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ENTIRE FUNCTIONS THAT SHARE A POLYNOMIAL
WITH ONE OF THEIR DERIVATIVES*

JIAN-PING WANG

Abstract

In this paper, we investigate the entire functions that share a polynomial with one
of their derivatives and prove several theorems which generalize the main results given
by L. Z. Yang in [14].

1. Introduction and results

In this paper, the term “meromorphic” will mean meromorphic in the whole
complex plane. Let f and g be two nonconstant meromorphic functions, and let
P be a polynomial or a finite value. We say that f and g share P IM (ignoring
multiplicities) provided that f — P and g — P have the same zeros. If f — P and
g — P have the same zeros with the same multiplicities, then we say that f and
g share P CM (counting multiplicities). It is assumed that the reader is familiar
with the usual notations and fundamental results of R. Nevanlinna’s theory of
meromorphic functions, as found in [6] and [13].

Rubel and Yang seems to have been the first to study the entire functions
that share values with their derivatives. They proved

THEOREM A (see [11]). If a nonconstant entire function f share two distinct,
finite values CM with f', then f = f'.

Since then, shared value problems on entire functions, especially, the case
when f and its derivatives share values have attracted considerable attention
during the last quarter of century or so, and a number of results have been
obtained, some of the main results being due to G. Gundersen, E. Mues and C.
C. Yang (see [1-2], [7-8], [10], [12], [14-16] etc).

In 2000, Li and Yang replaced f’ with f®) (k>1) in Theorem A, and
proved the following results.
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THEOREM B (see [8]). Let f be a nonconstant entire function, and let k be a
positive integer. If f and f* share two distinct, finite values IM, then f = f®).

Obviously, the conclusion of Theorem B is, in general, not true if f and f)
share only one value CM. It is natural to ask, however, what can be said when
a nonconstant entire function f shares one finite value CM with one of its de-
rivatives %) (k >1)? This problem was studied by authors such as Jank, Mues
and Volkmann, R. Briick, L. Z. Yang, Q. C. Zhang etc., and some results have
been obtained under various extra conditions, respectively (see [1-2], [7, 8], [12],
[14-16)).

In particular, we shall refer to the following results on this topic.

THEOREM C (see [1]). Let f be a nonconstant entire function. If f and f’
share the value 1 CM, and if N(r,0,f") = S(r,f), then

fl-1
F-1

where ¢ is a non-zero constant.

THEOREM D (see [14]). Let f be a nonconstant entire function of finite order,
and let a #0 be a finite constant. If f and f® share the value a CM, then

o —q

: c
f—a 7

where ¢ is some non-zero constant and k a positive integer.

In this paper, we prove that Theorem D still holds if the constant a is
replaced by a polynomial Q(z), that is

THEOREM 1. Let f be a nonconstant entire function of finite order, let Q(z)
be a polynomial with degree q > 1, and let k be a positive integer. If f and f%
share Q(z) CM, then for some non-zero constant c, we have

fY-o_
-0 -

As usual, we say that a finite value zp is a fixed point of a function f if
f(z0) =zp. So from Theorem 1, we can easily obtain the following

C.

COROLLARY. Let f be a nonconstant entire function of finite order, and let
k be a positive integer. If f and f®) have the same fixed points with the same
multiplicities, then
f —z

f—z

=

for some non-zero constant c.
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2. Lemmas

Lemma 1 (see [3]). Let F be a nonconstant meromorphic function of finite
order p, let € >0 be a given constant, and let k be a positive integer. Then there
exists a set E <= [0,2n) that has linear measure zero, such that if y, € [0,2n) — E,
then there is a constant Ry = Ro(Y) > 0 such that for all z satisfying arg z =,
and |z| > Ry, we have |F®)(2)/F(z)| < |z|F7=1F),

LemmA 2 (see [14, Lemma 2|). Let F be an entire function, and let k be
a positive integer. Suppose that |F%)(z)| is unbounded on some ray argz = ¢.
Then there exists an infinite sequence of points z, = rn,e'® where r, — 400, such
that F¥)(z,) — o and

‘F%)

< (1 o)l

as z, — 0.

Lemma 3 (see [5, p. 119]). Suppose that f(z) is an entire function such that
f(2)/z" is bounded for |z| = R, where R is a positive number. Then f(z) is a
polynomial of degree at most n.

Now we state the main lemma of this paper which has independent interest
and, also is an improvement of [14, Theorem 1] and [2, Lemma 1].

LemmA 4. Let P(z),Q(z) be two nonconstant polynomials, and let q be the
degree of Q(z). Then for any positive integer k, every entire solution F of the
differential equation

F® _ Fe? = 9 — oW (2.1)

has infinite order.

Proof. We shall prove Lemma 4 by contradiction. Assume that Lemma 4
is not true, namely, suppose that F is an entire solution of the Eq. (2.1) that has
finite order p. Let ¢ >0 be any given constant. Then from Lemma 1, there
exists a set £ < [0,27) that has linear measure zero, such that if ¥, € [0,2n) — E,
then there is a constant Ry = Ry(y,) > 0 such that for all z satisfying arg z = v,
and |z| = Ry, we have

k
‘ﬂx@szwﬂml (2.2)

F(z)

Now suppose that 6 is any real number that satisfies 6 € [0,27) — E, and for
every o > 0,

|eP(reiI)) |

T +o0 (2.3)
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as r — +oo. Writing (2.1) as
F®) e’ 1
(Q—0")F 0-0W " F
Since (2.2) holds, thus for all z = re” with sufficiently large real number r, and
for any positive number o > max{0,k(p — 1)}, we have
s s <t @9

Since Q is a polynomial with degree ¢(> 1), which means that Q9 (0) # 0, so we
can write

(2.4)

090, 00

0(z) = z9+ + -+ 0 (0)z + 0(0). 2.6
@ ==+ Ty (0)z+ 0(0) (26)
By (2.3), (2.4), (2.5) and (2.6), we obtain
l 1 _ l 1 F(k) (Veio) _ P(re’”)
r*|F(re®)|  r* |Q(re?) — Q®) (rei?)| | F(re)
q' L P(re’y| F(k>(rei9) _
= 2|0@(0)| reta (|e | F(re®) o
as r — +oo. From which we can deduce that
F(rey -0 as r— +o. (2.7)

Next we suppose that ¢ is any real number that satisfies ¢ € [0,27), and for
every f# > 0,

pPratkee) g (2.8)

as r — 4oo.

Set  R(z) = 30(QU7(0)/(q+k — j))z4** and  G(z) = F(z) — R(z) +
Q(z), then by (2.6) we have R¥(z) = Q(z). Now we assert that |G¥)(z)| =
|F®)(z) — O(z) + Q%) (2)] is bounded on the ray arg z = ¢. Assume the contrary,
that is, suppose that |G*)(z)| is unbounded on the ray argz=¢. Then from

Lemma 2, there exists an infinite sequence of points z, = r,e where r, — +00,
such that G¥(z,) = F®(z,) — O(z,) + 0¥(z,) — oo and

‘G%Z(Z))‘ < (1+o(1)|zl* as ry — +o0. (2.9)
From (2.1) we have
FO(2) — 0(z) + 0¥ (z) = F(z)e’@). (2.10)

Since F¥)(z,) — 0(z,) + 0¥ (z,) = G¥(z,) — oo, it follows from (2.8) and (2.10)
that F(z,) — co. For the proof of the above assertion, we shall consider the
following two cases.
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Cast 1. There exist a positive number o > 2|0 (0)|/(¢ + k)! and an infi-
nite subsequence, say z,, of z,, such that |F(z,)| > oco|zn/|q+k for j=1,2,....
Then for any positive number f and sufficiently large integer j, we have

sk 5 QOO g+, |7 _2090O)] |2y |

1= (1/)z") (@+K)! |z, — 17

|F(an)| Z ao‘znj

That is
] EMU

[F (20))] = {2109(0)1/ (g + k)2, |7~ |F ()]

From (2.11), (2.9), (2.6), the fact |F(z,)| > oco|z,,/.|q+k as well as the definitions of
G(z) and R(z) we have

(2.11)

(1+o(1))]z, ™

GO (z,)| |GH(z,,)]
N G(Zn/) B ‘F(Zn/) - R(Zn,) + Q(Zly)|
B 1G9z,
T |F(z)| = [(Q9(0)/(q + k))zi ™ + -+ (Q/(0) /(k + DHzpt +(0(0)/kY)zy — O(zy,)]
< |GGz 1G9 (z)] EN
T F () = 200@D0)|/ (g + K|z | TF T 1F ()] TV
and thus we obtain
(1 4+ 0(1))|zn] < Yen) |2, | P! (2.12)
= F(zy) 5 ' '

Now we rewrite (2.10) as

(2.13)

By considering (2.12), and (2.13), we can deduce that

rﬂ+k+lep(rrrjei¢)

n/ — 00 as ry — +o00,

which contradicts the assumption (2.8).

Case 2. For every given positive number o > 2|09 (0)|/(q + k)!, the in-
equality |F(z,)| < a|za|*™ holds except for at most finitely many positive inte-
gers n.

In this case, we choose o =2|Q@?(0)|. Then for any positive number
p > q+k and positive integer n that is large enough, we obtain
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anﬂ‘G(k)(zn) > |G (Zn)| ‘ nlﬂ q—k
F(zy) |~ 2]Q9(0)]

It follows from (2.13) and (2.14) that |z,|’|e”@)| — -0, which contradicts the
assumption (2.8) again.

— 400 as r, — +oo. (2.14)

Now the assertion that |G*)(z)| is bounded on the ray argz=¢ has
been conﬁrmed From this assertion and the formula G*~V(z) = G*¥=1(0) +
Jy G®(w) dow, we obtain that |Gk D(z)| < |G*D(0)| + M|z| for all z satisfying
arg z = ¢ where M = M(¢) > 0 is some constant. Similarly, by integrating the
function G®) k times, we can deduce that for all z satisfying arg z = ¢,

|G(2)] < 1G(0)] +[G'(O)] 2] + - + |G V()] |21 + Mz,

From the above and the definition of the function R(z), it follows that for all z
satisfying arg z = ¢,

[F@)] <G|+ [R(2)] + [0(2)]

< 1GO) + 16O+ + GO+ et + 2125 Ol oo
109(0) .
( QiR +0(1)>|z|q k (2.15)

as |z| —» +oo.

We now have shown that (2.15) holds for any ¢ € [0,27) with property (2.8),
and that (2.7) holds for any 0 € [0,27) — E with property (2.3). Suppose that
p; 18 a real number not less than p which is the order of the function F. Then
we can find a positive number o; such that «; < 1/p,. Noting that F(z)/z4**
is an entire function of finite order p in |z| > 1, we can deduce that for every
given constant ¢ > 0, there exists a real number r; > 1 such that |F(z)/z¢t%| <
exp(er'/™) as |z| =r > 1.

Since P(z) is a nonconstant polynomial, so there exist only finitely many
real numbers in [0,27) that do not satisfy either (2.3) or (2.8). Also we note that
the set E has linear measure zero, thus there exist a finite collection of real num-
bers 0; € [0,27) — E that satisfy either (2.3) or (2.8), where 0; <0, <--- <0, =
01+ 2n, and ayn/2 < 0;y1 —0; <oym for j=1,...,n—1. By the rays argz =
0; (j=1,...,n), we divide the set {ze C:|z| > r1} 1nto sector domains S; = {z €
C 0; < argz <Oy, |zl zn} (j=1,...,n—1). Inview of (2.7), (2.15) and the
fact that |F(z)/z9%%] < exp(ert/*) < exp(sr”/( i=0)y for j=1,...,n—1and |z| =
r > ry, hence we can apply the Phragmén-Lindel6f theorem [9, Theorem 9.12] to
the function F(z)/z¢"* in every sector domain S; (j=1,...,n— 1), and deduce
that there exist two positive constants My and r such that |F(z)| < Mo|z|*"* as
|zl =r =rp. From this and Lemma 3, we can conclude that F(z) must be a
polynomial of order at most ¢ + k. However, this is impossible because P(z) is
a nonconstant polynomial in (2.1). This contradiction proves Lemma 4.
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3. Proof of Theorem 1

Since f and f*) share the polynomial @ CM, and noting that f is of finite
order, so from the Hadamard factorization theorem we have

k
f(.>_Q:eP(:)’ (31)
/=0
where P(z) is a polynomial.
Put /' — Q = F, then we can see from (3.1) that F is an entire solution of the
differential equation

F® — Fe? =0 — oW, (3.2)

Noting that F has finite order, and thus we can deduce from (3.2) and Lemma 4
that P must be a constant. This proves Theorem 1.
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