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Abstract

We establish a sharp inequality for multilinear Littlewood-Paley operator. As
application, we obtain the weighted norm inequalities and L log L type endpoint esti-
mate for the multilinear operator.

1. Introduction and result

Let  be a function on R" which satisfies the following properties:

() Jude=0.

@) W) < C1+ [x) ", o

(3) W(x+y) =y(x)| < Cly|(1 + |x]) when 2|y| < |x|;

Let m be a positive integer and 4 be a function on R". We denote that
[(x)={(y,0)e R"':|x—y| <t} and the characteristic function of I'(x) by
Xr(x- The multilinear Littlewood-Paley operator is defined by

1/2
%mm=“kyWuwwﬁﬂv

where
FA ) = | TEECE Ry i)
R,11+1(A;X7 y) = A(X) - Z l|D06A(y)(x - y)0<7

o
o <m

and ,(x) = t"Y(x/1) for t > 0. We write F,(f)(x) = f *y,(x). We also define

that
1/2
wmw=@hywwﬂﬁ®,
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which is the Littlewood-Paley operator (see [12]).
NV
Let H be the Hilbert space H = {h 2 |Al = (”Rm \h(t)|2d}f1’) < oo}.

¢+l

Then for each fixed x € R", FA(f)(x) and F,(f)(x) may be viewed as a mapping
from (0,+c0) to H, and it is clear that

SN G) = e F ) 0L

Note that when m = 0, Sj is just the commutator of Littlewood-Paley operator
(see [9]), while when m > 0, it is non-trivial generalizations of the commutators.
It is well known that multilinear operators are of great interest in harmonic anal-
ysis and have been widely studied by many authors (see [1-5]). In [8], authors
establish a variant sharp estimate for the multilinear singular integral operators.
The main purpose of this paper is to establish a sharp estimate for the multilinear
Littlewood-Paley operator, then the weighted norm inequalities and the L log L
type endpoint estimate for the multilinear operator are obtained by using the
sharp estimate. We point out that some of our ideas come from [8] and [10].
First, let us introduce some notation (see [6] [7] [10]).

For any locally integrable function f, the sharp function of f is defined by

#
£ = ggg@j £ — fol dy.

where, and in what follows Q will denote a cube with sides parallel to the axes,
and fp =|0|" jQ x) dx. Tt is well-known that

. 1 .
140 = sup inf o | 170 el

We say that f belongs to BMO(R") if f# belongs to L*(R"). For 0 <r < oo,
we denote f# by

L) = (AN F

Let M be the Hardy-Littlewood maximal operator, that is
Mf(x) = sup

Sl dy,
g,
we write that M, f = (M(fl’))l/p, for k € N, we denote by M* the operator M
iterated k times, i.e., M'f(x) = Mf(x) and
MFf(x) = M(M*'f)(x) when k > 2.

Let B be a Young function and B be the complementary associated to B, we
denote that, for a function f

||f||B,Qinf{A>o |Q|j B(|f</1)|>d <1}

and the maximal function by
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Mpf(x) = sup Hf”B,Q;
xeQ

The main Young function to be using in this paper is B() = (1 +log" ¢) and its

complementary B = exp ¢, the corresponding maximal denoted by M,z and
M. We have the generalized Holder’s inequality (see [10])

101, /9001 & < 1 Lol

and the following inequality (in fact they are equivalent), for any x € R"
Mpogrf(x) < CM?*f(x)

and the following inequalities, for all cube Q any b € BMO(R")
16 = bollexpr.0 < ClIBl paro

and
|baki g — bagl| < 2k]|]| ppso-

We denote the Muckenhoupt weights by 4, for 1 < p < oo (see [6]).
Now we state the results in this paper as following.

THEOREM 1. Let D*A € BMO(R") for all o with |o| =m. Then for any
0 <r< 1, there exists a constant C >0 such that for any f e Cy(R") and any
x e R",

(SFUNF ) < €Y 1D* AllpyyoMf ().

|er|=m

THEOREM 2. Let 1 < p < oo and D*4 € BMO(R") for all o with |a| =m,
we A, Then Sj is bounded on L”(w), that is

1S5 oy < € D2 1D Allpagoll /oy

lot|=m

THEOREM 3. Let D*4 € BMO(R") for all a with |a| =m, we A;. Then
there exists a constant C > 0 such that for each A >0,

w({xeR": S‘/f'(f)(x) > })
< C Y D Allgp0 JRH @ (1 + log" (@))MX) dx.

lo|=m
As in [10], Theorem 2 and 3 follow from Theorem 1 and the boundedness of S,

with M. So we only need to prove Theorem 1.

2. Some lemmas

We begin with some preliminary lemmas.
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Lemma 1 (Kolmogorov, [7, p. 485]). Let 0 < p < g < oo and for any func-
tion [ > 0. We define that

1/ llwze = sup Al{x e R": f() > e,
Npof) = 9P I e/ Neelors (1fr=1/p=1/q)

where the sup is taken for all measurable sets E with 0 < |E| < co. Then
1/ llwze < Noo () < (a/ (@ = P)) 1S Do

LemmMa 2 ([10, p. 165]). Let we Ay. Then there exists a constant C >0
such that for any function f and for all 1 >0,

w({yeR": M*f(y)>2}) < Ci7! J LS +log" (A (n))w(y) dy.

R"

Lemma 3 ([3, p. 448]). Let A be a function on R" and D*A € LY(R") for all
o with |«| =m and some q > n. Then

1/q
1
|Rn(A;x, )] < Clx — y|™ <~7J [D*A(z)|" dZ) ;
Mgn 19Cx, ) oy
where Q(x,y) is the cube centered at x and having side length 5v/n|x — y|.
LemmMa 4. Let l<p<ow, l<r<o, l/g=1/p+1/r and D"Ae
BMO(R") for all o with |o| = m. Then Slf is bound from L?(R") to L1(R"), that
is

1 <C Z 1D*All paro |l f N .-

lo|=m

1S5 (f)
Proof. By Minkowski inequality and the condition of y, we have
1/2
R, A X,z) dydt
R (J (o 2,in> G

1/2
« =2 dydt /
0 Jpoyi<e (L4 |y — 2| /o) ot

o0 —2n 1/2
| V@R (4; le( i dydr) .

S ) [Rmns1 (45 x, 2))|

m

<C
R |x — z|

RY v — 2™ byl (14 |y — z|/2) >+ o]

(=]

S [Rni1(4; x, 2))|
R |x —z|"

1/2
0 2211+4 . tlfn
|)2n+2 dydt dz,

0 J—y<i 20+ |y -
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noting that 2+ |y —z| > 2t+ |x —z| — |x — y| = t+ |x — z| when |x — y| < and

*© tdt _
J —M=C|X—Z| 2",
o (t+]x—z|)

we obtain

Re X = 2|

Y 12
S (f)(x) < CJ /(2 )|m |Ri+1 (45 x Z)<L (Z+|xt_dtzl)zn+z> dz

= CJ M‘R,,H_I(A x,z)| dz,
Ro X —

|m+n

thus, the lemma follows from [4] [5].

3. Proof of Theorems

We first prove Theorem 1.

Proof of Theorem 1. For xe R", let Q = Q(xy,/) be a cube centered at x
and having side length / such that X e Q. It is suffice to prove for f e Cj°(R")
and some constant Cj, the following inequality holds:

QQJW(X>CWWy?6Wﬂﬂ

Set Q=5ynQ and A(x) = A(x) = Y, 5 (D*4)5x*, then R, (4;x,y) =
R,.(A4;x,y) and D*A = D*A — (D” A)g for |of =m. We write, for fi = fy, and
J{2 = fXRn\Q:

FAe ) = |

_ Jlejcl (4; ‘x ,Z)

Ry1(4;x,2)
Jx — 2"

Vi(y —2)f(2) dz

b= pe) s [y ) a

waféj&%@zmwﬁ
|ot|=m

then

1S£(/)(x) = S () (xo)]

= | tre OO D)= Wt ) (o, 9

=< ”Xl"(x)FtA(f)(xv y) - Xl"(xo)FtA(f)(xm y)H
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(4;x,-) (X - g
< |lxrFi ( [;7 B N Xr(x WD“Afl (»)

F bt FAR) (x4, ) = 2 EA () (0, )|
= I(x)+ II(x) + III (x),

1\ m ‘

thus,

(1giJ, st - sfzar )’

< (& JQ I(x)" dx)l/r + (é JQ 1(x)" dx)l/r + (% JQ I (x)" dx)l/r

|
=1+1+1I.

Now, let us estimate 7, /I and III, respectively. First, for x € Q and y € 0, using
Lemma 2, we get

Rm(/i? x, ) < Clx — y[™ Z 1D*Al| ppso

lof|=m

thus, by Lemma 1 and the weak type (1,1) of S, (see [9] [12]), we obtain

-1 ||Sr//(f1)XQ||Lr

I<c¢ Z 1D*Al| paso| Q| o
Lr/(=r

|ee|=m

<C Z ||DC{AHBM0|Q‘71||St//(fi)(fi)||WL'

lot|=m

<C Y0 10 Alaoll” | 1701

lof|=m

< C Y D" AllpyoM (f)(%);

|ee|=m

For II, similar to the proof of I, we get

1 ||S¢(D°‘A~f1 )XQ”L"

nH<c Z 10|~ ol <C Z |Q|71||Sl//(D“A~f1)HWL1
lo|=m ZollLr - |o=m
<cY o jQ D AW () dy < C S 1D Al s o1 roer 0
Jo|=m |or|=m

<C Z 1D* Al ppyroMriogf (%) < C Z 1D Al pproM? £ (%);

lo|=m lot|=m
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Now let us estimate III. We write
xre FA () (%, ¥) = xrn B (R) (X0, )

:J[ 1 e : m:|Xl"(x)lpt(y_Z)Rm(A;X,Z)fz(Z)dZ

X —z| |x0 — z|

xrw¥(y =246 y
+J |X0 _Z‘m [Rm(A,X,Z) _Rm(A,X(),Z)] dz

(v — Z)RM(/I; X0, 2) f2(2) d

Ixo — z|™

+ J(Xr(x) = AT(xy))

7Zalj

=11 + I, + I + 111,.

4 |,,,) X”*“‘“Tfﬂwxy DD A() fo(2) de

X0 — z|

I(x
\ X —

Note that |x —z| ~ |xo — z| for xe Q and ze R"\Q. By Lemma 3 and the fol-
lowing inequality (see [7])
lbo, = bo,| < Clog(|Qal/|QDIIDl gasor  for Q1 = s,
we know that, for x € Q and z e 2Kt Q\2%Q,
|[R(A;3,2)| < Clx = 2™ Y (I1D*Al| gygo + [(D*A) gy — (D*A)g)

lof|=m
< Ck|x —z|™ Z 1D* A gpsro3
lot|=m

For III;, by the condition on  and similar to the proof of Lemma 4, we get

[x = xo[1/(2)

| -
| < J R, (A;x,2)| dz
il < [ R 2)

<3| Bl R ) e

- - 1
— 2/‘+'Q\2kQ |X— Z|I’l+m+

<Cy. \|1>°v1||BMoZI«2 M)

|ot|=m

<CY 1D Al ppoM()(%);

|ot|=m

For IIl,, by the formula (see [3]):

Rm(/f;x,z) m A 1 X0, 2 Z \ﬂ\ D A X, Xo)( )ﬂ

\/)’\<m
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and Lemma 3, we have

|Ru(A; x,2) = Ry(A;x0,2)| < € D3 e = xo| " Wx — 27D 4] gy

B<m o=
-1
< C Y D" Allpyolx = xol [x — 2",
|ot|]=m

thus, similar to the proof of Lemma 4

R, A~;x,z — Ry, A~;x ,Z
Rl 5,2) = Rl i I )

L < J N
RO X0 — z]

© |Q|1/n
<O Dl | e e
mz:;n ; 2#410\2¢6 | — 2|
- 1
< C DIA 27]( _ J z dZ
> 10" lpio 3 2 s | 1)

|ot|=m k=1

<C Z D" Al grro M (f)(X);

|ee|=m

For III;, similar to the proof of Lemma 4, we obtain

|| < © J ” J L W,(y—zn 140)] ||§M<A;x0,z)|

|X()—Z

) 1/2
dydt
X e (05 1) = ) (0 l)|] pras) dz

<c| 12G) IRn1(437f0,2)|
R |x0 — |
1/2
" dydt 17 dydt
X PP R ——— | d
r (1+ |y —z) o) (£ 4y — 2|)
<C |/2(2)] |Rm(/1inxo,z)|
Rn |X0 — Z‘
1/2
y JJ 1 B 1 dydt / i
|+ |x+y =2 (14 |xo+ y—z)) 2 !

5 12
cof WENRGma ([ i
= e 02" < (t+ |x + y —z2))*
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—c| 1@ = x| R(dix0,2)]
= o |X _ Z|m+n+1/2
<cy HmAnBMO; 2 Q|J ) e
< C Y 1D Al oM (f) ()
lot|=m

For IIl4, similar to the proof of III} and III5, we get

e—xo o —xl? L
A J ( & + ST ID*A(y)|1/2(2)| dz

|of=m 7 R |X()72 |X()
1
<c 242y | EIIDAG) - ()] d:
|Zkz 1251 g ¢

<C) Zk(T" + 27 ) (I D* Allexp 2461 | 10g 2,260

Jof|=m k=1

+1D% Al gro M (£)(%))

< O SR 4 24 D Al o Miros () ()

Ja|=m k=1
< C Y D Al prso M (f) (%)
lot|=m

Thus,

HI < CY | D*All pyoM*()(%).

|er|=m

This completes the proof of Theorem 1.

From Theorem 1 and the weighted boundedness of S, and M, we may
obtain the conclusion of Theorem 2.
From Theorem 1 and Lemma 2, we may obtain the conclusion of Theorem 3.
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