

where X ;Y A TxM and Z ¼ ymðXÞ, W ¼ ymðYÞ.
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In particular, ‘ has vanishing torsion provided the Cartan geometry is torsion
free and ½m;m� ¼ 0.

Proof. This follows by a straightforward computation using (2). r

Lemma 3.2. Let xAd
H ðg; hÞ be a reductive model for a Cartan geometry and let

xAd 0

H ðg 0; hÞ be a mutation of xAd
H ðg; hÞ with mutation map l : g ! g 0. Let

g ¼ hlm; g 0 ¼ hlm 0 ð4Þ
be reductive decompositions of g and g 0. Let ðM; ðF ;oÞÞ be a Cartan geometry
modeled on xAd

H ðg; hÞ, and let C 0 ¼ ðM; ðF ; loÞÞ be the Cartan geometry obtained
by mutation.

The linear connections ‘ and ‘ 0 induced by the Cartan geometries C resp. C 0

via the reductive decompositions (4) are related by

‘ 0
XY ¼ ‘XY þ y�1

m ½fymðX Þ; ymðY Þ�; X ;Y A XðUÞ ð5Þ
where y : TU ! g is an admissible gauge for C, ½ ; � is the Lie bracket of g, and

f : m ! h

is the linear map defined by the requirement that

fðZÞ � lðZÞ A m 0 EZ A m:

Proof. We denote by pr 0m 0 : g 0 ! m 0 and pr 0h : g
0 ! h the linear projections

determined by the decomposition g 0 ¼ hlm 0. Hence by definition f ¼ pr 0h � l,
and the composition c :¼ pr 0m 0 � l : m ! m 0 is a linear isomorphism. According
to the definition of mutation, we see that

c½H;Z � ¼ ½H;cZ � 0; H A h; Z A m: ð6Þ
Moreover we have that y 0 :¼ l � y : TU ! g 0 is an admissible gauge for C 0, such
that

y 0
m 0 :¼ pr 0m 0 � y 0 ¼ cym; y 0

h :¼ pr 0h � y
0 ¼ yh þ fym:

Hence taking into account the expression of ‘ 0
XY in the gauge y 0, we get

y 0
m 0 ð‘ 0

XY Þ ¼ Xðy 0
m 0 ðYÞÞ þ ½y 0

hðXÞ; y 0
m 0 ðYÞ� 0

¼ XðcymðYÞÞ þ ½yhðX Þ;cymðYÞ� 0 þ ½fymðX Þ;cymðYÞ� 0

whence, using (6):

cymð‘ 0
XY Þ ¼ XðcymðYÞÞ þ c½yhðXÞ; ymðYÞ� þ c½fymðX Þ; ymðYÞ�

which yields

ymð‘ 0
XYÞ ¼ ymð‘XY Þ þ ½fymðXÞ; ymðYÞ�

and the assertion follows. r
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4 Reductive models of non symmetric type

The following result should be compared with Lemma 6.4 of [12], page 220,
and its proof.

Proposition 4.1. Let xAd
H ðg; hÞ be a reductive model for a Cartan geometry

with group H. The following conditions are equivalent:
a) there exists a mutation xAd 0

H ðg 0; hÞ of xAd
H ðg; hÞ admitting a reductive de-

composition g 0 ¼ hlm 0 such that ½m 0;m 0� 0 ¼ 0;
b) g admits a reductive decomposition g ¼ hlm such that ½m;m�H h.
When these conditions are satisfied the mutation of xAd

H ðg; hÞ satisfying a) is
unique up to isomorphism and is obtained from a reductive decomposition of g like
in b) setting g 0 ¼ g with m 0 ¼ m as an h-module and Lie bracket on m 0 defined by
½m;m� 0 ¼ 0.

Proof. Assuming a), if l : g ! g 0 is the corresponding mutation map, it

su‰ces to set m ¼ l�1ðm 0Þ to obtain a reductive decomposition of g like in b).
The converse is proved constructing the Lie algebra g 0 as indicated in the last
part of the assertion. The mutation map g ! g 0 is the canonical map. r

This observation leads to the following

Definition 4.2. Let xAd
H ðg; hÞ be a reductive model for a Cartan geometry

with group H. We shall say that xAd
H ðg; hÞ is of symmetric type if there exists a

mutation xAd 0

H ðg 0; hÞ of xAd
H ðg; hÞ admitting a reductive decomposition g 0 ¼ hlm 0

such that ½m 0;m 0� 0 ¼ 0. Otherwise xAd
H ðg; hÞ will be called of non symmetric type.

According to Proposition 4.1, we see that reductive models of non symmetric
type exist and arise in a natural way. For example:

Corollary 4.3. 1) Let ðM; gÞ be a homogeneous Riemannian manifold
which is not locally Riemannian symmetric. Let G be any Lie group acting
transitively on M as a group of isometries with isotropy subgroup H at a point
xo A M. Then G=H is a reductive model for a Cartan geometry which is of non
symmetric type.

2) Let ðM; gÞ be a complete, simply connected Riemannian manifold. Then
M is Riemannian symmetric if and only if there exists a transitive group of
isometries GH IgðMÞ such that G=H is a reductive model for a Cartan geometry
of symmetric type, where H is the isotropy subgroup at some point of M.

In the following we describe other examples of models of non symmetric
type, which are constructed starting with a Lie algebra q choosing as structure
group a Lie subgroup H of the automorphism group AutðqÞ.

Set g :¼ hl q, where h is the Lie algebra of H. The vector space g has a
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natural structure of a Lie algebra, admitting q and h as Lie subalgebras, and such
that

½A;X � :¼ AðX Þ ¼ �½X ;A�

for all X A q and A A h. Then xAd
H ðg; hÞ is a reductive model for a Cartan geo-

metry with group H, where Ad : H ! AutðgÞ is the representation such that

AdðhÞðX þ AÞ ¼ hðXÞ þ AdHðAÞ; X A q; A A h:

We shall refer to this model as the standard reductive model for a Cartan geo-
metry with group H.

Theorem 4.4. Let q be a non abelian Lie algebra and let HHAutðqÞ be a
Lie subgroup. In each of the following cases, the standard reductive model for a
Cartan geometry with group H is of non symmetric type:

1) H is discrete;
2) q is compact semisimple;
3) There exists a vector subspace V H q such that ½V ;V �QV and aðVÞHV

for each a A H.

Proof. In each case we argue by contradiction. Assume that our model
xAd
H ðg; hÞ is of symmetric type. We fix a reductive decomposition g ¼ hlm

such that ½m;m�H h, and we consider the mutation xAd 0

H ðg 0; hÞ of xAd
H ðg; hÞ sat-

isfying the condition b) of Proposition 4.1. We recall that the mutation map
l : g ! g 0 is the identical map of g.

In case 1), being h ¼ 0, it follows that g is abelian, which is absurd since q is
not abelian.

Now we consider case 2). As in Lemma 3.2 we consider the linear maps
c : m ! m 0 and f : m ! h such that X ¼ cðX Þ þ fðX Þ for each X A m.

We fix an AutðqÞ-invariant scalar product h ; i on q and we consider a
compact Lie group M with Lie algebra q. Then h ; i determines a biinvariant
Riemannian metric g on M. The Maurer-Cartan form oq : TM ! q gives rises
to a globally defined Cartan gauge

y : TM ! g; y ¼ i � oq; i : q ,! g inclusion ð7Þ
modeled on xAd

H ðg; hÞ. This gauge in turn determines a Cartan connection o
on the trivial bundle P ¼ M �H ! M. Clearly, according to the structure
equation doq þ ð1=2Þ½oq;oq� ¼ 0, the Cartan geometry C ¼ ðM; ðP;oÞÞ is flat.
According to (2), the linear connection ‘ induced on M associated with the
reductive decomposition g ¼ hl q is determined as follows

‘XY ¼ 0 EX ;Y A q: ð8Þ
In particular, the metric g is parallel with respect to ‘.

As in Lemma 3.2, we consider the linear maps c : q ! m 0 and f : q ! h
such that X ¼ lðXÞ ¼ cðXÞ þ fðXÞ for each X A q. By using (5) we see that g
is also parallel with respect to the linear connection ‘ 0 associated with the muted
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geometry ðP;o 0Þ via the decomposition g 0 ¼ hlm 0. Indeed, this follows from
the fact that for each Z A h, adZ is a skew-symmetric endomorphism of q. Since
C is flat, C 0 is torsion free. Hence according to Lemma 3.1, since ½m 0;m 0� 0 ¼ 0,
‘ 0 has vanishing torsion. Thus ‘ 0 is the Levi-Civita connection of g. Since g is
biinvariant we have

‘ 0
XY ¼ 1

2
½X ;Y � EX ;Y A q:

Substituting in (5) this yields

fðXÞ ¼ 1

2
adX EX A q:

All derivations of q being inner, this leads to the conclusion that f : q ! h is
onto. Hence we must have h ¼ 0, so that H is discrete and this contradicts
case 1).

Case 3). We consider again a Lie group M with LieðMÞ ¼ q endowed with
the Cartan geometries C obtained from the global gauge (7), its mutation C 0 and
the linear connections ‘ and ‘ 0. Denote by V the left invariant smooth distri-
bution on M defined by

Vx ¼ ðoqÞ�1
x ðVÞ; x A M:

We remark that, according to (8), V is parallel with respect to ‘. Since ‘ and
‘ 0 are related by (5) we see that V is also parallel with respect to ‘ 0. Indeed,
this follows at once from the fact that ½h;V �HV . Since ‘ 0 has vanishing tor-
sion and V is ‘ 0-parallel we conclude that V is Frobenius integrable. We have
arrived at a contradiction because by assumption ½V ;V �QV . r

Examples. 1. (Complete parallelism) In the above result an admissible
choice for H is H ¼ fidg. A Cartan geometry ðM; ðF ;oÞÞ modeled on xAd

H ðg; hÞ
is a complete parallelism on the base manifold M. Notice that the flat Cartan
geometries modeled on xAd

H ðg; hÞ are the parallelizable manifolds M such that the
Lie algebra XðMÞ is isomorphic to q.

2. (Contact metric structures) Using a result in [9], we shall exhibit a ca-
nonical interpretation of CR-integrable contact metric manifolds as reductive
Cartan geometries with non trivial structure group, whose model is of non sym-
metric type and is constructed according to Theorem 4.4. We refer the reader
to [2], [10] or [15] for the notions of contact metric manifold, CR manifold and
Sasakian manifold.

Consider the real vector space V ¼ R2k where kb 1. We denote by
fx1; . . . ; x2kg the standard basis and by h ; i the standard inner product on V .
Moreover, let J : V ! V be the complex structure associated to the matrix

0 �Ik

Ik 0

� �
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with respect to the basis fx1; . . . ; x2kg. We introduce a Lie algebra structure on
q :¼ V lR as follows. We set

½x; y� :¼ �2hx; Jyi; ½x; t� ¼ ½t; x� ¼ ½s; t� :¼ 0

for all x; y A V and s; t A R.
The complex structure J : V ! V extends to a derivation j : q ! q by

setting j ¼ 0 on R. We also extend h ; i to an inner product g on q in such a
way that

gðx; yÞ ¼ hx; yi; gðx; tÞ ¼ 0; gðt; sÞ ¼ st:

Then ðq; j; gÞ is a metric f -structure with rank 2k (see [11]); its structure
group is the closed subgroup of GLðqÞ defined by

H ¼ fa A Oðq; gÞ j a � j ¼ j � a; að1Þ ¼ 1gGUðkÞ � 1:

We remark that HHAutðqÞ and that each a A H leaves V invariant. The Lie
algebra h of H consists of all derivations D of q which commute with j, vanish
on R, and such that

gðDz;wÞ þ gðz;DwÞ ¼ 0:

Then according to the above theorem, case 3), the standard reductive model
xAd
H ðg; hÞ for a Cartan geometry with group H is of non symmetric type.

Cartan geometries modeled on xAd
H ðg; hÞ are linked with contact structures.

Namely, denote by M the subspace of C2ðq; gÞ consisting of the bilinear maps
c : q� q ! g such that

cqðx; yÞ ¼ cqðs; tÞ ¼ 0; cqðs; jxÞ ¼ �jcqðs; xÞ
for all x; y A V and s; t A R. We quote the following

Theorem 4.5 [9]. Let M be a real manifold of dimension 2k þ 1. There is a
natural bijection between the set of CR-integrable contact metric structures on M
and the set of Cartan geometries on M modeled on xAd

H ðg; hÞ and of curvature type
M, modulo gauge equivalence. Moreover, the Sasakian structures correspond to
the torsion free Cartan geometries.

Here the expression ‘‘Cartan geometry of curvature type M’’ refers to a
Cartan geometry whose curvature function K takes values in the H-submodule M
of C2ðq; gÞ. Actually, the above result is proved in the more general context of
almost S-structures.

We remark that given a CR-integrable contact metric manifold, the linear
connection induced by the corresponding Cartan geometry is the Tanaka-Webster
connection (see e.g. [14] or [15]). This is a special connection with torsion
adapted to the contact structure. The fact that this connection has non van-
ishing torsion is not accidental and comes from a general property of models of
non symmetric type as showed in the next section.
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5 Geometric characterization of non symmetric models

Theorem 5.1. Let xAd
H ðg; hÞ be a reductive model for a Cartan geometry.

Then the following are equivalent:

a) xAd
H ðg; hÞ is of non symmetric type;

b) For every torsion free Cartan geometry ðM; ðF ;oÞÞ modeled on xAd
H ðg; hÞ,

the linear connection ‘m on M induced by any reductive decomposition g ¼ hlm
has non vanishing torsion.

Proof. a) ) b) Consider a torsion free Cartan geometry ðM; ðF ;oÞÞ
modeled on xAd

H ðg; hÞ and choose a reductive decomposition g ¼ hlm. Assume
by contradiction that ‘m has vanishing torsion. Then by using formula (3) we
obtain that ½m;m�m ¼ 0, whence ½m;m�H h. According to Proposition 4.1 this
implies that xAd

H ðg; hÞ is of symmetric type which is a contradiction.
b) ) a) Assume by contradiction that xAd

H ðg; hÞ is of symmetric type.
Consider a reductive decomposition g ¼ hlm with ½m;m�H h and the canonical
mutation xAd 0

H ðg 0; hÞ of xAd
H ðg; hÞ according to Proposition 4.1. Consider the ab-

solute parallelism
g : Tm ! m

on the vector space m endowed with the natural manifold structure. It gives rise
to a globally defined Cartan gauge

y : Tm ! g; y ¼ i � g; i : m ,! g inclusion:

Hence y determines a Cartan connection o on the trivial H-principal bundle
P ¼ m�H ! m, such that y ¼ s�ðoÞ, where s : m ! m�H is the canonical
section. A straightforward computation shows that the curvature function K y :
m ! C2ðm; gÞ is constant, namely

K yðxÞðZ;WÞ ¼ ½Z;W �; x A m:

Hence according to b) in Lemma 2.2, the Cartan geometry ðm; ðF ;oÞÞ has con-
stant curvature given by the Lie bracket m�m ! g. In particular, this geo-
metry is torsion free because ½m;m�H h. On the other hand, according to (3.1),
the linear connection ‘m on m determined by the reductive decomposition
g ¼ hlm has vanishing torsion, and this contradicts the assumption b). r

6 On the existence of Cartan space forms

The aim of this section is to show that for a reductive model of non
symmetric type the phenomenon of non existence of Cartan space forms modeled
on it may occur.

First of all we prove the following

Theorem 6.1. Let xAd
H ðg; hÞ be a reductive model for a Cartan geometry with

group H. Assume that H is connected. A necessary condition for xAd
H ðg; hÞ to be

of symmetric type is that there exists a Cartan space form modeled on it.
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Proof. Assume xAd
H ðg; hÞ of symmetric type and consider a reductive de-

composition g ¼ hlm with ½m;m�H h. In the proof of b) ) a) of Theorem 5.1
we have seen that the vector space m carries a torsion free Cartan geometry
ðP;oÞ modeled on xAd

H ðg; hÞ with constant curvature given by the Lie bracket
m�m ! h. Actually, ðm; ðP;oÞÞ is a Cartan space form. Indeed, P ¼ m�H
is connected whence ðP;oÞ is geometrically oriented. Moreover, ðP;oÞ is com-
plete since a o-constant vector field A on P is of the form

Aðx;hÞ ¼ ðg�1
x ðAdðhÞZÞ;YhÞ; ðx; hÞ A m�H

where Z A m and Y is a left-invariant vector field on H. Here g : Tm ! m is
the absolute parallelism on m. Hence the integral curve of A with initial point
ðx0; h0Þ is given by

cðtÞ ¼ x0 þ
ð t

0

Adðh0 expðsYeÞÞZ ds; h0 expðtYeÞ
� �

: r

Next we consider a case where the existence of a Cartan space form is also a
su‰cient condition for the model to be of symmetric type.

Theorem 6.2. Let xAd
H ðg; hÞ be a first order reductive model for a Cartan

geometry with connected group H. Fix a reductive decomposition g ¼ hlm.
Let r : H ! GLðmÞ be the representation induced by Ad : H ! GLðgÞ. Set
h0 :¼ drðhÞ. Let F : m ! EndðmÞ be the linear map such that

EX ;Y A m FðXÞðYÞ ¼ ½X ;Y �m:
Assume that FðmÞH h0.

Then the following are equivalent:
a) xAd

H ðg; hÞ is of symmetric type;
b) There exists a Cartan space form modeled on xAd

H ðg; hÞ.

Proof. We have to show that b) ) a). Let M be a Cartan space form
modeled on xAd

H ðg; hÞ with curvature K . We can consider K as a bilinear map
g� g ! h such that Kðg; hÞ ¼ Kðh; gÞ ¼ 0.

According to Theorem 2.3 2), since H is connected, we can assume that
K ¼ 0 after a mutation of xAd

H ðg; hÞ. More precisely, setting

½X ;Y � 0 ¼ ½X ;Y � � KðX ;YÞ
we get a new Lie algebra structure on g 0 ¼ g, such that xAd 0

H ðg 0; hÞ is a mutation
of xAd

H ðg; hÞ. With respect to xAd 0

H ðg 0; hÞ, M is a flat Cartan space form (cf. [12],

p. 222–224). Notice that our assumption on F is still applicable to xAd 0

H ðg 0; hÞ,
because the Lie bracket h�m ! m does not change after the mutation. Since
also the property a) is invariant under mutation, to prove that b) ) a) we can
assume at the outset that M is a flat Cartan space form modeled on xAd

H ðg; hÞ.
By using Theorem 2.3 1), we can construct a homogeneous space G=H where

G is a Lie group with Lie algebra g, containing H as a Lie subgroup. Clearly,
G=H is a reductive homogeneous space in the sense of [7], Ch. X.
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Since the model is of first order, the principal H-fiber bundle p : G ! G=H
imbeds in the bundle of linear frames LðG=HÞ via the mapping

C : g A G 7! p� � o�1
g jm A LpðgÞðG=HÞ:

Here we regard the elements of the fiber LxðG=HÞ as linear isomorphisms
m ! TxG=H. C is a principal bundle homomorphism, and CðGÞ is a rðHÞ-
structure on G=H, i.e. a reduction of LðG=HÞ to the subgroup rðHÞ of GLðmÞ.
Since the model is of first order, C : G ! CðGÞ is a bundle isomorphism (cf. [12]
p. 191 or the Remark of [7], p. 193).

Now, the assumption on F implies that the natural torsion-free G-invariant
linear connection of G=H (cf. [7], p. 197) is reducible to CðGÞ. Indeed, we recall
that the G-invariant connections on CðGÞ are in a one to one correspondence
with the linear maps

L : m ! h0

such that
LðAdðhÞXÞ ¼ AdðrðhÞÞLðX Þ X A m; h A H

(Theorem 2.1 of [7], p. 191). According to the assumption, we have the con-
nection G corresponding to L :¼ ð1=2ÞF. By using Theorem 2.10 at page 197 in
[7], we see that G is the natural G-invariant torsion free connection relative to
the decomposition g ¼ hlm. Via the bundle isomorphism C : G ! CðGÞ, G
determines a principal G-invariant connection G0 on G ! G=H. The horizontal
space m 0 of G0 at e A G is an AdðHÞ-invariant subspace of g and g ¼ hlm 0 is
a reductive decomposition. We claim that ½m 0;m 0�H h. Indeed, G coincides
with the canonical G-invariant connection of G=H with respect to the reductive
decomposition g ¼ hlm 0 (cf. Remark on p. 193 of [7]). Thus at the point eH
the torsion tensor of G is given by TðZ;WÞ ¼ �½Z;W �m 0 . Since G is torsionless
we conclude that ½m 0;m 0�H h. Hence a) follows. r

As an application we get the following examples of reductive models without
Cartan space forms modeled on them:

Corollary 6.3. Let q be a compact semisimple Lie algebra. Let xAd
H ðg; hÞ

be the standard reductive model for a Cartan geometry with group H ¼ IntðqÞ.
There exist no Cartan space forms modeled on xAd

H ðg; hÞ.

Proof. The model under consideration satisfies the assumptions of the
above statement. On the other hand, we showed in Theorem 4.4 that xAd

H ðg; hÞ
is of non symmetric type. r

Corollary 6.4. For each n A N , nb 3, there exists a n-dimensional first
order reductive model for a Cartan geometry such that there are no Cartan space
forms modeled on it.

Proof. In the case n ¼ 3 it su‰ces to consider the standard reductive model
with group H ¼ IntðqÞ where q ¼ oð3Þ. Denote by xAd0

H ðg0; hÞ this model. Let
n > 3; set

g :¼ g0 l a ðdirect sum of Lie algebrasÞ

on model mutation for reductive cartan geometries 187



where a is an abelian Lie algebra of dimension n� 3. The representation
Ad0 : H ! Autðg0Þ extends trivially to a representation Ad : H ! AutðgÞ. Hence
xAd
H ðg; hÞ is a first order reductive model for a Cartan geometry, with group H,

and reductive decomposition g ¼ hlm, where m ¼ ql a. Clearly, this model
satisfies the assumption of Theorem 6.2. On the other hand, xAd

H ðg; hÞ is of non
symmetric type, because otherwise there would exist a reductive decomposition
g ¼ hlm 0 of g, such that ½m 0;m 0�H h. This would yield a reductive decom-
position of g0:

g0 ¼ hl ðg0 Vm 0Þ
with ½g0 Vm 0; g0 Vm 0�H h, which is impossible since xAd0

H ðg0; hÞ is of non sym-
metric type. Hence according to Theorem 6.2, there exist no Cartan space forms
modeled on xAd

H ðg; hÞ. r
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