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ENTIRE FUNCTIONS THAT SHARE A POLYNOMIAL

WITH ONE OF THEIR DERIVATIVES*

Jian-ping Wang

Abstract

In this paper, we investigate the entire functions that share a polynomial with one

of their derivatives and prove several theorems which generalize the main results given

by L. Z. Yang in [14].

1. Introduction and results

In this paper, the term ‘‘meromorphic’’ will mean meromorphic in the whole
complex plane. Let f and g be two nonconstant meromorphic functions, and let
P be a polynomial or a finite value. We say that f and g share P IM (ignoring
multiplicities) provided that f � P and g� P have the same zeros. If f � P and
g� P have the same zeros with the same multiplicities, then we say that f and
g share P CM (counting multiplicities). It is assumed that the reader is familiar
with the usual notations and fundamental results of R. Nevanlinna’s theory of
meromorphic functions, as found in [6] and [13].

Rubel and Yang seems to have been the first to study the entire functions
that share values with their derivatives. They proved

Theorem A (see [11]). If a nonconstant entire function f share two distinct,
finite values CM with f 0, then f 1 f 0.

Since then, shared value problems on entire functions, especially, the case
when f and its derivatives share values have attracted considerable attention
during the last quarter of century or so, and a number of results have been
obtained, some of the main results being due to G. Gundersen, E. Mues and C.
C. Yang (see [1–2], [7–8], [10], [12], [14–16] etc).

In 2000, Li and Yang replaced f 0 with f ðkÞ ðkb 1Þ in Theorem A, and
proved the following results.
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Theorem B (see [8]). Let f be a nonconstant entire function, and let k be a
positive integer. If f and f ðkÞ share two distinct, finite values IM, then f 1 f ðkÞ.

Obviously, the conclusion of Theorem B is, in general, not true if f and f ðkÞ

share only one value CM. It is natural to ask, however, what can be said when
a nonconstant entire function f shares one finite value CM with one of its de-
rivatives f ðkÞ ðkb 1Þ? This problem was studied by authors such as Jank, Mues
and Volkmann, R. Brück, L. Z. Yang, Q. C. Zhang etc., and some results have
been obtained under various extra conditions, respectively (see [1–2], [7, 8], [12],
[14–16]).

In particular, we shall refer to the following results on this topic.

Theorem C (see [1]). Let f be a nonconstant entire function. If f and f 0

share the value 1 CM, and if Nðr; 0; f 0Þ ¼ Sðr; f Þ, then

f 0 � 1

f � 1
¼ c;

where c is a non-zero constant.

Theorem D (see [14]). Let f be a nonconstant entire function of finite order,
and let a0 0 be a finite constant. If f and f ðkÞ share the value a CM, then

f ðkÞ � a

f � a
¼ c;

where c is some non-zero constant and k a positive integer.

In this paper, we prove that Theorem D still holds if the constant a is
replaced by a polynomial QðzÞ, that is

Theorem 1. Let f be a nonconstant entire function of finite order, let QðzÞ
be a polynomial with degree qb 1, and let k be a positive integer. If f and f ðkÞ

share QðzÞ CM, then for some non-zero constant c, we have

f ðkÞ �Q

f �Q
¼ c:

As usual, we say that a finite value z0 is a fixed point of a function f if
f ðz0Þ ¼ z0. So from Theorem 1, we can easily obtain the following

Corollary. Let f be a nonconstant entire function of finite order, and let
k be a positive integer. If f and f ðkÞ have the same fixed points with the same
multiplicities, then

f ðkÞ � z

f � z
¼ c

for some non-zero constant c.
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2. Lemmas

Lemma 1 (see [3]). Let F be a nonconstant meromorphic function of finite
order r, let e > 0 be a given constant, and let k be a positive integer. Then there
exists a set EH ½0; 2pÞ that has linear measure zero, such that if c0 A ½0; 2pÞ � E,
then there is a constant R0 ¼ R0ðc0Þ > 0 such that for all z satisfying arg z ¼ c0

and jzjbR0, we have jF ðkÞðzÞ=FðzÞja jzjkðr�1þeÞ.

Lemma 2 (see [14, Lemma 2]). Let F be an entire function, and let k be
a positive integer. Suppose that jF ðkÞðzÞj is unbounded on some ray arg z ¼ f.
Then there exists an infinite sequence of points zn ¼ rne

if where rn ! þy, such
that F ðkÞðznÞ ! y and

FðznÞ
F ðkÞðznÞ

����
����a ð1 þ oð1ÞÞjznjk

as zn ! y:

Lemma 3 (see [5, p. 119]). Suppose that f ðzÞ is an entire function such that
f ðzÞ=zn is bounded for jzjbR, where R is a positive number. Then f ðzÞ is a
polynomial of degree at most n.

Now we state the main lemma of this paper which has independent interest
and, also is an improvement of [14, Theorem 1] and [2, Lemma 1].

Lemma 4. Let PðzÞ;QðzÞ be two nonconstant polynomials, and let q be the
degree of QðzÞ. Then for any positive integer k, every entire solution F of the
di¤erential equation

F ðkÞ � FeP ¼ Q�QðkÞ ð2:1Þ
has infinite order.

Proof. We shall prove Lemma 4 by contradiction. Assume that Lemma 4
is not true, namely, suppose that F is an entire solution of the Eq. (2.1) that has
finite order r. Let e > 0 be any given constant. Then from Lemma 1, there
exists a set EH ½0; 2pÞ that has linear measure zero, such that if c0 A ½0; 2pÞ � E,
then there is a constant R0 ¼ R0ðc0Þ > 0 such that for all z satisfying arg z ¼ c0

and jzjbR0, we have

F ðkÞðzÞ
F ðzÞ

����
����a jzjkðr�1þeÞ: ð2:2Þ

Now suppose that y is any real number that satisfies y A ½0; 2pÞ � E, and for
every a > 0,

jePðre iyÞj
raþq

! þy ð2:3Þ
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as r ! þy. Writing (2.1) as

F ðkÞ

ðQ�QðkÞÞF � eP

Q�QðkÞ ¼
1

F
: ð2:4Þ

Since (2.2) holds, thus for all z ¼ reiy with su‰ciently large real number r, and
for any positive number a > maxf0; kðr� 1Þg, we have

F ðkÞðzÞ
F ðzÞ

����
���� 1

jzjaþq a jzjkðr�1þeÞ�a�q: ð2:5Þ

Since Q is a polynomial with degree qðb 1Þ, which means that QðqÞð0Þ0 0, so we
can write

QðzÞ ¼ QðqÞð0Þ
q!

zq þQðq�1Þð0Þ
ðq� 1Þ! z

q�1 þ � � � þQ 0ð0ÞzþQð0Þ: ð2:6Þ

By (2.3), (2.4), (2.5) and (2.6), we obtain

1

ra
1

F ðreiyÞ

����
���� ¼ 1

ra
1

jQðreiyÞ �QðkÞðreiyÞj
F ðkÞðreiyÞ
FðreiyÞ � ePðre

iyÞ
����

����
b

q!

2jQðqÞð0Þj
1

raþq
jePðre iyÞj � F ðkÞðreiyÞ

FðreiyÞ

����
����

� �
! þy

as r ! þy. From which we can deduce that

F ðreiyÞ ! 0 as r ! þy: ð2:7Þ
Next we suppose that f is any real number that satisfies f A ½0; 2pÞ, and for

every b > 0,

rbþqþkePðre
ifÞ ! 0 ð2:8Þ

as r ! þy.
Set RðzÞ ¼

Pq
j¼0ðQðq�jÞð0Þ=ðqþ k � jÞ!Þzqþk�j and GðzÞ ¼ FðzÞ � RðzÞþ

QðzÞ, then by (2.6) we have RðkÞðzÞ ¼ QðzÞ. Now we assert that jGðkÞðzÞj ¼
jF ðkÞðzÞ �QðzÞ þQðkÞðzÞj is bounded on the ray arg z ¼ f. Assume the contrary,
that is, suppose that jGðkÞðzÞj is unbounded on the ray arg z ¼ f. Then from
Lemma 2, there exists an infinite sequence of points zn ¼ rne

if where rn ! þy,
such that GðkÞðznÞ ¼ F ðkÞðznÞ �QðznÞ þQðkÞðznÞ ! y and

GðznÞ
GðkÞðznÞ

����
����a ð1 þ oð1ÞÞjznjk as rn ! þy: ð2:9Þ

From (2.1) we have

F ðkÞðzÞ �QðzÞ þQðkÞðzÞ ¼ FðzÞePðzÞ: ð2:10Þ
Since F ðkÞðznÞ �QðznÞ þQðkÞðznÞ ¼ GðkÞðznÞ ! y, it follows from (2.8) and (2.10)
that F ðznÞ ! y. For the proof of the above assertion, we shall consider the
following two cases.
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Case 1. There exist a positive number a0 > 2jQðqÞð0Þj=ðqþ kÞ! and an infi-

nite subsequence, say znj , of zn, such that jF ðznj Þjb a0jznj j
qþk for j ¼ 1; 2; . . . .

Then for any positive number b and su‰ciently large integer j, we have

jFðznj Þjb a0jznj j
qþk

b
f2jQðqÞð0Þj=ðqþ kÞ!gjznj j

qþk

1 � ð1=jznj j
bÞ

¼ 2jQðqÞð0Þj
ðqþ kÞ!

jznj j
qþbþk

jznj j
b � 1

;

That is

1

jF ðznj Þj � f2jQðqÞð0Þj=ðqþ kÞ!gjznj j
qþk

a
jznj j

b

jFðznj Þj
: ð2:11Þ

From (2.11), (2.9), (2.6), the fact jF ðznj Þjb a0jznj j
qþk as well as the definitions of

GðzÞ and RðzÞ we have

ð1 þ oð1ÞÞjznj j
�k

a
GðkÞðznj Þ
Gðznj Þ

�����
����� ¼

jGðkÞðznj Þj
jFðznj Þ � Rðznj Þ þQðznj Þj

a
jGðkÞðznj Þj

jFðznj Þj � jðQðqÞð0Þ=ðqþ kÞ!Þzqþk
nj þ � � � þ ðQ 0ð0Þ=ðk þ 1Þ!Þzkþ1

nj
þ ðQð0Þ=k!Þzknj �Qðznj Þj

a
jGðkÞðznj Þj

jFðznj Þj � 2ðjQðqÞð0Þj=ðqþ kÞ!Þjznj j
qþk

a
jGðkÞðznj Þj
jFðznj Þj

jznj j
b;

and thus we obtain

ð1 þ oð1ÞÞjznj ja
GðkÞðznj Þ
Fðznj Þ

�����
����� jznj jbþkþ1: ð2:12Þ

Now we rewrite (2.10) as

GðkÞðzÞ
FðzÞ ¼ ePðzÞ: ð2:13Þ

By considering (2.12), and (2.13), we can deduce that

rbþkþ1
nj

ePðrnj e
ifÞ ! y as rnj ! þy;

which contradicts the assumption (2.8).

Case 2. For every given positive number a > 2jQðqÞð0Þj=ðqþ kÞ!, the in-
equality jF ðznÞj < ajznjqþk holds except for at most finitely many positive inte-
gers n.

In this case, we choose a ¼ 2jQðqÞð0Þj. Then for any positive number
b > qþ k and positive integer n that is large enough, we obtain
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jznjb
GðkÞðznÞ
F ðznÞ

����
����b jGðkÞðznÞj

2jQðqÞð0Þj jznj
b�q�k ! þy as rn ! þy: ð2:14Þ

It follows from (2.13) and (2.14) that jznjbjePðznÞj ! þy, which contradicts the
assumption (2.8) again.

Now the assertion that jGðkÞðzÞj is bounded on the ray arg z ¼ f has

been confirmed. From this assertion and the formula Gðk�1ÞðzÞ ¼ Gðk�1Þð0ÞþÐ z

0 G
ðkÞðoÞ do, we obtain that jGðk�1ÞðzÞja jGðk�1Þð0Þj þMjzj for all z satisfying

arg z ¼ f, where M ¼ MðfÞ > 0 is some constant. Similarly, by integrating the
function GðkÞ k times, we can deduce that for all z satisfying arg z ¼ f,

jGðzÞja jGð0Þj þ jG 0ð0Þj jzj þ � � � þ jGðk�1Þð0Þj jzjk�1 þMjzjk:

From the above and the definition of the function RðzÞ, it follows that for all z
satisfying arg z ¼ f,

jF ðzÞja jGðzÞj þ jRðzÞj þ jQðzÞj

a jGð0Þj þ jG 0ð0Þj jzj þ � � � þ jGðk�1Þð0Þj jzjk�1 þMjzjk þ 2
jQðqÞð0Þj
ðqþ kÞ! jzj

qþk

¼ 2
jQðqÞð0Þj
ðqþ kÞ! þ oð1Þ

� �
jzjqþk ð2:15Þ

as jzj ! þy.
We now have shown that (2.15) holds for any f A ½0; 2pÞ with property (2.8),

and that (2.7) holds for any y A ½0; 2pÞ � E with property (2.3). Suppose that
r1 is a real number not less than r which is the order of the function F . Then
we can find a positive number a1 such that a1 < 1=r1. Noting that FðzÞ=zqþk

is an entire function of finite order r in jzjb 1, we can deduce that for every
given constant e > 0, there exists a real number r1 > 1 such that jF ðzÞ=zqþkj <
expðer1=a1Þ as jzj ¼ rb r1.

Since PðzÞ is a nonconstant polynomial, so there exist only finitely many
real numbers in ½0; 2pÞ that do not satisfy either (2.3) or (2.8). Also we note that
the set E has linear measure zero, thus there exist a finite collection of real num-
bers yj A ½0; 2pÞ � E that satisfy either (2.3) or (2.8), where y1 < y2 < � � � < yn ¼
y1 þ 2p, and a1p=2 < yjþ1 � yj a a1p for j ¼ 1; . . . ; n� 1. By the rays arg z ¼
yj ð j ¼ 1; . . . ; nÞ, we divide the set fz A C : jzjb r1g into sector domains Sj ¼ fz A
C : yj a arg za yjþ1; jzjb r1g ð j ¼ 1; . . . ; n� 1Þ. In view of (2.7), (2.15) and the

fact that jFðzÞ=zqþkj < expðer1=a1Þa expðerp=ðyjþ1�yjÞÞ for j ¼ 1; . . . ; n� 1 and jzj ¼
rb r1, hence we can apply the Phragmén-Lindelöf theorem [9, Theorem 9.12] to
the function F ðzÞ=zqþk in every sector domain Sj ð j ¼ 1; . . . ; n� 1Þ, and deduce
that there exist two positive constants M0 and r0 such that jFðzÞjaM0jzjqþk as
jzj ¼ rb r0. From this and Lemma 3, we can conclude that FðzÞ must be a
polynomial of order at most qþ k. However, this is impossible because PðzÞ is
a nonconstant polynomial in (2.1). This contradiction proves Lemma 4.
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3. Proof of Theorem 1

Since f and f ðkÞ share the polynomial Q CM, and noting that f is of finite
order, so from the Hadamard factorization theorem we have

f ðkÞ �Q

f �Q
¼ ePðzÞ; ð3:1Þ

where PðzÞ is a polynomial.
Put f �Q ¼ F , then we can see from (3.1) that F is an entire solution of the

di¤erential equation

F ðkÞ � FeP ¼ Q�QðkÞ: ð3:2Þ
Noting that F has finite order, and thus we can deduce from (3.2) and Lemma 4
that P must be a constant. This proves Theorem 1.
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